首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aggregates of beta-amyloid peptide (Abeta) are the major component of the amyloid core of the senile plaques observed in Alzheimer's disease (AD). Abeta results from the amyloidogenic processing of its precursor, the amyloid precursor protein (APP), by beta- and gamma-secretase activities. If beta-secretase has recently been identified and termed BACE, the identity of gamma-secretase is still obscure. Studies with knock-out mice showed that presenilin 1 (PS1), of which mutations are known to be the first cause of inherited AD, is mandatory for the gamma-secretase activity. However, the proteolytic activity of PS1 remains a matter of debate. Here we used transfected Sf9 insect cells, a cellular model lacking endogenous beta- and/or gamma-secretase activities, to characterize the role of BACE and PS1 in the amyloidogenic processing of human APP. We show that, in Sf9 cells, BACE performs the expected beta-secretase cleavage of APP, generating C99. We also show that C99, which is a substrate of gamma-secretase, tightly binds to the human PS1. Despite this interaction, Sf9 cells still do not produce Abeta. This strongly argues against a direct proteolytic activity of PS1 in APP processing, and points toward an implication of PS1 in trafficking/presenting its substrate to the gamma-secretase.  相似文献   

2.
Extracellular deposits of aggregated amyloid-beta (Abeta) peptides are a hallmark of Alzheimer disease; thus, inhibition of Abeta production and/or aggregation is an appealing strategy to thwart the onset and progression of this disease. The release of Abeta requires processing of the amyloid precursor protein (APP) by both beta- and gamma-secretase. Using an assay that incorporates full-length recombinant APP as a substrate for beta-secretase (BACE), we have identified a series of compounds that inhibit APP processing, but do not affect the cleavage of peptide substrates by BACE1. These molecules also inhibit the processing of APP and Abeta by BACE2 and selectively inhibit the production of Abeta(42) species by gamma-secretase in assays using CTF99. The compounds bind directly to APP, likely within the Abeta domain, and therefore, unlike previously described inhibitors of the secretase enzymes, their mechanism of action is mediated through APP. These studies demonstrate that APP binding agents can affect its processing through multiple pathways, providing proof of concept for novel strategies aimed at selectively modulating Abeta production.  相似文献   

3.
Abeta42-lowering nonsteroidal anti-inflammatory drugs (NSAIDs) constitute the founding members of a new class of gamma-secretase modulators that avoid side effects of pan-gamma-secretase inhibitors on NOTCH processing and function, holding promise as potential disease-modifying agents for Alzheimer disease (AD). These modulators are active in cell-free gamma-secretase assays indicating that they directly target the gamma-secretase complex. Additional support for this hypothesis was provided by the observation that certain mutations in presenilin-1 (PS1) associated with early-onset familial AD (FAD) change the cellular drug response to Abeta42-lowering NSAIDs. Of particular interest is the PS1-DeltaExon9 mutation, which provokes a pathogenic increase in the Abeta42/Abeta40 ratio and dramatically reduces the cellular response to the Abeta42-lowering NSAID sulindac sulfide. This FAD PS1 mutant is unusual as a splice-site mutation results in deletion of amino acids Thr(291)-Ser(319) including the endoproteolytic cleavage site of PS1, and an additional amino acid exchange (S290C) at the exon 8/10 splice junction. By genetic dissection of the PS1-DeltaExon9 mutation, we now demonstrate that a synergistic effect of the S290C mutation and the lack of endoproteolytic cleavage is sufficient to elevate the Abeta42/Abeta40 ratio and that the attenuated response to sulindac sulfide results partially from the deficiency in endoproteolysis. Importantly, a wider screen revealed that a diminished response to Abeta42-lowering NSAIDs is common among aggressive FAD PS1 mutations. Surprisingly, these mutations were also partially unresponsive to gamma-secretase inhibitors of different structural classes. This was confirmed in a mouse model with transgenic expression of the PS1-L166P mutation, in which the potent gamma-secretase inhibitor LY-411575 failed to reduce brain levels of soluble Abeta42. In summary, these findings highlight the importance of genetic background in drug discovery efforts aimed at gamma-secretase, suggesting that certain AD mouse models harboring aggressive PS mutations may not be informative in assessing in vivo effects of gamma-secretase modulators and inhibitors.  相似文献   

4.
5.
Beta-amyloid (Abeta) peptides that accumulate in Alzheimer disease are generated from the beta-amyloid precursor protein (betaAPP) by cleavages by beta-secretase BACE1 and by presenilin-dependent gamma-secretase activities. Very few data document a putative cross-talk between these proteases and the regulatory mechanisms underlying such interaction. We show that presenilin deficiency lowers BACE1 maturation and affects both BACE1 activity and promoter transactivation. The specific gamma-secretase inhibitor DFK167 triggers the decrease of BACE1 activity in wild-type but not in presenilin-deficient fibroblasts. This decrease is also elicited by catalytically inactive gamma-secretase. The overexpression of APP intracellular domain (AICD), the gamma/epsilon-secretase-derived C-terminal product of beta-amyloid precursor protein, does not modulate BACE1 activity or promoter transactivation in fibroblasts and does not alter BACE1 expression in AICD transgenic brains of mice. A DFK167-sensitive increase of BACE1 activity is observed in cells overexpressing APPepsilon (the N-terminal product of betaAPP generated by epsilon-secretase cleavage harboring the Abeta domain but lacking the AICD sequence), suggesting that the production of Abeta could account for the modulation of BACE1. Accordingly, we show that HEK293 cells overexpressing wild-type betaAPP exhibit a DFK167-sensitive increase in BACE1 promoter transactivation that is increased by the Abeta-potentiating Swedish mutation. This effect was mimicked by exogenous application of Abeta42 but not Abeta40 or by transient transfection of cDNA encoding Abeta42 sequence. The IkappaB kinase inhibitor BMS345541 prevents Abeta-induced BACE1 promoter transactivation suggesting that NFkappaB could mediate this Abeta-associated phenotype. Accordingly, the overexpression of wild-type or Swedish mutated betaAPP does not modify the transactivation of BACE1 promoter constructs lacking NFkappaB-responsive element. Furthermore, APP/beta-amyloid precursor protein-like protein deficiency does not affect BACE1 activity and expression. Overall, these data suggest that physiological levels of endogenous Abeta are not sufficient per se to modulate BACE1 promoter transactivation but that exacerbated Abeta production linked to wild-type or Swedish mutated betaAPP overexpression modulates BACE1 promoter transactivation and activity via an NFkappaB-dependent pathway.  相似文献   

6.
Zhang L  Lee J  Song L  Sun X  Shen J  Terracina G  Parker EM 《Biochemistry》2005,44(11):4450-4457
Gamma-secretase catalyzes the proteolytic processing of a number of integral membrane proteins, including amyloid precursor protein (APP) and Notch. The native gamma-secretase is a heterogeneous population of large membrane protein complexes containing presenilin 1 (PS1) or presenilin 2 (PS2), aph-1a or aph-1b, nicastrin, and pen-2. Here we report the reconstitution of a gamma-secretase complex in Sf9 cells by co-infection with baculoviruses carrying the PS1, nicastrin, pen-2, and aph-1a genes. The reconstituted enzyme processes C99 and the Notch-like substrate N160 and displays the characteristic features of gamma-secretase in terms of sensitivity to a gamma-secretase inhibitor, upregulation of Abeta42 production by a familial Alzheimer's disease (FAD) mutation in the APP gene, and downregulation of Notch processing by PS1 FAD mutations. However, the ratio of Abeta42:Abeta40 production by the reconstituted gamma-secretase is significantly higher than that of the native enzyme from 293 cells. Unlike in mammalian cells where PS1 FAD mutations cause an increase in Abeta42 production, PS1 FAD missense mutations in the reconstitution system alter the cleavage sites in the C99 substrate without changing the Abeta42:Abeta40 ratio. In addition, PS1DeltaE9 is a loss-of-function mutation in both C99 and N160 processing. Reconstitution of gamma-secretase provides a homogeneous system for studying the individual gamma-secretase complexes and their roles in Abeta production, Notch processing and AD pathogenesis. These studies may provide important insight into the development of a new generation of selective gamma-secretase inhibitors with an improved side effect profile.  相似文献   

7.
Accumulation of amyloid beta peptide (Abeta) in brain is a hallmark of Alzheimer's disease (AD). Inhibition of beta-site amyloid precursor protein (APP)-cleaving enzyme-1 (BACE1), the enzyme that initiates Abeta production, and other Abeta-lowering strategies are commonly tested in transgenic mice overexpressing mutant APP. However, sporadic AD cases, which represent the majority of AD patients, are free from the mutation and do not necessarily have overproduction of APP. In addition, the commonly used Swedish mutant APP alters APP cleavage. Therefore, testing Abeta-lowering strategies in transgenic mice may not be optimal. In this study, we investigated the impact of BACE1 inhibition in non-transgenic mice with physiologically relevant APP expression. Existing Abeta ELISAs are either relatively insensitive to mouse Abeta or not specific to full-length Abeta. A newly developed ELISA detected a significant reduction of full-length soluble Abeta 1-40 in mice with the BACE1 homozygous gene deletion or BACE1 inhibitor treatment, while the level of x-40 Abeta was moderately reduced due to detection of non-full-length Abeta and compensatory activation of alpha-secretase. These results confirmed the feasibility of Abeta reduction through BACE1 inhibition under physiological conditions. Studies using our new ELISA in non-transgenic mice provide more accurate evaluation of Abeta-reducing strategies than was previously feasible.  相似文献   

8.
Insoluble pools of the amyloid-beta peptide (Abeta) in brains of Alzheimer's disease patients exhibit considerable N- and C-terminal heterogeneity. Mounting evidence suggests that both C-terminal extensions and N-terminal truncations help precipitate amyloid plaque formation. Although mechanisms underlying the increased generation of C-terminally extended peptides have been extensively studied, relatively little is known about the cellular mechanisms underlying production of N-terminally truncated Abeta. Thus, we used human NT2N neurons to investigate the production of Abeta11-40/42 from amyloid-beta precursor protein (APP) by beta-site APP-cleaving enzyme (BACE). When comparing undifferentiated human embryonal carcinoma NT2- cells and differentiated NT2N neurons, the secretion of sAPP and Abeta correlated with BACE expression. To study the effects of BACE expression on endogenous APP metabolism in human cells, we overexpressed BACE in undifferentiated NT2- cells and NT2N neurons. Whereas NT2N neurons produced both full-length and truncated Abeta as a result of normal processing of endogenous APP, BACE overexpression increased the secretion of Abeta1-40/42 and Abeta11-40/42 in both NT2- cells and NT2N neurons. Furthermore, BACE overexpression resulted in increased intracellular Abeta1-40/42 and Abeta11-40/42. Therefore, we conclude that Abeta11-40/42 is generated prior to deposition in senile plaques and that N-terminally truncated Abeta peptides may contribute to the downstream effects of amyloid accumulation in Alzheimer's disease.  相似文献   

9.
The incidence of Alzheimer disease (AD) and vascular dementia is greatly increased following cerebral ischemia and stroke in which hypoxic conditions occur in affected brain areas. beta-Amyloid peptide (Abeta), which is derived from the beta-amyloid precursor protein (APP) by sequential proteolytic cleavages from beta-secretase (BACE1) and presenilin-1 (PS1)/gamma-secretase, is widely believed to trigger a cascade of pathological events culminating in AD and vascular dementia. However, a direct molecular link between hypoxic insults and APP processing has yet to be established. Here, we demonstrate that acute hypoxia increases the expression and the enzymatic activity of BACE1 by up-regulating the level of BACE1 mRNA, resulting in increases in the APP C-terminal fragment-beta (betaCTF) and Abeta. Hypoxia has no effect on the level of PS1, APP, and tumor necrosis factor-alpha-converting enzyme (TACE, an enzyme known to cleave APP at the alpha-secretase cleavage site). Sequence analysis, mutagenesis, and gel shift studies revealed binding of HIF-1 to the BACE1 promoter. Overexpression of HIF-1alpha increases BACE1 mRNA and protein level, whereas down-regulation of HIF-1alpha reduced the level of BACE1. Hypoxic treatment fails to further potentiate the stimulatory effect of HIF-1alpha overexpression on BACE1 expression, suggesting that hypoxic induction of BACE1 expression is primarily mediated by HIF-1alpha. Finally, we observed significant reduction in BACE1 protein levels in the hippocampus and the cortex of HIF-1alpha conditional knock-out mice. Our results demonstrate an important role for hypoxia/HIF-1alpha in modulating the amyloidogenic processing of APP and provide a molecular mechanism for increased incidence of AD following cerebral ischemic and stroke injuries.  相似文献   

10.
The deposition of amyloid-beta peptides (Abeta) in senile plaques (SPs) is a central pathological feature of Alzheimer's disease (AD). Since SPs are composed predominantly of Abeta1-42, which is more amyloidogenic in vitro, the enzymes involved in generating Abeta1-42 may be particularly important to the pathogenesis of AD. In contrast to Abeta1-40, which is generated in the trans-Golgi network and other cytoplasmic organelles, intracellular Abeta1-42 is produced in the endoplasmic reticulum/intermediate compartment (ER/IC), where it accumulates in a stable insoluble pool. Since this pool of insoluble Abeta1-42 may play a critical role in AD amyloidogenesis, we sought to determine how the production of intracellular Abeta is regulated. Surprisingly, the production of insoluble intracellular Abeta1-42 was increased by a putative gamma-secretase inhibitor as well as by an inhibitor of the proteasome. We further demonstrate that this increased generation of Abeta1-42 in the ER/IC is due to a reduction in the turnover of Abeta-containing APP C-terminal fragments. We conclude that the proteasome is a novel site for degradation of ER/IC-generated APP fragments. Proteasome inhibitors may augment the availability of APP C-terminal fragments for gamma-secretase cleavage and thereby increase production of Abeta1-42 in the ER/IC. Based on the organelle-specific differences in the generation of Abeta by gamma-secretase, we conclude that intracellular ER/IC-generated Abeta1-42 and secreted Abeta1-40 are produced by different gamma-secretases. Further, the fact that a putative gamma-secretase inhibitor had opposite effects on the production of secreted and intracellular Abeta may have important implications for AD drug design.  相似文献   

11.
beta-Amyloid peptides (Abeta) that form the senile plaques of Alzheimer disease consist mainly of 40- and 42-amino acid (Abeta 40 and Abeta 42) peptides generated from the cleavage of the amyloid precursor protein (APP). Generation of Abeta involves beta-secretase and gamma-secretase activities and is regulated by membrane trafficking of the proteins involved in Abeta production. Here we describe a new small molecule, EHT 1864, which blocks the Rac1 signaling pathways. In vitro, EHT 1864 blocks Abeta 40 and Abeta 42 production but does not impact sAPPalpha levels and does not inhibit beta-secretase. Rather, EHT 1864 modulates APP processing at the level of gamma-secretase to prevent Abeta 40 and Abeta 42 generation. This effect does not result from a direct inhibition of the gamma-secretase activity and is specific for APP cleavage, since EHT 1864 does not affect Notch cleavage. In vivo, EHT 1864 significantly reduces Abeta 40 and Abeta 42 levels in guinea pig brains at a threshold that is compatible with delaying plaque accumulation and/or clearing the existing plaque in brain. EHT 1864 is the first derivative of a new chemical series that consists of candidates for inhibiting Abeta formation in the brain of AD patients. Our findings represent the first pharmacological validation of Rac1 signaling as a target for developing novel therapies for Alzheimer disease.  相似文献   

12.
Processing of the amyloid precursor protein (APP) by beta- and gamma-secretases leads to the generation of amyloid-beta (Abeta) peptides with varying lengths. Particularly Abeta42 contributes to cytotoxicity and amyloid accumulation in Alzheimer's disease (AD). However, the precise molecular mechanism of Abeta42 generation has remained unclear. Here, we show that an amino-acid motif GxxxG within the APP transmembrane sequence (TMS) has regulatory impact on the Abeta species produced. In a neuronal cell system, mutations of glycine residues G29 and G33 of the GxxxG motif gradually attenuate the TMS dimerization strength, specifically reduce the formation of Abeta42, leave the level of Abeta40 unaffected, but increase Abeta38 and shorter Abeta species. We show that glycine residues G29 and G33 are part of a dimerization site within the TMS, but do not impair oligomerization of the APP ectodomain. We conclude that gamma-secretase cleavages of APP are intimately linked to the dimerization strength of the substrate TMS. The results demonstrate that dimerization of APP TMS is a risk factor for AD due to facilitating Abeta42 production.  相似文献   

13.
Proteolytic processing of the amyloid precursor protein by beta- and gamma-secretase generates the amyloid-beta (Abeta) peptides, which are principal drug targets in Alzheimer disease therapeutics. gamma-Secretase has imprecise cleavage specificity and generates the most abundant Abeta40 and Abeta42 species together with longer and shorter peptides such as Abeta38. Several mechanisms could explain the production of multiple Abeta peptides by gamma-secretase, including sequential processing of longer into shorter Abeta peptides. A novel class of gamma-secretase modulators (GSMs) that includes some non-steroidal anti-inflammatory drugs has been shown to selectively lower Abeta42 levels without a change in Abeta40 levels. A signature of GSMs is the concomitant increase in shorter Abeta peptides, such as Abeta38, leading to the suggestion that generation of Abeta42 and Abeta38 peptide species by gamma-secretase is coordinately regulated. However, no evidence for or against such a precursor-product relationship has been provided. We have previously shown that stable overexpression of aggressive presenilin-1 (PS1) mutations associated with early-onset familial Alzheimer disease attenuated the cellular response to GSMs, resulting in greatly diminished Abeta42 reductions as compared with wild type PS1. We have now used this model system to investigate whether Abeta38 production would be similarly affected indicating coupled generation of Abeta42 and Abeta38 peptides. Surprisingly, treatment with the GSM sulindac sulfide increased Abeta38 production to similar levels in four different PS1 mutant cell lines as compared with wild type PS1 cells. This was confirmed with the structurally divergent GSMs ibuprofen and indomethacin. Mass spectrometry analysis and high resolution urea gel electrophoresis further demonstrated that sulindac sulfide did not induce detectable compensatory changes in levels of other Abeta peptide species. These data provide evidence that Abeta42 and Abeta38 species can be independently generated by gamma-secretase and argue against a precursor-product relationship between these peptides.  相似文献   

14.
Strong support for a primary causative role of the Abeta peptides in the development of Alzheimer's disease (AD) neurodegeneration derives from reports that presenilin familial AD (FAD) mutants alter amyloid precursor protein processing, thus increasing production of neurotoxic Abeta 1-42 (Abeta 42). This effect of FAD mutants is also reflected in an increased ratio of peptides Abeta 42 over Abeta 1-40 (Abeta 40). In the present study, we show that several presenilin 1 FAD mutants failed to increase production of Abeta 42 or the Abeta 42/40 ratio. Our data suggest that the mechanism by which FAD mutations promote neurodegeneration and AD may be independent of their effects on Abeta production.  相似文献   

15.
Gene knockout studies in mice suggest that presenilin 1 (PS1) is the major gamma-secretase and that it contributes disproportionately to amyloid beta (Abeta) peptide generation from beta-amyloid precursor protein (APP), whereas PS2 plays a more minor role. Based on this and other observations we hypothesized that familial Alzheimer's disease (FAD) mutations in PS2 would have a dramatic effect on function in order to have an observable effect on Abeta levels in the presence of normal PS1 alleles. Only four of the eight reported FAD mutations in PS2 have altered function in vitro suggesting that the other variants represent rare polymorphisms rather than disease-causing mutations. In support of our hypothesis, the four verified PS2 FAD mutations cause substantial changes in the Abeta 42/40 ratio, comparable with PS1 mutations that cause very-early-onset FAD. Most of the PS2 mutations also cause a significant decrease in Abeta 40, APP C-terminal fragment (CTF)gamma and Notch intracellular domain (NICD) production suggesting that they are partial loss of function mutations. PS2 M239V, its PS1 homolog M233V, and other FAD mutations within transmembrane (TM) 5 of PS1 differentially affect CTFgamma and NICD production suggesting that TM5 of PS are important for gamma-secretase cleavage of APP but not Notch.  相似文献   

16.
Introducing mutations within the amyloid precursor protein (APP) that affect beta- and gamma-secretase cleavages results in amyloid plaque formation in vivo. However, the relationship between beta-amyloid deposition and the subcellular site of Abeta production is unknown. To determine the effect of increasing beta-secretase (BACE) activity on Abeta deposition, we generated transgenic mice overexpressing human BACE. Although modest overexpression enhanced amyloid deposition, high BACE overexpression inhibited amyloid formation despite increased beta-cleavage of APP. However, high BACE expression shifted the subcellular location of APP cleavage to the neuronal perikarya early in the secretory pathway. These results suggest that the production, clearance, and aggregation of Abeta peptides are highly dependent on the specific neuronal subcellular domain wherein Abeta is generated and highlight the importance of perikaryal versus axonal APP proteolysis in the development of Abeta amyloid pathology in Alzheimer's disease.  相似文献   

17.
Alzheimer's disease (AD) is caused by the cerebral deposition of beta-amyloid (Abeta), a 38-43-amino acid peptide derived by proteolytic cleavage of the amyloid precursor protein (APP). Initial studies indicated that final cleavage of APP by the gamma-secretase (a complex containing presenilin and nicastrin) to produce Abeta occurred in the endosomal/lysosomal system. However, other studies showing a predominant endoplasmic reticulum localization of the gamma-secretase proteins and a neutral pH optimum of in vitro gamma-secretase assays have challenged this conclusion. We have recently identified nicastrin as a major lysosomal membrane protein. In the present work, we use Western blotting and immunogold electron microscopy to demonstrate that significant amounts of mature nicastrin, presenilin-1, and APP are co-localized with lysosomal associated membrane protein-1 (cAMP-1) in the outer membranes of lysosomes. Furthermore, we demonstrate that these membranes contain an acidic gamma-secretase activity, which is immunoprecipitable with an antibody to nicastrin. These experiments establish APP, nicastrin, and presenilin-1 as resident lysosomal membrane proteins and indicate that gamma-secretase is a lysosomal protease. These data reassert the importance of the lysosomal/endosomal system in the generation of Abeta and suggest a role for lysosomes in the pathophysiology of AD.  相似文献   

18.
Mutations in presenilin 1 (PS1) lead to dominant inheritance of early onset familial Alzheimer disease (FAD). These mutations are known to alter the gamma-secretase cleavage of the amyloid precursor protein, resulting in increased ratio of Abeta42/Abeta40 and accelerated amyloid plaque pathology in transgenic mouse models. To investigate the factors that drive the Abeta42/Abeta40 ratio and amyloid pathogenesis and to investigate the possible interactions between wild-type and FAD mutant PS1, which are co-expressed in transgenic animals, we expressed the PS1 M146V knock-in allele either on wild-type PS1 (PS1M146V/+) or PS1 null (PS1M146V/-) background and crossed these alleles with the Tg2576 APP transgenic mice. Introduction of the PS1 M146V mutation on Tg2576 background resulted in earlier onset of plaque pathology. Surprisingly, removing the wild-type PS1 in the presence of the PS1 M146V mutation (PS1M146V/-) greatly exacerbated the amyloid burden; and this was attributed to a reduction of gamma-secretase activity rather than an increase in Abeta42. Our findings establish a protective role of the wild-type PS1 against the FAD mutation-induced amyloid pathology through a partial loss-of-function mechanism.  相似文献   

19.
Previously, we reported that mutations in presenilin 1 (PS1) increased the intracellular levels of amyloid beta-protein (Abeta)42. However, it is still not known at which cellular site or how PS1 mutations exert their effect of enhancing Abeta42-gamma-secretase cleavage. In this study, to clarify the molecular mechanisms underlying this enhancement of Abeta42-gamma-secretase cleavage, we focused on determining the intracellular site of the cleavage. To address this issue, we used APP-C100 encoding the C-terminal beta-amyloid precursor protein (APP) fragment truncated at the N terminus of Abeta (C100); C100 requires only gamma-secretase cleavage to yield Abeta. Mutated PS1 (M146L)-induced Neuro 2a cells showed enhanced Abeta1-42 generation from transiently expressed C100 as well as from full-length APP, whereas the generation of Abeta1-40 was not increased. The intracellular generation of Abeta1-42 from transiently expressed C100 in both mutated PS1-induced and wild-type Neuro 2a cells was inhibited by brefeldin A. Moreover, the generation of Abeta1-42 and Abeta1-40 from a C100 mutant containing a di-lysine endoplasmic reticulum retention signal was greatly decreased, indicating that the major intracellular site of gamma-secretase cleavage is not the endoplasmic reticulum. The intracellular generation of Abeta1-42/40 from C100 was not influenced by monensin treatment, and the level of Abeta1-42/40 generated from C100 carrying a sorting signal for the trans-Golgi network was higher than that generated from wild-type C100. These results using PS1-mutation-harbouring and wild-type Neuro 2a cells suggest that Abeta42/40-gamma-secretase cleavages occur in the Golgi compartment and the trans-Golgi network, and that the PS1 mutation does not alter the intracelluar site of Abeta42-gamma-secretase cleavage in the normal APP proteolytic processing pathway.  相似文献   

20.
The amyloid beta peptides (Abeta) are the major components of the senile plaques characteristic of Alzheimer's disease. Abeta peptides are generated from the cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. Beta-secretase (BACE), a type-I transmembrane aspartyl protease, cleaves APP first to generate a 99-amino acid membrane-associated fragment (CT99) containing the N terminus of Abeta peptides. Gamma-secretase, a multi-protein complex, then cleaves within the transmembrane region of CT99 to generate the C termini of Abeta peptides. The production of Abeta peptides is, therefore, dependent on the activities of both BACE and gamma-secretase. The cleavage of APP by BACE is believed to be a prerequisite for gamma-secretase-mediated processing. In the present study, we provide evidence both in vitro and in cells that BACE-mediated cleavage between amino acid residues 34 and 35 (Abeta-34 site) in the Abeta region is dependent on gamma-secretase activity. In vitro, the Abeta-34 site is processed specifically by BACE1 and BACE2, but not by cathepsin D, a closely related aspartyl protease. Moreover, the cleavage of the Abeta-34 site by BACE1 or BACE2 occurred only when Abeta 1- 40 peptide, a gamma-secretase cleavage product, was used as substrate, not the non-cleaved CT99. In cells, overexpression of BACE1 or BACE2 dramatically increased the production of the Abeta 1-34 species. More importantly, the cellular production of Abeta 1-34 species induced by overexpression of BACE1 or BACE2 was blocked by a number of known gamma-secretase inhibitors in a concentration-dependent manner. These gamma-secretase inhibitors had no effect on enzymatic activity of BACE1 or BACE2 in vitro. Our data thus suggest that gamma-secretase cleavage of CT99 is a prerequisite for BACE-mediated processing at Abeta-34 site. Therefore, BACE and gamma-secretase activity can be mutually dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号