首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the large granule fraction of rat liver, the density distribution of inhibitor-sensitive neutral ribonuclease is similar to that for acid hydrolases and its density distribution is similarly modified by Triton WR-1339 accumulation in lysosomes. Particulate neutral ribonuclease is latent; the enzyme is unmasked by very low digitonin concentrations or hypoosmotic shock. These observations demonstrate that the bulk of liver neutral ribonuclease is associated with the lysosomal system. In view of the neutral pH optimum of the enzyme and of some particularities of its distribution in fractionation experiments, the possiblilty of an extrahepatic origin of neutral ribonuclease has been investigated. After partial pancreatectomy, a significant decrease is observed in both plasma and liver neutral ribonuclease. The effect is specific, for it does not occur for other lysosomal enzymes. Also, labelled bovine pancreatic ribonuclease, when injected intravenously, is taken up by the liver. The sedimentable labelled enzyme has a density distribution similar to the distribution of other foreign proteins, horseradish peroxidase or yeast invertase. These results are explained by the uptake of plasmatic neutral ribonuclease from pancreatic origin by the liver.  相似文献   

2.
A ribonuclease was isolated from serum-free supernatants of the human colon adenocarcinoma cell line HT-29. It was purified by cation-exchange and C18 reversed-phase high-performance liquid chromatography. The protein is basic, has a molecular weight of approximately 16,000, and has an amino acid composition that is significantly different from that of human pancreatic ribonuclease. The amino terminus is blocked, and the carboxyl-terminal residue is glycine. The catalytic properties of this ribonuclease resemble those of the pancreatic ribonucleases in numerous respects. Thus, it exhibits a pH optimum of approximately 6 for dinucleotide cleavage and employs a two-step mechanism in which transphosphorylation to a cyclic 2',3'-phosphate is followed by slower hydrolysis to produce a 3'-phosphate. It does not cleave NpN' substrates in which adenosine or guanosine is at the N position and prefers purines at the N' position. Like bovine ribonuclease A, the HT-29-derived ribonuclease is inactivated by reductive methylation or by treatment with iodoacetate at pH 5.5 and is strongly inhibited by the human placental ribonuclease inhibitor. However, in contrast, the tumor enzyme does not cleave CpN bonds at an appreciable rate and prefers poly(uridylic acid) as substrate 1000-fold over poly(cytidylic acid). It also hydrolyzes cytidine cyclic 2',3'-phosphate at least 100 times more slowly than uridine cyclic 2',3'-phosphate and is inhibited much less strongly by cytidine 2'-monophosphate than by uridine 2'-monophosphate. Other ribonucleases known to prefer poly(uridylic acid) were isolated both from human serum and from liver and were compared with the tumor enzyme. The physical, functional, and chromatographic properties of the serum ribonuclease are essentially identical with those of the tumor enzyme. The liver enzymes, however, differ markedly from the HT-29 ribonuclease. The potential utility of the tumor ribonuclease in the diagnosis of cancer is considered.  相似文献   

3.
Using3H-labeled rat brain mature RNA as substrate, substantial ribonuclease activity was detected in homogenates of rat superior cervical ganglia with acidic (pH 5.5) and neutral (pH 7.0-7.5) optima. Very little activity could be measured at greater than pH 8. The acidic and neutral activities differed in the optimal conditions required for assay, and showed differential sensitivity to the sulfhydryl blocking agent, N-ethylmaleimide. Only the neutral activity was stimulated, optimally by 2 mM N-ethylmaleimide, and the magnitude of stimulation indicated that the contributing ribonucleases exist largely in a latent form in the ganglion. Ribonucleases in other tissues with neutral pH dependence, known usually as alkaline ribonucleases, are subject to an N-ethylmaleimide-sensitive endogenous inhibitor protein. The existence of a similar inhibitor in rat superior cervical ganglia was indicated by the latency of neutral ribonuclease activity and confirmed by observing the effect of a soluble fraction from the ganglia on the activity of pancreatic ribonuclease A.  相似文献   

4.
With a view to the study of the subcellular localization of nucleases, methods ensuring the homogenates. The ribonuclease activity of rat liver is due to the three enzymes with different pH optimun. For acid ribonuclease (pH optimun 5.3), it is possible to avoid interference from the other ribonucleases by performing the incubation at pH 5. Neutral ribonuclease (pH optimum 7.6) is differentiated by relying on its sensitivity to the natural inhibitor from the supernatant of liver homogenate. Comparison of activities before and after pretreatment at 50 degrees C in acid medium permits the specific measurement of alkaline ribonuclease (pH optimum 8.8). The optimal conditions for the determination in liver homogenates of two deoxyribonucleases and of an enzyme acting on polyriboadenylate are also described. The activity of these various nucleases is compared and some of their properties are investigated.  相似文献   

5.
Pancreatic ribonuclease from muskrat (Ondatra zibethica) was isolated and its amino acid sequence was determined from tryptic digests of the performic acid-oxidized and the reduced and aminoethylated enzyme. The peptides have been positioned in the sequence by homology with other ribonucleases. This could be done unambiguously for all peptides except Arg-Arg (tentative position 32-33) and Ser-Arg (tentative position 75-76). The amino acid sequences of the peptides were determined by the dansyl-Edman method, with the exception of residues 23-25 and 99-102, which were positioned by homology. The enzyme differs in 38 positions from the enzyme from rat and in 31-42 positions from other mammalian pancreatic ribonucleases, while rat ribonuclease differs at 44-52 positions from the other enzymes. These data point to a common ancestry of the enzymes from muskrat and rat and an increased evolution rate of rat ribonuclease after divergence of the ancestors of both species. Muskrat ribonuclease contains no carbohydrate, although the enzyme possesses a recognition site for carbohydrate attachment in the sequence Asn-Val-Thr (62-64).  相似文献   

6.
Purification and characterization of a ribonuclease from human liver   总被引:3,自引:0,他引:3  
The major ribonuclease of human liver has been isolated in a four-step procedure. The protein appears homogeneous by several criteria. The amino acid composition and the amino-terminal sequence of the enzyme indicate that the protein is related to human pancreatic ribonuclease and to angiogenin, and that it may be identical with an eosinophil-derived neurotoxin and to a ribonuclease that has been isolated from urine. The catalytic activity of the liver ribonuclease and its sensitivity to iodoacetic acid inactivation also relate the enzyme to the pancreatic RNases, but the liver protein is clearly differentiated by immunological measurements. Antibodies to the liver ribonuclease inhibit its activity, but not that of the human pancreatic enzyme; cross-reactivity in a radioimmunological assay is small but measurable. Immunochemical measurements have been used to examine the distribution of the liver-type protein in other tissues. Inhibition of enzyme activity by anti-liver ribonuclease shows that a cross-reactive enzyme is predominant in extracts of spleen and is a significant component in kidney preparations, while the liver-type protein is almost absent in brain or pancreas homogenates. Cross-reactive ribonuclease is present in serum, but levels are not correlated with any of the disease states examined.  相似文献   

7.
The three-dimensional structure of rat pancreatic RNase A expressed in Escherichia coli was determined. The backbone conformations of certain critical loops are significantly different in this enzyme compared to its bovine counterpart. However, the core structure of rat RNase A is similar to that of the other members of the pancreatic ribonuclease family. The structural variations within a loop bordering the active site can be correlated with the subtle differences in the enzymatic activities of bovine and rat ribonucleases for different substrates. The most significant difference in the backbone conformation was observed in the loop 15-25. This loop incorporates the subtilisin cleavage site which is responsible for RNase A to RNase S conversion in the bovine enzyme. The rat enzyme does not get cleaved under identical conditions. Molecular docking of this region of the rat enzyme in the active site of subtilisin shows steric incompatibility, although the bovine pancreatic ribonuclease A appropriately fits into this active site. It is therefore inferred that the local conformation of the substrate governs the specificity of subtilisin.  相似文献   

8.
The effect of polyamines on ribonucleases in the presence of various inhibitors (poly(G), heparin, and rat liver RNase inhibitor) has been studied. Bovine pancreatic RNas A and a ribonuclease from horse submaxillary gland (RNase HS) were inhibited by the inhibitors, but RNase T1 and RNase M were not inhibited. Polyamines were found to restore the activites of RNase A and RNase HS inhibited by poly(G) or heparin but not those activities inhibited by rat liver RNase inhibitor. When poly(U) and poly(C) were used as substrates, the inhibitory effects of poly(G) and heparin were greater with poly(U) than poly(C) as a substrate. However, when poly(C) was used as a substrate in the presence of either of the above inhibitors, the restoration of RNase activity by sperimine was more efficient. In fact, a stimulatory effect was observed. From the double-reciprocal plots, it was concluded that polyamines restored the activiities of RNases by increasing the availability of the substrate and enzyme to each other. The restoration of enzyme activity by polyamines occurred through the binding of the polyamines to the inhibitor and the subsequent release of enzyme from the inhibitor.  相似文献   

9.
Human ribonucleases have been considered as a possible tumor marker for pancreatic cancer, and elevated serum levels of ribonuclease activity in patients with pancreatic cancer have been reported by many authors. The reason for this elevation is unknown. In this study, we demonstrate that human pancreatic adenocarcinoma cell lines synthesize and secrete different ribonucleases. We isolated and characterized human pancreatic, or secretory, ribonuclease (RNase 1) from the conditioned media of the human pancreatic adenocarcinoma cell lines Capan-1, MDAPanc-3, IBF-CP3 and Panc-1, and the ampullary adenocarcinoma cell line MDAAmp-7, which represent a wide range of differentiation stages. Only one of these cell lines, Panc-1, produces significant amounts of nonsecretory ribonuclease. We then established a purification procedure for both secretory and nonsecretory ribonucleases, consisting of concentration of the supernatant by tangential filtration, anion-exchange and cation-exchange liquid chromatography and C4 RP-HPLC. Ribonuclease activity fractions were monitored using both the spectrophotometric and negative-staining zymogram techniques. The results of N-terminal sequence analysis, kinetic analysis and endoglycosidase digestion studies indicate that the main ribonuclease secreted by all the cell lines is the secretory-type ribonuclease and that it is composed of several differently N-glycosylated forms. Northern blot analyses confirm that some of the cell lines express secretory ribonuclease mRNA. The mRNA levels produced by Panc-1 and MDAPanc-28 are too low to be detected. Similar levels of expression of nonsecretory ribonuclease are found by Northern blot analysis in all the cell lines except Panc-1, which expresses higher levels. Here, we describe, for the first time, that several human pancreatic cancer cell lines with different degrees of differentiation express and secrete ribonucleases. This fact indicates that one origin of the elevated serum RNase levels in patients with pancreatic cancer are tumor cells. Analysis of the oligosaccharide moiety of the RNase 1 secreted by Capan-1 shows that it is highly glycosylated and its N-glycan chains are significantly different from that of the RNase 1 produced by normal pancreas. These results renew the possibility of using human serum RNase 1 determination as a tumor marker.  相似文献   

10.
Ribonucleases are widely found in the tissues of living organisms, but the functions of individual ribonucleases are not clear. To facilitate characterization of individual ribonucleases, I have developed a rapid method to separate and identify each ribonuclease from a crude sample by gel electrophoresis instead of by time-consuming purification steps. The ribonucleases in a crude sample are first separated by RNA-cast SDS-polyacrylamide gel electrophoresis and then eluted from the gel after ethidium bromide staining. To determine the base specificity of each ribonuclease, a 5 labelled oligonucleotide with known sequence is added to the enzyme eluate and the digested products are analyzed by denaturing gel electrophoresis. The base specificity of bovine pancreatic ribonuclease (RNase A), bullfrog oocyte-specific ribonuclease (RC-RNase), human serum ribonucleases and sweet potato leaf ribonucleases were determined by this method. Other properties of individual ribonucleases, e.g. substrate preference, may also be determined from crude samples by this method without further purification steps.Abbreviations RNase ribonuclease - SDS sodium dodecyl sulfate  相似文献   

11.
Degradation of ribonucleic acid in rat liver ribosomes   总被引:1,自引:0,他引:1  
  相似文献   

12.
1. Two ribonucleases (aorta ribonuclease I and aorta ribonuclease II) from bovine aorta were purified 4611-fold and 667-fold respectively. Ethanolic precipitation, acid extraction, isoionic precipitation at pH3.5 and Bio-Rex 70 column chromatography were the methods employed. 2. Aorta ribonuclease I exhibited no deoxyribonuclease or alkaline phosphatase activity. 3. Aorta ribonuclease I appeared to be homogeneous when subjected to discontinuous gel electrophoresis. 4. Aorta ribonuclease II exhibited the same properties as aorta ribonuclease previously isolated. 5. The activities of the aorta ribonucleases and pancreatic ribonuclease on homopolymers and dinucleoside phosphates were compared. 6. Aorta ribonuclease I exhibited optimum pH7.5 and, under the assay conditions used, optimum temperature 60 degrees .  相似文献   

13.
Molecular evolutionary analyses of mammalian ribonucleases have shown that gene duplication events giving rise to three paralogous genes occurred in ruminant ancestors. One of these genes encodes a ribonuclease identified in bovine brain. A peculiar feature of this enzyme and orthologous sequences in other ruminants are C-terminal extensions consisting of 17-27 amino acid residues. Evidence was obtained by Western blot analysis for the presence of brain-type ribonucleases in brain tissue not only of ox, but also of sheep, roe deer and chevrotain (Tragulus javanicus), a member of the earliest diverged taxon of the ruminants. The C-terminal extension of brain-type ribonuclease from giraffe deviates much in sequence from orthologues in other ruminants, due to a change of reading frame. However, the gene encodes a functional enzyme, which could be expressed in heterologous systems. The messenger RNA of bovine brain ribonuclease is not only expressed at a high level in brain tissue but also in lactating mammary gland. The enzyme was isolated and identified from this latter tissue, but was not present in bovine milk, although pancreatic ribonucleases A and B could be isolated from both sources. This suggests different ways of secretion of the two enzyme types, possibly related to structural differences. The sequence of the brain-type RNase from chevrotain suggests that the C-terminal extensions of ruminant brain-type ribonucleases originate from deletions in the ancestral DNA (including a region with stop codons), followed by insertion of a 5-8-fold repeated hexanucleotide sequence, coding for a proline-rich polypeptide.  相似文献   

14.
The ribonuclease inhibitor protein (RI) binds to members of the bovine pancreatic ribonuclease (RNase A) superfamily with an affinity in the femtomolar range. Here, we report on structural and energetic aspects of the interaction between human RI (hRI) and human pancreatic ribonuclease (RNase 1). The structure of the crystalline hRI x RNase 1 complex was determined at a resolution of 1.95 A, revealing the formation of 19 intermolecular hydrogen bonds involving 13 residues of RNase 1. In contrast, only nine such hydrogen bonds are apparent in the structure of the complex between porcine RI and RNase A. hRI, which is anionic, also appears to use its horseshoe-shaped structure to engender long-range Coulombic interactions with RNase 1, which is cationic. In accordance with the structural data, the hRI.RNase 1 complex was found to be extremely stable (t(1/2)=81 days; K(d)=2.9 x 10(-16) M). Site-directed mutagenesis experiments enabled the identification of two cationic residues in RNase 1, Arg39 and Arg91, that are especially important for both the formation and stability of the complex, and are thus termed "electrostatic targeting residues". Disturbing the electrostatic attraction between hRI and RNase 1 yielded a variant of RNase 1 that maintained ribonucleolytic activity and conformational stability but had a 2.8 x 10(3)-fold lower association rate for complex formation and 5.9 x 10(9)-fold lower affinity for hRI. This variant of RNase 1, which exhibits the largest decrease in RI affinity of any engineered ribonuclease, is also toxic to human erythroleukemia cells. Together, these results provide new insight into an unusual and important protein-protein interaction, and could expedite the development of human ribonucleases as chemotherapeutic agents.  相似文献   

15.
The ribonuclease inhibitor from human placenta is a tight-binding inhibitor of alkaline and neutral ribonucleases, including the blood vessel-inducing protein, angiogenin. The location of the inhibitor gene within the human genome has now been determined. Utilizing human-rodent hybrid cell lines, it was found on chromosome 11. The localization was refined to chromosome band 11p15 by in situ hybridization of the ribonuclease inhibitor cDNA to normal metaphase chromosomes. A further refinement was obtained by in situ hybridization of the probe to metaphase chromosomes from RPMI 8402 cells, a line containing a well-characterized translocation t(11;14)(p15;q11) with a chromosome 11 breakpoint between the insulin-like growth factor 2 (IGF2) and Harvey rat sarcoma viral oncogene homolog genes. This analysis has localized the ribonuclease inhibitor gene to chromosome subband 11p15.5, distal to the IGF2 gene.  相似文献   

16.
Preparations of human leukocyte interferon obtained by multi-stage purification procedure exhibited ribonuclease activity with the optimum at pH 7.0--7.5. The enzyme possessed the endonuclease action mechanism. Most substances studied for their effect on the RNA-ase activity in human interferon preparations showed many of them to act on the enzyme in the same way as on other ribonucleases. However, dithioerythritie, a reducing agent for disulfide bounds, activated the ribonuclease in the interferon preparation, as distinct from the pancreatic ribonuclease, which was inhibited by this preparation. Patterns of protein and RNA-ase distribution were obtained by electrophoresis in polyacrylamide gel.  相似文献   

17.
Isolation of serum albumin-synthesizing polysomes from rat liver   总被引:6,自引:0,他引:6  
The procedures for the purification of rat liver polysomes synthesizing serum albumin was developed, employing the quantitative precipitin method with rat serum albumin as a carrier and its antibody, and ribonuclease inhibitor from rat liver. The addition of ribonuclease inhibitor to polysomes during the incubation with antibody was found to prevent their degradation. Under these conditions, about 12 % of the membrane-bound polysomes of rat liver was found in the specific precipitate of serum albumin and its antibody, while a negligible amount of free polysomes was precipitated. It is concluded that polysomes synthesizing serum albumin are isolated by this method.  相似文献   

18.
Ribonuclease inhibitor from human placenta: rapid purification and assay.   总被引:17,自引:0,他引:17  
The ribonuclease inhibitor from human placenta may be isolated in 65% yield (2.5 mg per placenta) in 2 days. The performance of the affinity chromatography on Sepharose-RNase A has been expedited through adaption of the spectrophotometric assay of ribonuclease toward 2',3'-cyclic cytidine monophosphate to determination of the inhibitor activity. The result of these improvements in procedure is increased availability of the ribonuclease inhibitor for study of its chemical properties (Blackburn, P., and Jailkhani, B.L. (1979) J. Biol. Chem. 254, 12488-12493) and for its inclusion into in vitro systems in which inhibition of mammalian neutral ribonucleases is desired.  相似文献   

19.
The amino-acid sequence of kangaroo pancreatic ribonuclease   总被引:3,自引:0,他引:3  
Red kangaroo (Macropus rufus) ribonuclease was isolated from pancreatic tissue by affinity chromatography. The amino acid sequence was determined by automatic sequencing of overlapping large fragments and by analysis of shorter peptides obtained by digestion with a number of proteolytic enzymes. The polypeptide chain consists of 122 amino acid residues. Compared to other ribonucleases, the N-terminal residue and residue 114 are deleted. In other pancreatic ribonucleases position 114 is occupied by a cis proline residue in an external loop at the surface of the molecule. Other remarkable substitutions are the presence of a tyrosine residue at position 123 instead of a serine which forms a hydrogen bond with the pyrimidine ring of a nucleotide substrate, and a number of hydrophobichydrophilic interchanges in the sequence 51-55, which forms part of an alpha-helix in bovine ribonuclease and exhibits few substitutions in the placental mammals. Kangaroo ribonuclease contains no carbohydrate, although the enzyme possesses a recognition site for carbohydrate attachment in the sequence Asn-Val-Thr (62-64). The enzyme differs at about 35-40% of the positions from all other mammalian pancreatic ribonucleases sequenced to date, which is in agreement with the early divergence between the marsupials and the placental mammals. From fragmentary data a tentative sequence of red-necked wallaby (Macropus rufogriseus) pancreatic ribonuclease has been derived. Eight differences with the kangaroo sequence were found.  相似文献   

20.
Pancreatic ribonucleases from several species (whitetail deer, roe deer, guinea pig, and arabian camel) exhibit more than one amino acid at particular positions in their amino acid sequences. Since these enzymes were isolated from pooled pancreas, the origin of this heterogeneity is not clear. The pancreatic ribonucleases from 11 individual arabian camels (Camelus dromedarius) have been investigated with respect to the lysine-glutamine heterogeneity at position 103 (Welling et al., 1975). Six ribonucleases showed only one basic band and five showed two bands after polyacrylamide gel electrophoresis, suggesting a gene frequency of about 0.75 for the Lys gene and about 0.25 for the Gln gene. The amino acid sequence of bactrian camel (Camelus bactrianus) ribonuclease isolated from individual pancreatic tissue was determined and compared with that of arabian camel ribonuclease. The only difference was observed at position 103. In the ribonucleases from two unrelated bactrian camels, only glutamine was observed at that position.Part of this work has been carried out under the auspices of the Netherlands Foundation for Chemical Research (S.O.N.) and with financial aid from the Netherlands Organisation for the Advancement of Pure Research (Z.W.O.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号