首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Morphogenesis of aura virus   总被引:1,自引:1,他引:0       下载免费PDF全文
Aura virus, a member of the Western equine-encephalitis-Whataroa subgroup of group A arboviruses, was studied by electron microscopy in suckling mouse brain and chick embryo cultured cells. Virus precursors, budding particles, and complete virus particles were first detected 10 hr after infection in chick embryo cells and 24 hr after inoculation in mouse brain. Virus precursors were generally seen aligned along cytomembranes, and were less frequently seen closely associated with viroplasm-like foci, tubular aggregates, or scattered in the cytoplasmic matrix without an apparent connection to any other structure. The assembly of mature virus was observed to take place by a budding process of the virus precursor from the plasma membrane into the extracellular space, and from the cytoplasmic membranes into the lumina of vacuoles and cisternae. It was demonstrated that the endoplasmic reticulum participates in the assembly of intracellular virions. Indirect evidence was found to indicate that the Golgi complex may also form mature virus. Aura virions had a size, shape, and structure similar to those of the previously described group A arboviruses.  相似文献   

2.
Herpesvirus Envelopment   总被引:23,自引:20,他引:3  
The growth and envelopment processes of three representative herpesviruses, equine abortion, pseudorabies, and herpes simplex, were examined in baby hamster kidney (BHK 21/13) cells by bioassay (plaque-forming units) and electron microscopy. The envelopment process was identical for all three viruses. After assembly in the nucleus, the nucleocapsid acquired an envelope by budding from the inner nuclear membrane. This membrane was reduplicated as the enveloped particle was released so that the budding process did not result in disruption of the continuity of the nuclear membrane. That portion of the nuclear membrane which comprised the viral envelope was appreciably thicker than the remainder of the membrane and exhibited numerous projections on its surface. Once enveloped, the viral particles were seen in vesicles and vacuoles in the cell cytoplasm. These appeared to open at the cytoplasmic membrane, releasing the virus from the cell. There was no detectable difference in the size or appearance of enveloped particles in intra- or extracellular locations.  相似文献   

3.
An analysis of the human leukemia cell line, K-562, infected with Semliki Forest virus, has been made with transmission electron microscopy. In contrast to the usual surface budding of the enveloped virus on the plasma membrane of vertebrate cells leading to cytolysis within 20 h, K-562 cells do not show surface budding, and the cells remain intact for periods of several months. Several unusual features of the infection include: 1) the rough endoplasmic reticulum arranges early into continuous perinuclear chains; 2) during the time of virus replication and release, the nucleocapsids aggregate on the cytoplasmic side of internal vesicles in the region of the cell where the Golgi complex is normally located; and 3) during this same time period, the vesicles are seen to contain enveloped virions and rod-like formations, a result suggesting that budding has occurred into these vesicles. Viruses are presumably released from the cell as these vesicles fuse with the plasma membrane. By 12 days post-infection and thereafter, the intact cells show electron-dense aggregates of chromatin, large vacuoles and lipid inclusions throughout the cytoplasm, and only a few virion-containing vesicles.  相似文献   

4.
Cytochemical localization of the lysosomal enzymes acid phosphatase and arylsulfatase in cells infected by herpes simplex virus (HSV) or human cytomegalovirus (CMV) showed the following interactions between viruses and host cell lysosomes: (i) many enveloped progeny viruses were located within cytoplasmic vacuoles containing lysosomal enzyme activity; (ii) naked cytoplasmic capsids appeared to acquire an envelope by budding directly into lysosomes; and (iii) many of the cytoplasmic dense bodies that are characteristic of CMV-infected cells and are thought to represent noninfectious aggregates of CMV structural proteins (I. Sarov and I. Abady, Virology 66:464-473, 1975) also acquired a limiting membrane by budding into lysosomes. Autophagy of other cytoplasmic elements was not observed, suggesting that there is some specificity involved in the association of viral particles and CMV dense bodies with lysosomes. Despite the presence of potentially destructive hydrolases, there was little evidence of significant morphological damage to intralysosomal viruses, and high titers of infectious particles were released into the medium. It would therefore appear that significant levels of HSV and CMV infectivity normally persist even though many progeny particles are directly exposed to lysosomal enzymes.  相似文献   

5.
Proteasome inhibitors reduce the budding of human immunodeficiency virus types 1 (HIV-1) and 2, simian immunodeficiency virus, and Rous sarcoma virus. To investigate this effect further, we examined the budding of other retroviruses from proteasome inhibitor-treated cells. The viruses tested differed in their Gag organization, late (L) domain usage, or assembly site from those previously examined. We found that proteasome inhibition decreased the budding of murine leukemia virus (plasma membrane assembly, PPPY L domain) and Mason-Pfizer monkey virus (cytoplasmic assembly, PPPY L domain), similar to the reduction observed for HIV-1. Thus, proteasome inhibitors can affect the budding of a virus that assembles within the cytoplasm. However, the budding of mouse mammary tumor virus (MMTV; cytoplasmic assembly, unknown L domain) was unaffected by proteasome inhibitors, similar to the proteasome-independent budding previously observed for equine infectious anemia virus (plasma membrane assembly, YPDL L domain). Examination of MMTV particles detected Gag-ubiquitin conjugates, demonstrating that an interaction with the ubiquitination system occurs during assembly, as previously found for other retroviruses. For all of the cell lines tested, the inhibitor treatment effectively inactivated proteasomes, as measured by the accumulation of polyubiquitinated proteins. The ubiquitination system was also inhibited, as evidenced by the loss of monoubiquitinated histones from treated cells. These results and those from other viruses show that proteasome inhibitors reduce the budding of viruses that utilize either a PPPY- or PTAP-based L domain and that this effect does not depend on the assembly site or the presence of monoubiquitinated Gag in the virion.  相似文献   

6.
Efficient assembly of enveloped viruses at the plasma membranes of virus-infected cells requires coordination between cytosolic viral components and viral integral membrane glycoproteins. As viral glycoprotein cytoplasmic domains may play a role in this coordination, we have investigated the importance of the hemagglutinin-neuraminidase (HN) protein cytoplasmic domain in the assembly of the nonsegmented negative-strand RNA paramyxovirus simian virus 5 (SV5). By using reverse genetics, recombinant viruses which contain HN with truncated cytoplasmic tails were generated. These viruses were shown to be replication impaired, as judged by small plaque size, reduced replication rate, and low maximum titers when compared to those features of wild-type (wt) SV5. Release of progeny virus particles from cells infected with HN cytoplasmic-tail-truncated viruses was inefficient compared to that of wt virus, but syncytium formation was enhanced. Furthermore, accumulation of viral proteins at presumptive budding sites on the plasma membranes of infected cells was prevented by HN cytoplasmic tail truncations. We interpret these data to indicate that formation of budding complexes, from which efficient release of SV5 particles can occur, depends on the presence of an HN cytoplasmic tail.  相似文献   

7.
Retrovirus assembly involves a complex series of events in which a large number of proteins must be targeted to a point on the plasma membrane where immature viruses bud from the cell. Gag polyproteins of most retroviruses assemble an immature capsid on the cytoplasmic side of the plasma membrane during the budding process (C-type assembly), but a few assemble immature capsids deep in the cytoplasm and are then transported to the plasma membrane (B- or D-type assembly), where they are enveloped. With both assembly phenotypes, Gag polyproteins must be transported to the site of viral budding in either a relatively unassembled form (C type) or a completely assembled form (B and D types). The molecular nature of this transport process and the host cell factors that are involved have remained obscure. During the development of a recombinant baculovirus/insect cell system for the expression of both C-type and D-type Gag polyproteins, we discovered an insect cell line (High Five) with two distinct defects that resulted in the reduced release of virus-like particles. The first of these was a pronounced defect in the transport of D-type but not C-type Gag polyproteins to the plasma membrane. High Five cells expressing wild-type Mason-Pfizer monkey virus (M-PMV) Gag precursors accumulate assembled immature capsids in large cytoplasmic aggregates similar to a transport-defective mutant (MA-A18V). In contrast, a larger fraction of the Gag molecules encoded by the M-PMV C-type morphogenesis mutant (MA-R55W) and those of human immunodeficiency virus were transported to the plasma membrane for assembly and budding of virions. When pulse-labeled Gag precursors from High Five cells were fractionated on velocity gradients, they sedimented more rapidly, indicating that they are sequestered in a higher-molecular-mass complex. Compared to Sf9 insect cells, the High Five cells also demonstrate a defect in the release of C-type virus particles. These findings support the hypothesis that host cell factors are important in the process of Gag transport and in the release of enveloped viral particles.  相似文献   

8.
HeLa cells infected with herpes simplex virus have been examined in thin sections by electron microscopy after cytochemical staining for the presence of surface enzymes splitting adenosine triphosphate. As with uninfected HeLa cultures (18), the opaque enzyme reaction product was localized at the plasma membranes of about half the cells, tending to be present where there were microvilli and absent on smooth surfaces. Where mature extracellular herpes particles were found in association with cell membranes showing the enzyme activity, they were invariably likewise stained, and conversely, those mature particles which lay close against cells without reaction product at the surface were themselves free of it. Particles found budding into cytoplasmic vacuoles were also always without opaque deposit since this was never seen at vacuolar membranes, even in cells having the activity at the surface. The enzyme reaction product thus provided a marker indicating the manner in which the particles escape from cells and mature by budding out through cellular membranes, carrying, in the process, a portion of the latter on to themselves to form the outer viral limiting membrane. In some instances, virus particles were observed with more opaque material covering them than was present at the cell membrane with which they were associated. This finding has been taken as evidence for a physiological waxing and waning of surface enzyme activity of adenosine triphosphatase type. The fine structure of the mature extracellular virus as prepared here, using glutaraldehyde fixation, is also recorded. The observations and interpretations are discussed in full.  相似文献   

9.
The processes of cytoplasmic budding in Euproctis subflava nuclear polyhedrosis virus (NPV) were investigated, and comparisons were made among three types of envelopes which were acquired by, 1) de novo morphogenesis in the nuclei, 2) nuclear budding, and 3) cytoplasmic budding. The direction of nucleocapsids in the envelope was the same in these three modes of envelopment; the envelopment seemed to occur from a nipple end which was at one extremity of the nucleocapsid. After the envelopment, electron-dense materials were seen between the envelope and nucleocapsid, though their contents and morphological features were different among the three types of envelopes. However, these materials seemed to function similarly as a mediator between the envelope and nucleocapsid as have been observed in many vertebrate viruses which acquire envelopes. A marked difference among the three types of envelope was the characteristic cap-shaped structures with spikes which were seen only on the surface of envelope derived from the plasma membrane. After cytoplasmic budding, nucleocapsids enveloped by this way were located on the basement membrane or liberated in the hemocoel, and then they appeared to enter neighboring healthy cells via viropexis with the spike end at the head. At the sites where these spikes came into contact with healthy cells, coated vesicle-like structures were observed inside the plasma membrane. Occasionaly, incomplete particles which lacked nucleocapsids were also budded through the plasma membrane and released into extracellular space.  相似文献   

10.
Human immunodeficiency virus type 1 particles form by budding at the surface of most cell types. In this process, a piece of the plasma membrane is modified into an enveloped virus particle. The process is driven by the internal viral protein Pr55(gag). We have studied how host proteins in the membrane are dealt with by Pr55(gag) during budding. Are they included in or excluded from the particle? The question was approached by measuring the relative concentrations of host and viral proteins in the envelope of Pr55(gag) particles and in their donor membranes in the cell. We observed that the bulk of the host proteins, including actin and clathrin, were passively included into the virus-like Gag particles. This result suggests that budding by Pr55(gag) proceeds without significant alteration of the original host protein composition at the cell membrane. Nevertheless, some proteins were concentrated in the particles, and a few were excluded. The concentrated proteins included cyclophilin A and Tsg-101. These were recruited to the plasma membrane by Pr55(gag). The membrane-bound cyclophilin A was concentrated into particles as efficiently as Pr55(gag), whereas Tsg-101 was concentrated more efficiently. The latter finding is consistent with a role for Tsg-101 in Gag particle release.  相似文献   

11.
In HeLa cells the assembly of modified vaccinia virus Ankara (MVA), an attenuated vaccinia virus (VV) strain, is blocked. No intracellular mature viruses (IMVs) are made and instead, immature viruses accumulate, some of which undergo condensation and are released from the cell. The condensed particles may undergo wrapping by membranes of the trans-Golgi network and fusion with the plasma membrane prior to their release (M. W. Carroll and B. Moss, Virology 238:198-211, 1997). The present study shows by electron microscopy (EM), however, that the dense particles made in HeLa cells are also released by a budding process at the plasma membrane. By labeling the plasma membrane with antibodies to B5R, a membrane protein of the extracellular enveloped virus, we show that budding occurs at sites that concentrate this protein. EM quantitation revealed that the cell surface around a budding profile was as strongly labeled with anti-B5R antibody as were the extracellular particles, whereas the remainder of the plasma membrane was significantly less labeled. To test whether budding was a characteristic of MVA infection, HeLa cells were infected with the replication competent VV strains Western Reserve strain (WR) and International Health Department strain-J (IHD-J) and also prepared for EM. EM analyses, surprisingly, revealed for both virus strains IMVs that evidently budded at the cell surface at sites that were significantly labeled with anti-B5R. EM also indicated that budding of MVA dense particles was more efficient than budding of IMVs from WR- or IHD-J-infected cells. This was confirmed by semipurifying [(35)S]methionine-labeled dense particles or extracellular enveloped virus (EEVs) from the culture supernatant of MVA- or IHD-J-infected HeLa cells, respectively, showing that threefold more labeled dense particles were secreted than EEVs. Finally, although the released MVA dense particles contain some DNA, they are not infectious, as assessed by plaque assays.  相似文献   

12.
Video-enhanced microscopy and digital image processing were used to observe the assembly, budding, and fusion of Respiratory Syncytial virus. Viral filaments were seen to bud from the plasma membrane of viable infected cells to a final length of 5-10 micron with an average speed of elongation of 110-250 nm/s. The rapidity of viral assembly and its synchronous occurrence (leading to the production of several viral particles per minute from the same surface domain) suggests a directed process of recruitment of viral components to an area selected for virus maturation. Virions were also seen to adsorb to the cell surface, and to fuse with the plasma membrane. These are the first real time observations of viral morphogenesis and penetration which are crucial events in the infectious cycle of enveloped viruses.  相似文献   

13.
Exocytosis of residual bodies by choanocytes, archeocytes and endopinacocytes lining the aquiferous system of Ephydatia fluviatilis has been demonstrated using calibrated latex beads and Escherichia coli as tracers. In passing into the mesohyl or the lumen of the exhalant aquiferous canals, beads, and altered bacteria were enveloped by the plasma membrane of the cell containing them. The membrane constricted at a neck region to form extruding vacuoles. This process appeared first in choanocytes and later in other cell types. The occurrence of these buds increased with the length of incubation time, as did the number of particles they contained. Acid phosphatase activity was frequently associated with the particles budding from the cell membrane, confirming that this process followed digestive activity. Membranous vacuoles were recovered from the external medium and observed by TEM and those adhering to the substratum were seen by SEM. These observations proved that vacuoles were released from the sponges. This membrane-consuming mechanism of exoctyosis implies intense membrane replacement in the digestive cells of the sponge.  相似文献   

14.
The mouse mammary tumor virus (MTV) reproduces by a budding mechanism at the cell membrane of mouse mammary epithelial cells. In tissue culture, the tumor cells release their virions in the culture supernatant from which they can be removed by high speed centrifugation. Mammary tumor cells from the RIII, GR, and A strains of mice generally produce yields of virus which decrease after a few months. Cells derived from a spontaneous mammary tumor in a BALB/cfC3H mouse have shown the capability to shed relatively large amounts of virus continuously. A quantitative estimation by membrane immunofluorescence of the number of virus producing cells in one-year-old cultures revealed the presence of viral antigen on 80 to 90% of the cells; by comparison, cultures from other mouse strains had a ratio of only 10 to 15% virus producing cells. High speed centrifugation pellets obtained from 50 ml culture supernatant provided large amounts of mature virus particles which have been characterized by electron microscopy.  相似文献   

15.
Many enveloped viruses are released from infected cells by maturing and budding at the plasma membrane. During this process, viral core components are incorporated into membrane vesicles that contain viral transmembrane proteins, termed ‘spike’ proteins. For many years these spike proteins, which are required for infectivity, were believed to be incorporated into virions via a direct interaction between their cytoplasmic domains and viral core components. More recent evidence shows that, while such direct interactions drive budding of alphaviruses, this may not be the case for negative strand RNA viruses and retroviruses. These viruses can bud particles in the absence of spike proteins, using only viral core components to drive the process. In some cases the spike proteins, without the viral core, can be released as virus-like particles. Optimal budding and release may, therefore, depend on a ‘push-and-pull’ concerted action of core and spike, where oligomerization of both components plays a crucial role.  相似文献   

16.
Recombinant human colony-stimulating factor-1-treated human peripheral blood-derived monocytes-macrophages are efficient host cells for recovery of the human immunodeficiency virus (HIV) from blood leukocytes of patients with acquired immunodeficiency syndrome. These cells can be maintained as viable monolayers for intervals exceeding 3 months. Infection with HIV resulted in virus-induced cytopathic effects, accompanied by relatively high levels of released progeny virus, followed by a prolonged low-level release of virus from morphologically normal cells. In both acutely and chronically infected monocytes, viral particles were seen budding into and accumulating within cytoplasmic vacuoles. The number of intravacuolar virions far exceeded those associated with the plasma membrane, especially in the chronic phase, and were concentrated in the perinuclear Golgi zone. In many instances, the vacuoles were identified as Golgi elements. Fusion of virus-laden vacuoles with primary lysosomes were rare. The pattern of cytoplasmic assembly of virus was observed with both HIV types 1 and 2 and in brain macrophages of an individual with acquired immunodeficiency syndrome encephalopathy. Immunoglobulin-coated gold beads added to acutely infected cultures were segregated from the vacuoles containing virus; relatively few beads and viral particles colocalized. The assembly of HIV virions within vacuoles of macrophages is in contrast to the exclusive surface assembly of HIV by T lymphocytes. Intracytoplasmic virus hidden from immune surveillance in monocytes-macrophages may explain, in part, the persistence of HIV in the infected human host.  相似文献   

17.
The glycoprotein (G protein) of vesicular stomatitis virus (VSV) is primarily organized in plasma membranes of infected cells into membrane microdomains with diameters of 100 to 150 nm, with smaller amounts organized into microdomains of larger sizes. This organization has been observed in areas of the infected-cell plasma membrane that are outside of virus budding sites as well as in the envelopes of budding virions. These observations raise the question of whether the intracellular virion components play a role in organizing the G protein into membrane microdomains. Immunogold-labeling electron microscopy was used to analyze the distribution of the G protein in arbitrarily chosen areas of plasma membranes of transfected cells that expressed the G protein in the absence of other viral components. Similar to the results with virus-infected cells, the G protein was organized predominantly into membrane microdomains with diameters of approximately 100 to 150 nm. These results indicate that internal virion components are not required to concentrate the G protein into membrane microdomains with a density similar to that of virus envelopes. To determine if interactions between the G protein cytoplasmic domain and internal virion components were required to create a virus budding site, cells infected with recombinant VSVs encoding truncation mutations of the G protein cytoplasmic domain were analyzed by immunogold-labeling electron microscopy. Deletion of the cytoplasmic domain of the G protein did not alter its partitioning into the 100- to 150-nm microdomains, nor did it affect the incorporation of the G protein into virus envelopes. These data support a model for virus assembly in which the G protein has the inherent property of partitioning into membrane microdomains that then serve as the sites of assembly of internal virion components.  相似文献   

18.
Sequential effects of rubella virus infection in BHK-21 cells were studied by electron microscopy of thin sections of control and infected cells, 2 to 7 days after infection. Vacuolization of cytoplasm in Golgi areas apparently preceded budding of virions from vacuole membranes and involvement of the endoplasmic reticulum. Newly formed endoplasmic reticulum cisternae encircled and segregated virionforming vacuoles together with other cellular elements. Large vacuolar complexes with numerous virus particles developed, and virus release from these areas occurred with disruption at the cell periphery. The viral particles, with a mean diameter of about 56 nm, consisted of an electron-dense core surrounded by a less dense capsid, enveloped by a typical unit membrane derived from the vacuole membrane.  相似文献   

19.
Lu YE  Kielian M 《Journal of virology》2000,74(17):7708-7719
All enveloped viruses must bud through a cellular membrane in order to acquire their lipid bilayer, but little is known about this important stage in virus biogenesis. We have developed a quantitative biochemical assay to monitor the budding of Semliki Forest virus (SFV), an enveloped alphavirus that buds from the plasma membrane in a reaction requiring both viral spike proteins and nucleocapsid. The assay was based on cell surface biotinylation of newly synthesized virus spike proteins and retrieval of biotinylated virions using streptavidin-conjugated magnetic particles. Budding of biotin-tagged SFV was continuous for at least 2 h, independent of microfilaments and microtubules, strongly temperature dependent, and relatively independent of continued exocytic transport. Studies of cell surface spike proteins at early times of infection showed that these spikes did not efficiently bud into virus particles and were rapidly degraded. In contrast, at later times of infection, spike protein degradation was markedly reduced and efficient budding was then observed. The previously described cholesterol requirement in SFV exit was shown to be due to a block in budding in the absence of cholesterol and correlated with the continued degradation of spike proteins at all times of virus infection in sterol-deficient cells.  相似文献   

20.
Biological and morphological aspects of the growth of equine abortion virus   总被引:9,自引:0,他引:9  
Darlington, R. W. (St. Jude Children's Research Hospital, Memphis, Tenn.), and C. James. Biological and morphological aspects of the growth of equine abortion virus. J. Bacteriol. 92:250-257. 1966.-The growth of equine abortion virus (EAV) was studied by bioassay and electron microscopy in L-cell monolayer and suspension cultures, and in HeLa and BHK 21/13 cell monolayers. Results of virus assay (plaque-forming units) indicated that production of cell-associated virus (CAV) began at 6 to 9 hr after infection in all of the cell strains used. Virus release occurred 1 to 2 hr later. By 15 to 20 hr after infection, the amount of released virus (RV) equaled or surpassed that of CAV in all cells other than the HeLa cells, where the amount of RV did not equal CAV until 48 hr after infection. Electron microscopy of infected cells revealed no differences in the morphology of virus development in any of the cells used. Developing virus particles were first detected in cell nuclei at 9 hr after infection. At 12 hr, virus particles could be seen budding from the inner nuclear envelope. Budding into cytoplasmic vacuoles was not seen. Budding virus, virus in cytoplasmic vacuoles, and extracellular virus were all approximately 145 mmu in diameter, and were indistinguishable morphologically. These results indicated that EAV is quite similar to herpes simplex virus with respect to growth and morphology, and that the inner nuclear membrane is the principal site of virus envelopment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号