首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Molecularly cloned c-mos(rat) is biologically active.   总被引:10,自引:0,他引:10       下载免费PDF全文
A unique rat cellular gene, c-mos(rat), homologous to the transforming sequences, v-mos, of Moloney murine sarcoma virus (M-MSV) was detected by hybridization to a v-mos specific probe. The c-mos(rat) gene was cloned together with its flanking sequences in an 11-kbp EcoRI DNA fragment inserted in vector Charon 4A. Two probes were used to investigate the position and orientation of c-mos(rat) in the clone examined ( D3e ), namely pMSV -31 which contains the sequences specific for the transforming sequences of M-MSV and pCS-1 which harbors 0.5 kbp of 5'-terminal sequences of c-mos(mouse) as well as 0.7 kbp of its flanking sequences. After ligation of a restriction fragment of clone D3e containing c-mos(rat) to a fragment containing the long terminal repeat of M-MSV and transfection of the DNA onto rat cells, we detected foci of transformed cells, thus showing that c-mos(rat) is biologically active. Using DNA framents derived from clone D3e , we studied the conservation of c-mos and of its flanking sequences in several species. c-mos(rat) as well as some of its flanking sequences appeared to be highly conserved in the species studied.  相似文献   

4.
The myeloproliferative sarcoma virus (MPSV) was derived by passage of Moloney sarcoma virus (Mo-MuSV) in adult mice. Mo-MuSV variants transform fibroblasts. However, MPSV also affects erythroid, myeloid, and hematopoietic stem cells. The MPSV proviral genome, two temperature-sensitive mutants derived from it, Mo-MuSV variant M1, and Moloney murine leukemia virus (Mo-MuLV) were compared by heteroduplex mapping. MPSV wild type was found to have 1 kilobase pair deleted from the pol gene and to contain v-mos-related sequences. The 3' end of MPSV, including the oncogene-helper junctions, the v-mos gene, and the 3' long terminal repeat, was sequenced and compared with sequences of Mo-MuLV, MSV-124, and the mouse oncogene c-mos. From these data, MPSV appears to be either closely related to the original Mo-MuSV or an independent recombinant of Mo-MuLV and c-mos. Five possible explanations of the altered specificity of MPSV are considered. (i) The MPSV mos protein has properties inherent in c-mos but lost by other Mo-MuSV mos proteins. (ii) The MPSV mos protein has altered characteristics due to amino acid changes. (iii) Due to a frameshift, MPSV codes for a mos protein truncated at the amino terminal and also a novel peptide. (iv) A second novel peptide may be encoded from the 3' env region. (v) MPSV has long terminal repeats and an enhancer sequence more like Mo-MuLV than Mo-MuSV, with a consequently altered target cell specificity.  相似文献   

5.
The nucleotide sequence of the Moloney murine sarcoma virus strain HT-1 (HT1MSV) mos gene differs from that of the cellular mos gene in three positions, but these are silent changes, and the amino acid sequence of the v-mos and c-mos open reading frames are identical. We have overproduced the mos HT1MSV (equivalent to c-mos) in Escherichia coli under the control of phage lambda promoter (pL). The E. coli p40mos protein thus obtained was partially purified and examined for several biochemical activities. We show that the p40mos binds ATP analog p-fluorosulfonylbenzoyladenosine and exhibits ATPase activity.  相似文献   

6.
J Papkoff  I M Verma  T Hunter 《Cell》1982,29(2):417-426
We identified, in cells transformed by Moloney murine sarcoma virus (M-MuSV clone 124), a protein encoded by the M-MuSV transforming gene, v-mos. An antiserum against a synthetic peptide corresponding to the C terminus of a protein predicted from the v-mos nucleotide sequence specifically recognizes a protein doublet of approximately 37,000 daltons from 35S-methionine-labeled M-MuSV 124-transformed producer cells. By peptide mapping, this protein is almost identical to the 37 kd in vitro translation product from the M-MuSV v-mos gene. Immunoprecipitates from 32P-labeled cells contain a single v-mos-specific phosphoprotein, which has at least six sites of phosphorylation containing phosphoserine. Pulse-chase experiments show that the lower band in the 35S-methionine-labeled doublet is the primary translation product, which is modified, probably by phosphorylation, to yield the upper band. A similar mos protein is immunoprecipitated from HT1-MuSV-transformed cells, but not from uninfected NIH/3T3 cells. These mos proteins are present at very low levels in transformed cell lines. Cells acutely infected with M-MuSV 124, however, transiently contain much higher levels of the mos protein. These high levels coincide with extensive cell mortality.  相似文献   

7.
Human proto-oncogene c-mos maps to 8q11.   总被引:7,自引:1,他引:6       下载免费PDF全文
The c-mos proto-oncogene is the cellular counterpart of the viral oncogene v-mos isolated from Moloney murine sarcoma virus. The c-mos gene locus has previously been assigned to human chromosome 8. By both in situ hybridization and molecular hydridization to sorted chromosome DNA (using a c-mos probe) we have localized the c-mos gene to band 8q11. This regional localization is at variance with the one previously reported at 8q22 and may explain why no rearrangement of c-mos has been found in acute leukaemia with the chromosomal translocation t(8;21)(q22;q22).  相似文献   

8.
Previous studies from this laboratory have shown that purified MPF from Xenopus eggs contains cyclin B2 complexed with cdc2 kinase. The activation of MPF during oocyte maturation is known to require expression of the c-mos(xe) proto-oncogene. We show here that immunoprecipitates of either v-mos from Moloney murine sarcoma virus-transformed NIH 3T3 cells or c-mos from Xenopus eggs phosphorylate cyclin B2 in vitro. Phosphopeptide analysis reveals a pattern similar to that observed with cdc2 kinase. Moreover, ablation of c-mos(xe) from oocytes by antisense oligonucleotide injection reduces the rate of cyclin B2 phosphorylation in oocyte extracts by 40%. These results suggest that the mechanism of activation of MPF by c-mos(xe) involves phosphorylation of the cyclin component.  相似文献   

9.
The proto-oncogene c-mos was expressed during differentiation of the human monocytic cell line U937 into macrophages. To investigate a possible role of the mos oncogene, we introduced the v-mos gene under an inducible promoter, MT-I, into U937 cells. The v-mos transformed cells expressed mos mRNA at an amount proportional to the concentration of Zn2+ ions. The induction of the v-mos gene caused growth inhibition and macrophage differentiation in these cells. The differentiation of v-mos transformed monocytes into macrophages required continuous expression of the v-mos gene. The extent of expression of phenotypic characteristics of macrophages, such as phagocytosis, cell surface antigens and typical morphology, depends on the amount of mos mRNA present. We were therefore able to demonstrate that the expression of only one oncogene, mos, determines monocyte differentiation into macrophages.  相似文献   

10.
J Papkoff  E A Nigg  T Hunter 《Cell》1983,33(1):161-172
The transforming gene, v-mos, of Moloney murine sarcoma virus (M-MuSV) encodes a 37,000-dalton phosphoprotein, p37mos. Since the biochemical function of this protein is unknown, we have determined the subcellular location of p37mos in M-MuSV 124-transformed cells. Using two different methods of cell lysis and fractionation, we found that newly synthesized as well as mature p37mos is a soluble cytoplasmic protein. In agreement with these results, immunofluorescent staining of cells acutely infected with M-MuSV 124, using an antiserum directed against a synthetic v-mos peptide, produced a diffuse cytoplasmic pattern. Gel filtration experiments and glycerol gradient sedimentation analysis suggest that the bulk of p37mos exists as a monomer and is not involved in a specific association with other cellular proteins. These properties of p37mos are different from those of other characterized retroviral transforming proteins.  相似文献   

11.
Chumakov et al. [Gene 17 (1982) 19-26] identified in the human gene library a number of recombinant phages that possess a homology to the v-mos gene. Here we report the unusual structure of one of these recombinants, lambda gp5. The 14.3-kb stretch of human DNA from this phage contains at least three regions of homology to the v-mos gene, together with multiple copies of Alu-family repeats. Moreover, we have shown the presence of retrovirus-related sequences in the close vicinity of the mos-homologous regions. These data point to the possibility of involvement of retrovirus in the process of c-mos gene amplification during the formation of a multigene family.  相似文献   

12.
Different variants of Moloney murine sarcoma virus (MSV) were examined by nucleotide sequencing to compare the junctions between the acquired cellular sequence, v-mos, and the adjacent virus-derived sequences. These variants included 124-MSV, m1-MSV, and HT1-MSV and also the purportedly independent isolate Gazdar MSV. These four strains have an identical 5' junction between the murine leukemia virus env gene and the v-mos gene. This junction lies within the sixth codon of the chimeric env-mos coding region that encodes the transforming gene product. In contrast, at the 3' junction between the v-mos gene and the murine leukemia virus env gene, the three variants examined here were all different. A small deletion was found in the COOH-terminal portion of the m1-MSV env-mos coding region, indicating that the COOH terminus of this transforming gene product must be different from that of 124-MSV or HT1-MSV. The data presented here are consistent with the thesis that a virus closely related to HT1-MSV was the primordial Moloney MSV, and that all other related strains evolved from it by deletion or rearrangement. The variability observed in the Moloney MSV family is discussed in terms of possible mechanisms for the initial capture of mos sequences by the parental retrovirus and also in comparison with other transforming retrovirus families, such as Abelson murine leukemia virus and Rous sarcoma virus.  相似文献   

13.
14.
Previous work has demonstrated that the Xenopus protooncogene mosxe can induce the maturation of prophase-arrested Xenopus oocytes. Recently, we showed that mosxe can transform murine NIH3T3 fibroblasts, although it exhibited only 1-2% of the transforming activity of the v-mos oncogene. In this study we have investigated the ability of the v-mos protein to substitute for the mosxe protein in stimulating Xenopus oocytes to complete meiosis. Microinjection of in vitro synthesized RNAs encoding either the mosxe or v-mos proteins stimulates resting oocytes to undergo germinal vesicle breakdown. Microinjection of an antisense oligonucleotide spanning the initiation codon of the mosxe gene blocked progesterone-induced oocyte maturation. When oocytes were microinjected first with the mosxe antisense oligonucleotide, and subsequently with in vitro synthesized v-mos RNA, meiotic maturation was rescued as evidenced by germinal vesicle breakdown. The v-mos protein exhibited in vitro kinase activity when recovered by immunoprecipitation from either microinjected Xenopus oocytes or transfected monkey COS-1 cells; however, in parallel experiments, we were unable to detect in vitro kinase activity associated with the mosxe protein. Microinjection of in vitro synthesized v-mos RNA into cleaving Xenopus embryos resulted in mitotic arrest, demonstrating that the v-mos protein can function like the mosxe protein as a component of cytostatic factor. These results exemplify the apparently conflicting effects of the v-mos protein, namely, its ability to induce maturation of oocytes, its ability to arrest mitotic cleavage of Xenopus embryo, and its ability to transform mammalian fibroblasts.  相似文献   

15.
The mos oncogene of Moloney murine sarcoma virus encodes a protein of approximately 37,000 daltons (designated p37mos). We have detected a serine protein kinase activity which is closely associated with p37mos in immune complexes obtained with antibodies [anti-mos(37-55) serum] that were generated with a peptide containing amino acids 37 through 55 of the v-mos protein (S. A. Maxwell and R. B. Arlinghaus, Virology 143:321-333, 1985). Immune complexes that were derived with antibodies generated against peptides representing the C-terminal 8 or 12 amino acids of v-mos (anti-C2 and anti-C3 serum, respectively) exhibited very little kinase activity capable of phosphorylating p37mos. Treatment of anti-mos(37-55) complexes containing active v-mos kinase with anti-C3 or anti-C2 serum resulted in a dramatic reduction of the in vitro phosphorylation of p37mos. Antiserum blocked with the appropriate C-terminal peptide had no inhibitory effect on the phosphorylation of p37mos in anti-mos(37-55) complexes which indicated that the inhibition of v-mos kinase activity was a specific effect of these antibodies. The specific inhibition of the in vitro phosphorylation of p37mos by antibodies directed against the C terminus of the v-mos protein provides strong evidence that the v-mos gene encodes a serine protein kinase. In addition, the extreme C terminus of p37mos may be critical for an active v-mos kinase.  相似文献   

16.
Recently we described the isolation of c-mos (rat). The gene belongs to the family of oncogenes. Some facts render c-mos unique among the oncogenes : a) it does not contain intervening sequences and b) its expression was never detected in a large number of normal mouse tissues examined. We undertook the sequence analysis of c-mos (rat) in order to compare it to the nucleotide sequences published for c-mos (mouse), c-mos (human), c-src and bovine protein kinase. c-mos (rat) contains an open reading frame of 1017 nucleotides, coding for a polypeptide of 339 amino acids. c-mos (rat)-makes use of the same ATG that defines the N-terminus of the c-mos (human) protein. By comparing all c-mos sequences available we found sequences with high mutational rates to be confined to certain domains. This comparison, together with data on the biological activities of the cloned DNA, allowed us to tentatively define regions involved in (a) function(s) of c-mos other than transformation.  相似文献   

17.
We used the mouse mammary tumor virus long terminal repeat to promote dexamethasone-regulated expression of the Moloney murine sarcoma virus (M-MSV) transforming gene, v-mos. A recombinant DNA vector containing the mouse mammary tumor virus long terminal repeat fused to the M-MSV 124 v-mos gene was cotransfected with a plasmid containing the herpes simplex virus thymidine kinase gene (tk) into 3T3TK- cells. Individual clones of cells which grew in hypoxanthine-aminopterin-thymidine medium were tested for dexamethasone-regulated expression of p37mos as well as several transformation-specific phenotypic parameters. In the absence of dexamethasone, the v-mos transfectants appeared morphologically similar to the control cells despite low basal levels of p37mos expression. Upon hormone treatment, the levels of p37mos increased 5- to 10-fold, coincident with morphological changes typical of M-MSV transformation of 3T3 cells. The ability to form foci in monolayers also correlated with p37mos induction. The extent of morphological changes varied in individual clones of cells with similar levels of induced p37mos. Although the induced levels of p37mos were comparable to those seen in stable M-MSV 124 virus-transformed NIH 3T3 cells, the transfectants were unable to grow in soft agar under conditions which support growth of the virus-transformed cells. Acute infection of the transfectants with M-MSV 124 virus, a situation which resulted in elevated levels of p37mos, allowed these cells to grow in soft agar. The results described in this paper suggest that different threshold levels of p37mos may be necessary for the expression of various parameters of the transformed phenotype and also that continued expression of p37mos is necessary for maintenance of the transformed state. However, it also appears that the sensitivity to given levels of p37mos varies among clonal cell lines.  相似文献   

18.
19.
The gene products of Gazdar murine sarcoma virus (Gz-MuSV) were identified by in vitro translation of Gz-MuSV virion RNA. An overlapping set of proteins with approximate molecular weights of 37,000 (37K), 33K, 24K, and 18K were synthesized from the transforming gene of Gz-MuSV, v-mosGz. In addition, Gz-MuSV-specific RNA directed the in vitro synthesis of a 62K gag gene protein and a 37.5K env gene-related product. The Gz-MuSV-specific in vitro translation products were compared with the in vitro translation products of M-MuSV 124, an independent isolate with a similar v-mos gene. This analysis showed that the 62K Gz-MuSV gag gene protein and the 37K, 33K, 24K, and 18K v-mosGz proteins were almost identical to the M-MuSV 124 62K (gag) and 37K, 33K, 24K, and 18K (v-mosMo) proteins that we previously identified and characterized. The 37.5K env gene product from Gz-MuSV does not have a correlate in the M-MuSV 124 translation products. These results were analyzed in the context of expectations based on similarities and differences in genetic organization of these two viral genomes.  相似文献   

20.
To investigate the role of c-mos in rat spermatogenesis, expression of c-mos, MAP kinase kinase (MAPKK), MAP kinase (MAPK), cdc2 and protein kinase A (PKA) by spermatogenic cell culture of 14 day-old rats was examined. MAPKK and PKA expressions were constitutive, whereas the expression of MAPK and cdc2 in spermatogonia initially decreased, but later increased on meiotic maturation of spermatocytes. c-mos expression was definitive of late meiotic prophase. c-mos immunoprecipitates prepared from the c-mos-enriched fraction (pI9.0-9.6) could form complex(es) in the cultured spermatogenic cell lysates. In vitro phosphorylation of the c-mos immune complexes revealed a 34 kDa protein that was phosphorylated at serine and threonine residues as a target of the c-mos signal. Its pI value was 4.4-4.5, and cdc2 was not detected, making it different from cdc2 (p34). These results suggest that the phosphorylation of the 34 kDa protein by the c-mos signal may play a crucial role in the meiotic division of rat spermatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号