首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
This study aimed at investigating the mechanisms by which stimulation of human platelets results in activation of Na+/H+ exchange. Platelets were suspended in a slightly buffered medium and the stimulus-induced, amiloride-sensitive H+ release, reflecting Na+/H+ exchange, was estimated from changes in the medium pH. H+ release could be evoked by thrombin and by activators of protein kinase C such as 1-oleoyl-2-acetylglycerol (OAG) or 12-O-tetradecanoylphorbol-13-acetate (TPA). Both the thrombin-and the OAG-induced Na+/H+ exchange could be blocked by trifluoperazine, a protein kinase C inhibitor. The thrombin-induced H+ release was also sensitive to increased intracellular cAMP levels, probably due to inhibition of phospholipase C activation, whereas the OAG-induced activation of Na+/H+ exchange was unaffected. Our data suggest that activation of Na+/H+ exchange is mediated by protein kinase C.  相似文献   

2.
The mechanisms underlying cytoplasmic pH (pHi) regulation in elicited rat peritoneal macrophages were investigated by electronic sizing and fluorescence determinations. Acid-loaded cells rapidly regained normal pHi by means of an amiloride-sensitive Na+/H+ exchange. When stimulated by 12-O-tetradecanoyl phorbol 13-acetate, macrophages displayed a biphasic pHi change: a marginal acidification followed by an alkalinization. The latter results from activation of Na+/H+ exchange, since it is Na+-dependent and prevented by amiloride. When the antiport is inhibited, the full magnitude of the initial acidification can be appreciated. This acidification is independent of the nature of the ionic composition of the medium and probably reflects accumulation of protons generated during the metabolic burst. Under physiological conditions, these protons are rapidly extruded by the Na+/H+ antiport.  相似文献   

3.
Intracellular Ca2+ mobilization in U937 cells was studied. Stimulation of immature U937 cells with leukotriene B4 (LTB4) increased intracellular Ca2+ levels, whereas stimulation with N-formyl-methionyl-leucyl-phenylalanine (fMLP) failed to increase intracellular Ca2+ levels. U937 cells cultured with 1.5% dimethyl sulfoxide (DMSO) for 4 days (DMSO-U937 cells) responded to LTB4 and possessed the ability to respond to fMLP. U937 cells cultured with 1 ng/ml phorbol myristate acetate (PMA) for 4 days (PMA-U937 cells) lost the ability to respond to LTB4, although they responded to fMLP. Treatment of DMSO-U937 cells with 100 ng/ml PMA for 3 min suppressed intracellular Ca2+ increase induced by LTB4 and fMLP. The fMLP-induced Ca2+ rise in PMA-U937 cells was not suppressed by a further treatment with 100 ng/ml PMA. DMSO-U937 cells responded to inositol 1,4,5-trisphosphate (IP3), indicating that IP3 functions as a messenger of intracellular Ca2+ mobilization from endoplasmic reticulum in U937. The magnitude and duration of the rise in Ca2+ induced by IP3 in DMSO-U937 cells treated with 100 ng/ml PMA for 3 min were similar to those of the controls. When DMSO-U937 cells were Ca2+-depleted, addition of Ca2+ resulted in a transient overshoot of Ca2+ influx. However, the transient overshoot was not observed, when PMA-U937 cells were tested. These results indicate that Ca2+ efflux in PMA-U937 cells is increased by an activated exit pump, which may be directly or indirectly related to the functional state of PMA-U937 cells.  相似文献   

4.
Dong JW  Zhu HF  Zhou ZN 《生理学报》2003,55(3):245-250
本文旨在研究Na+/H+交换以及Na+/Ca2 +交换对模拟缺血 /复灌引起的大鼠心肌细胞内游离钙水平变化的调节作用。分别利用模拟缺血液和正常台氏液对大鼠心肌细胞进行缺血 /复灌处理 ,在缺血期间分别应用Na+/H+交换抑制剂阿米洛利 (amiloride)、Na+/Ca2 +交换抑制剂NiCl2 以及无钙液 ,观察它们对细胞内游离Ca2 +浓度变化的影响。利用Zeiss LSM 5 10激光共聚焦显微镜检测、采集细胞内游离Ca2 +的指示剂Fluo 3 AM的荧光信号 ,计算出相对于正常(缺血前 )的相对荧光强度 ,以表示胞内游离Ca2 +浓度的变化。结果显示 ,模拟缺血引起大鼠心肌细胞内游离Ca2 +持续上升 ,缺血前的相对荧光强度值为 10 0 % ,模拟缺血 5min后为 140 3± 13 0 % (P <0 0 5 ) ,复灌 15min后为 142 8±15 5 % (P <0 0 5 )。经 10 0 μmol/Lamiloride、5mmol/LNiCl2 和无钙液分别预处理 ,模拟缺血 5min后的相对荧光强度分别为 10 1 4± 16 3 % (P <0 0 5 )、110 4± 11 1% (P <0 0 5 )和 10 7 1± 10 8(P <0 0 5 ) ;复灌 15min后则分别为 97 8±14 3 % (P <0 0 5 )、10 6 2± 14 5 % (P <0 0 5 )和 10 6 6± 15 7(P <0 0 5 )。另外 ,与对照组细胞相比 ,再灌注期间NiCl2和无钙液处理的细胞钙振荡的产生幅度明显减弱 ,amilorid  相似文献   

5.
6.
The human leukemic cell line, HL-60, differentiates in response to tumor-promoting phorbol esters. Recently, we have reported that one of the first events evoked by phorbol esters in HL-60 cells is the stimulation of Na+-dependent H+ efflux. In efforts to determine whether stimulation of Na+/H+ exchange by phorbol esters is coupled to induction of cellular differentiation, we found that 1) amiloride, a frequently used inhibitor of Na+/H+ exchange, rapidly inhibits phorbol ester-stimulated protein phosphorylation in vivo and protein kinase C-mediated phosphorylation in vitro, both with potency similar to that with which amiloride inhibits Na+/H+ exchange; 2) an amiloride analog, dimethylamiloride, is a far more potent inhibitor of Na+/H+ exchange than is amiloride, while being no more potent than amiloride in inhibiting phorbol ester/protein kinase C-mediated phosphorylation; and 3) at concentrations sufficient to completely inhibit Na+/H+ exchange, amiloride blocked phorbol ester-induced adhesion of HL-60 cells (adhesion being a property indicative of the differentiated state), but dimethylamiloride (as well as ethylisopropylamiloride, another very potent amiloride analog) did not. Thus, dimethylamiloride represents a potential tool for distinguishing protein kinase C-coupled from Na+/H+ exchange-coupled events in phorbol ester-stimulated cells.  相似文献   

7.
According to recent observations ADP stimulates platelets via activation of Na+/H+ exchange which increases cytosolic pH (pHi). This event initiates formation of thromboxane A2 (via phospholipase A2) and, thereafter, inositol 1,4,5-trisphosphate (via phospholipase C) which is known to mobilize Ca2+ from intracellular storage sites. We investigated changes in pHi and cytosolic free Ca2+, [Ca2+]i, activating platelets with ADP and the thromboxane mimetic U 46619. We found that ADP (5 microM) increased pHi from 7.15 +/- 0.08 to 7.35 +/- 0.04 (n = 8) in 2'-7'-bis-(carboxyethyl)-5,6-carboxyfluorescein-loaded platelets, whereas thromboxane A2 formation was inhibited by indomethacin. ADP also induced a dose-dependent Ca2+ mobilization in fura2-loaded platelets which again was not affected by indomethacin. [Ca2+]i increased by 54 +/- 10 nM (n = 8) at 1 microM and by 170 +/- 40 nM (n = 7) at 10 microM ADP above the resting value of 76 +/- 12 nM (n = 47). Inhibition of Na+/H+ exchange by ethylisopropylamiloride (EIPA) reduced ADP-induced Ca2+ mobilization by more than 65% in indomethacin-treated platelets. This inhibition could be completely overcome by artificially raising pHi using either NH4Cl or the Na+/H+ ionophore monensin. We found that U 46619 increased pHi by 0.18 +/- 0.05 at 0.1 microM and by 0.29 +/- 0.07 (n = 7) at 1.0 microM above the resting value via an EIPA-sensitive mechanism. In conflict with the proposed role of the Na+/H+ exchange we found that U 46619 raised [Ca2+]i via a mechanism that for more than 50% depended on intact Na+/H+ exchange. Again, artificially elevating pHi restored U 46619-induced Ca2+ mobilization despite the presence of EIPA. Thus, our data show that Na+/H+ exchange is a common step in platelet activation by prostaglandin endoperoxides/thromboxane A2 and ADP and enhances Ca2+ mobilization independently of phospholipase A2 activity.  相似文献   

8.
The role for intracellular Ca2+ in modulating activity of the Na+/H+ exchanger was studied in cultured vascular smooth muscle cells. Na+/H+ exchange was activated by four distinct stimuli: 1) phorbol 12-myristate 13-acetate, 2) thrombin, 3) cell shrinkage, and 4) intracellular acid loading. [Ca2+]i was independently varied between 40 and 200 nM by varying the bathing Ca2+ from 10 nM to 5.0 mM. Thrombin-induced intracellular Ca2+ transients were blocked with bis(2-amino-5-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester (MAPTAM). In the absence of stimulators of Na+/H+ exchange, varying [Ca2+]i above or below the basal level of 140 nM did not activate Na+/H+ exchange spontaneously. However, varying [Ca2+]i did affect stimulus-induced activation of Na+/H+ exchange. Activation of the exchanger by phorbol 12-myristate 13-acetate was blunted by reduced intracellular Ca2+ (half-maximal activity at 50-90 nM [Ca2+]i), consistent with a Ca2+ requirement for protein kinase C (Ca2+/phospholipid-dependent enzyme). Activation of the exchanger by thrombin in protein kinase C-depleted cells was also sensitive to reduced intracellular Ca2+ (half-maximal activity at 90-140 nM [Ca2+]i) and was increased 40% by raising [Ca2+]i to 200 nM. Activation of the exchanger by cell shrinkage or intracellular acid loads was not significantly affected over the range of [Ca2+]i tested. Thus, altered [Ca2+]i does not itself affect Na+/H+ exchange activity in vascular smooth muscle but instead modulates activation of the transporter by particular stimuli.  相似文献   

9.
Transfected Chinese hamster ovary cells stably expressing thebovine cardiacNa+/Ca2+exchanger (CK1.4 cells) were used to determine the range of cytosolic Ca2+ concentrations([Ca2+]i)that activateNa+/Ca2+exchange activity. Ba2+ influx wasmeasured in fura 2-loaded, ionomycin-treated cells under conditions inwhich the intracellular Na+concentration was clamped with gramicidin at ~20 mM.[Ca2+]iwas varied by preincubating ionomycin-treated cells with either theacetoxymethyl ester of EGTA or medium containing 0-1 mM added CaCl2. The rate ofBa2+ influx increased in asaturable manner with[Ca2+]i,with the half-maximal activation value of 44 nM and a Hill coefficientof 1.6. When identical experiments were carried out with cellsexpressing a Ca2+-insensitivemutant of the exchanger, Ba2+influx did not vary with[Ca2+]i.The concentration for activation of exchange activity was similar tothat reported for whole cardiac myocytes but approximately an order ofmagnitude lower than that reported for excised, giant patches. Thereason for the difference in Ca2+regulation between whole cells and membrane patches is unknown.

  相似文献   

10.
Coated microvesicles isolated from bovine neurohypophyses could be loaded with Ca2+ in two different ways, either by incubation in the presence of ATP or by imposition of an outwardly directed Na+ gradient. Na+, but not K+, was able to release Ca2+ accumulated by the coated microvesicles. These results suggest the existence of an ATP-dependent Ca2+-transport system as well as of a Na+/Ca2+ carrier in the membrane of coated microvesicles similar to that present in the membranes of secretory vesicles from the neurohypophysis. A kinetic analysis of transport indicates that the apparent Km for free Ca2+ of the ATP-dependent uptake was 0.8 microM. The average Vmax. was 2 nmol of Ca2+/5 min per mg of protein. The total capacity of microvesicles for Ca2+ uptake was 3.7 nmol/mg of protein. Both nifedipine (10 microM) and NH4Cl (50 mM) inhibited Ca2+ uptake. The ATPase activity in purified coated-microvesicles fractions from brain and neurohypophysis was characterized. Micromolar concentrations of Ca2+ in the presence of millimolar concentrations of Mg2+ did not change enzyme activity. Ionophores increasing the proton permeability across membranes activated the ATPase activity in preparations of coated microvesicles from brain as well as from the neurohypophysis. Thus the enzyme exhibits properties of a proton-transporting ATPase. This enzyme seems to be linked to the ion accumulation by coated microvesicles, although the precise coupling of the proton transport to Ca2+ and Na+ fluxes remains to be determined.  相似文献   

11.
The sodium/proton exchanger type 1 (NHE-1) plays an important role in the proliferation of vascular smooth muscle cells (VSMC). We have examined the regulation of NHE-1 by two potent mitogens, serotonin (5-HT, 5-hydroxytryptamine) and angiotensin II (Ang II), in cultured VSMC derived from rat aorta. 5-HT and Ang II rapidly activated NHE-1 via their G protein-coupled receptors (5-HT(2A) and AT(1)) as assessed by proton microphysiometry of quiescent cells and by measurements of intracellular pH on a FLIPR (fluorometric imaging plate reader). Activation of NHE-1 was blocked by inhibitors of phospholipase C, CaM, and Jak2 but not by pertussis toxin or inhibitors of protein kinase C. Immunoprecipitation/immunoblot studies showed that 5-HT and Ang II induce phosphorylation of Jak2 and induce the formation of signal transduction complexes that included Jak2, CaM, and NHE-1. The cell-permeable Ca(2+) chelator BAPTA-AM blocked activation of Jak2, complex formation between Jak2 and CaM, and tyrosine phosphorylation of CaM, demonstrating that elevated intracellular Ca(2+) is essential for those events. Thus, mitogen-induced activation of NHE-1 in VSMC is dependent upon elevated intracellular Ca(2+) and is mediated by the Jak2-dependent tyrosine phosphorylation of CaM and subsequent increased binding of CaM to NHE-1, similar to the pathway previously described for the bradykinin B(2) receptor in inner medullary collecting duct cells of the kidney [Mukhin, Y. V., et al. (2001) J. Biol. Chem. 276, 17339-17346]. We propose that this pathway represents a fundamental mechanism for the rapid regulation of NHE-1 by G(q/11) protein-coupled receptors in multiple cell types.  相似文献   

12.
Increasing evidence implicates Ca2+ in the control of cell migration. However, the underlying mechanisms are incompletely understood. Acidic Ca2+ stores are fast emerging as signaling centers. But how Ca2+ is taken up by these organelles in metazoans and the physiological relevance for migration is unclear. Here, we identify a vertebrate Ca2+/H+ exchanger (CAX) as part of a widespread family of homologues in animals. CAX is expressed in neural crest cells and required for their migration in vivo. It localizes to acidic organelles, tempers evoked Ca2+ signals, and regulates cell-matrix adhesion during migration. Our data provide new molecular insight into how Ca2+ is handled by acidic organelles and link this to migration, thereby underscoring the role of noncanonical Ca2+ stores in the control of Ca2+-dependent function.  相似文献   

13.
A specific surface receptor for urokinase plasminogen activator (uPA) recognizes the amino-terminal growth factor-like sequence of uPA, a region independent from and not required for the catalytic activity of this enzyme. The properties of the uPA receptor (uPAR) and the localization and distribution of uPA in tumor cells and tissues suggest that the uPA/uPAR interaction may be important in regulating extracellular proteolysis-dependent processes (e.g., invasion, tissue destruction). Phorbol myristate acetate (PMA), an inducer of U937 cell differentiation to macrophage-like cells, elicits a time- and concentration-dependent increase in the number of uPAR molecules as shown by binding, cross-linking, and immunoprecipitation studies. The effect of PMA is blocked by cycloheximide. Overall, the data indicate that PMA increases the synthesis of uPA. PMA treatment also causes a decrease in the affinity of the uPAR for uPA, thus uncovering another way of regulating the interaction between uPA and uPAR. In addition, the PMA treatment causes a modification of migration of the cross-linked receptor in mono- and bidimensional gel electrophoresis.  相似文献   

14.
Ca2+ and phorbol ester synergistically induce HL-60 differentiation   总被引:1,自引:0,他引:1  
M Tyers  C B Harley 《FEBS letters》1986,206(1):99-105
Exposure of HL-60 cells to subthreshold concentrations of TPA caused monocytic differentiation only when cells were cotreated with the Ca2+ ionophore A23187. Phorbol ester dose-response curves for growth arrest and enzymatic markers of differentiation were shifted to lower concentrations when the ionophore was present. Expression of a monocyte/granulocyte cell surface antigen also occurred only when cells were treated with both agents. Similar effects were seen with other active but not inactive phorbol esters and with another Ca2+ ionophore. The Ca2+ component of phosphoinositide-based signalling may thus play a role in HL-60 differentiation.  相似文献   

15.
Control of cytoplasmic pH (pHi) by a Na+/H+ antiport appears a general property of most eukaryotic cells. In human platelets activation of the Na+/H+ exchanger enhances Ca2+ mobilization and aggregation induced by low concentrations of thrombin (Siffert, W., and Akkerman, J. W. N. (1987) Nature 325, 456-458). Several observations indicate that the exchanger is regulated by protein kinase C. (i) Inhibitors of protein kinase C (trifluoperazine, sphingosine) inhibit the increase in pHi seen during thrombin stimulation as well as Ca2+ mobilization; artificially increasing pHi by monensin or NH4Cl then restores Ca2+ mobilization. (ii) Direct activation of protein kinase C by 1-oleoyl-2-acetylglycerol initiates an increase in pHi that depends on the presence of extracellular Na+ and is sensitive to inhibition by ethylisopropylamiloride. The pHi sensitivity of thrombin-induced Ca2+ mobilization is particularly evident in the range between pH 6.8 and 7.4 and at low thrombin concentrations, whereas thrombin concentrations of more than 0.2 unit/ml bypass the pH sensitivity. In the absence of thrombin an increase in pHi, either induced artificially (by addition of the ionophores nigericin or monensin) or via activation of protein kinase C (by addition of 1-oleoyl-2-acetylglycerol), does not induce Ca2+ mobilization. We conclude that activation of protein kinase C is essential for Ca2+ mobilization in platelets stimulated by low concentrations of thrombin and that protein kinase C exerts this effect via activation of the Na+/H+ exchanger.  相似文献   

16.
Both epidermal growth factor (EGF) and vanadate can activate 45Ca2+ influx into A431 epidermal carcinoma cells, without a detectable lag period possibly via a voltage-independent calcium channel. 22Na+/H+ exchange and 45Ca2+ uptake are mutually independent. Neither EGF nor vanadate induce any significant change in the steady-state levels of [1,3-3H]glycerol-labeled diacylglycerol, myo-[2-3H]inositol-labeled inositol trisphosphate or in 32P-labeled polyphosphoinositides or phosphatidic acid over the first 10 min of treatment, suggesting that the EGF receptor is not directly coupled to phosphatidylinositol turnover and that the two ion fluxes are not induced via a kinase C-dependent pathway. An increase in turnover of polyphosphoinositides can be detected in EGF-stimulated cells by nonequilibrium labeling with [32P]phosphate, but the increase shows a lag of about 1 min under the conditions used to detect 45Ca2+ influx. Chelation of free Ca2+ decreases but does not abolish the EGF-stimulated turnover. Preincubation with tetradecanoylphorbol acetate or 1-oleoyl-2-acetylglycerol inhibits the increase in 45Ca2+ uptake by both EGF and vanadate. Tetradecanoylphorbol acetate alone does not alter the basal rate of influx when added together with 45Ca2+. Surprisingly, the activation by vanadate and its inhibition by phorbol 12-myristate 13-acetate are unaffected by down-regulation of the EGF receptors through prior incubation with growth factor. Therefore, in A431 cells the activation of Na+/H+ exchange and Ca2+ influx appear to be independent of phosphatidylinositol turnover, and the EGF receptor does not itself function as a Ca2+ channel. Vanadate apparently activates influx through a mechanism distinct from or distal to the EGF receptor.  相似文献   

17.
We used a cultured murine cell model of the inner medullary collecting duct (mIMCD-3 cells) to examine the regulation of the ubiquitous sodium-proton exchanger, Na+/H+ exchanger isoform 1 (NHE-1), by a prototypical G protein-coupled receptor, the bradykinin B2 receptor. Bradykinin rapidly activates NHE-1 in a concentration-dependent manner as assessed by proton microphysiometry of quiescent cells and by 2'-7'-bis[2-carboxymethyl]-5(6)-carboxyfluorescein fluorescence measuring the accelerated rate of pH(i) recovery from an imposed acid load. The activation of NHE-1 is blocked by inhibitors of the bradykinin B2 receptor, phospholipase C, Ca2+/calmodulin (CaM), and Janus kinase 2 (Jak2), but not by pertussis toxin or by inhibitors of protein kinase C and phosphatidylinositol 3'-kinase. Immunoprecipitation studies showed that bradykinin stimulates the assembly of a signal transduction complex that includes CaM, Jak2, and NHE-1. CaM appears to be a direct substrate for phosphorylation by Jak2 as measured by an in vitro kinase assay. We propose that Jak2 is a new indirect regulator of NHE-1 activity, which modulates the activity of NHE-1 by increasing the tyrosine phosphorylation of CaM and most likely by increasing the binding of CaM to NHE-1.  相似文献   

18.
19.
20.
Ethanol, at low concentrations, specifically stimulates the Na(+)-dependent Ca2(+)-efflux in brain mitochondria. In addition, at higher concentrations, ethanol inhibits the Na(+)-independent Ca2(+)-efflux. The electrogenic Ca(+)-uptake system is not affected by ethanol. The specific stimulation of Na+/Ca2+ exchange reaches a maximum of 60% stimulation, with half-maximal stimulation at 130 mM ethanol. The inhibition of the Na(+)-independent efflux is proportional to the ethanol concentration, becoming significant only above 200 mM, with 50% inhibition at 0.5 M. The inhibition of the Na(+)-independent efflux is, in large part, due to an inhibition of the activation of the Cyclosporin-sensitive pore. Long-term ethanol-feeding had no effect on the Ca2+ transport systems and their sensitivity to acute ethanol treatment. It is suggested that the stimulation of the Na(+)-dependent Ca2(+)-efflux, which is the dominant Ca2+ efflux pathway in brain mitochondria, contributes to the intoxicating effects of ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号