首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of ethanol and of GABA receptors blocker bicuculline on recovery cycles of primary response of the sensorimotor cortex was studied in rats with strong and weak inclination to development of experimental alcoholism. It is found that in rats of the first group, inhibition in the cerebral cortex was weakened in comparison with the rats of the second group. Ethanol in non-narcotic doses intensified the inhibitory processes and its effects could be prevented or suppressed by bicuculline. The conclusion is made about GABA participation in mediation of ethanol effects on inhibitory processes in the cerebral cortex.  相似文献   

2.
The influence of conditioning locus coeruleus (LC) stimulation on various components of transcallosal field response was investigated in the parietal cortex of the cat brain. Conditioning LC simulation caused a decrease in fast positive wave amplitude and facilitated slow negative wave. It is concluded that LC suppresses excitatory and facilitates inhibitor processes evoked in the parietal cortex by transcallosal stimulation.  相似文献   

3.
在建立稳定的红藻氨酸(KA)诱发小鼠惊厥模型的基础上,用放射配体受体结合分析法,研究孕烯醇酮(Pe)及其拮抗剂孕烯醇酮硫酸盐(Pes)对小鼠下丘脑、大脑皮层、海马和小脑四个脑区γ-氨基丁酸A(GABAA)受体的调制作用.结果显示,Pe能增加某些脑区3H-GABA与GABAA受体的结合量,下丘脑、海马和小脑差异显著(P<0.05或P<0.001),而大脑皮层差异不显著(P>0.05).Pe对GABAA受体的调制作用能被印防己毒素(Pic)阻断,对KA的致惊效应具有抑制作用.Pes 能显著降低各脑区GABAA受体的结合量(P<0.01或P<0.001),对惊厥有促进作用.实验结果提示:孕烯醇酮具有明显的镇静和抗惊厥效应,并且可能是通过GABAA受体介导的.  相似文献   

4.
Cerebellar function in consolidation of a motor memory   总被引:9,自引:0,他引:9  
Attwell PJ  Cooke SF  Yeo CH 《Neuron》2002,34(6):1011-1020
Several forms of motor learning, including classical conditioning of the eyeblink and nictitating membrane response (NMR), are dependent upon the cerebellum, but it is not known how motor memories are stored within the cerebellar circuitry. Localized infusions of the GABA(A) agonist muscimol were used to target putative consolidation processes by producing reversible inactivations after NMR conditioning sessions. Posttraining inactivations of eyeblink control regions in cerebellar cortical lobule HVI completely prevented conditioning from developing over four sessions. In contrast, similar inactivations of eyeblink control regions in the cerebellar nuclei allowed conditioning to develop normally. These findings provide evidence that there are critical posttraining memory consolidation processes for eyeblink conditioning mediated by the cerebellar cortex.  相似文献   

5.
Three days of fear conditioning that combines tactile stimulation of a row of facial vibrissae (conditioned stimulus, CS) with a tail shock (unconditioned stimulus, UCS) expands the representation of “trained” vibrissae, which can be demonstrated by labeling with 2-deoxyglucose in layer IV of the barrel cortex. We have also shown that functional reorganization of the primary somatosensory cortex (S1) increases GABAergic markers in the hollows of “trained” barrels of the adult mouse. This study investigated how whisker-shock conditioning (CS+UCS) affected the expression of puncta of a high-affinity GABA plasma membrane transporter GAT-1 in the barrel cortex of mice 24 h after associative learning paradigm. We found that whisker-shock conditioning (CS+UCS) led to increase expression of neuronal and astroglial GAT-1 puncta in the “trained” row compared to controls: Pseudoconditioned, CS-only, UCS-only and Naïve animals. These findings suggest that fear conditioning specifically induces activation of systems regulating cellular levels of the inhibitory neurotransmitter GABA.  相似文献   

6.
电刺激猫大脑皮层前外侧回联合区(ALA)对隐神经C类纤维传入引起的体感皮层(SI)诱发电位(C-CEP)有明显的抑制作用;侧脑室注射γ-氨基丁酸(GABA)能使C-CEP的幅值显著变小,潜伏期延长,表明GABA对C-CEP也有抑制作用;侧脑室注射GABA受体拮抗剂荷包牡丹硷后,电刺激ALA对C-CEP的抑制作用明显减弱,提示内源性GABA的释放可能参与大脑皮层联合区对C-CEP的调制过程。  相似文献   

7.
In awake mobile rabbits, with electrodes implanted in the medial lemniscus, midbrain tegmental reticular nucleus, and pyramidal tract, combined stimulation of two brain of two brain structures resulted in elaboration of conditional connections in sensorimotor cortex neuronal populations. The main criterion of the conditioning was the appearance of changes in the neuronal activity on omission of the second stimulus. These changes represented a complex of electrical events, some of which were similar to and others different from the evoked responses to the second stimulus. Application of atropine, sulfate, chlorpromazine hydrochloride, serotonin creatinine sulfate, and gamma-aminobutyric acid (GABA) to the cortex at the site of the recording exerted a modulating effect on the conditional neuronal activity patterns. Of the above substances, GABA and atropine had the most pronounced effect. The GABA removed the short-latency components of the conditional changes which were similar to evoked responses. The atropine abolished the long-latency changes which differed from evoked responses.  相似文献   

8.
—Electrical stimulation for 30 s of one brachial plexus in cat (afferent electrical stimulation = AES) produced a 20% decrease in GABA level of the stimulated (contralateral) cerebral cortex as compared to the non-stimulated (ipsilateral) cortex in the same animal. This change in GABA was reversed within a few seconds after cessation of stimulation. Inhibition of GABA catabolism by aminooxyacetic acid elevated considerably the cortical level of GABA but failed to prevent lowering GABA by AES. When AES was performed in preconvulsive condition induced by administration of picrotoxin, the decrease in GABA was negligible, while similar treatment with pentylenetetrazol had no influence on the decrease in GABA produced by AES. The observed lowering cortical GABA by AES is interpreted as being associated with some mechanism of the inhibitory transmitter inactivation.  相似文献   

9.
Sprague-Dawley rats were used to study the influence of local application of antagonists of D1 and D2 receptors (SCH 23390 and raclopride, respectively) on neuronal responses in globus pallidus evoked by somatosensory cortex stimulation. SCH 23390 was found to produce a short-latency inhibition in response to cortical stimulation and to block the long-latency inhibition. Raclopride application suppressed the short-latency inhibition and revealed the long-latency inhibition in response to cortical stimulation. It is suggested that the observed phenomena are based on the modulation of GABA releasing in stria-pallidar terminals by endogenous dopamine.  相似文献   

10.
A study was made of the action of diazepam on the effects of the gamma-aminobutyric acid (GABA) applied electrophoretically to the neurons of the sensory-motor rabbit cortex. It was shown that diazepam intensified the depressive action of GABA on the spontaneous neuronal activity and the prolonging action of GABA on the duration of the inhibitory phase in the neuron responses to the afferent and direct stimulation of the cortex. Diazepam failed to alter the neuron response to glycine, glutamate and acetylcholine applied microelectrophoretically. It is supposed that diazepam increased the sensitivity of the receptors of the post-synaptic membrane of the neuron to GABA.  相似文献   

11.
The occurrence of presynaptic control of synaptic transmission in the cercal-afferent giant-interneurone system of the cockroach was investigated. Reduction in amplitude (up to 50%, lasting about 200–250 ms) of the compound evoked EPSP followed repetitive (300 to 500 Hz) supra-threshold stimulation of cercal nerves XI. A similar but weaker depressive effect was detected on the unitary EPSP resulting from stimulation of an ipsilateral cercal mechanoreceptor.This inhibition is attributed to multisynaptic inhibitory pathways impinging upon presynaptic excitatory neurones. The involvement of chloride ions is suggested by the observation that both picrotoxin and chloride-deficient salines abolished the inhibitory phenomenon. Presynaptic mannitolgap recording from cercal nerve XI revealed a chloride-dependent hyperpolarization in response to repetitive conditioning stimulation. The time course of this response was similar to that of presynaptic inhibition. Bath-application of GABA (20 mM) produced a chloride-dependent hyperpolarization followed by a depolarization of the intraganglionic part of the cerca-afferents. GABA-induced hyperpolarization and electrically-induced presynaptic hyperpolarization were both reversed in low chloride saline (166 mM chloride). It is proposed that presynaptic modulation of acetyl-choline release occurs at the cercal-afferent giant-interneurone synapses. The role played by GABA is duscussed.  相似文献   

12.
The present study was undertaken to examine the effects of different muscarinic receptor agonists on glutamate and GABA concentrations in the medial prefrontal cortex of the rat. In vivo perfusions were made in the conscious rat using a concentric push-pull cannulae system. Amino acid concentrations in samples were determined by HPLC with fluorometric detection. The intracortical perfusion of arecoline, a M1-M2 muscarinic receptor agonist, produced a significant increase in extracellular [GLU] and [GABA]. McN-A-343, a M1 muscarinic receptor agonist, but not the M2 muscarinic receptor agonist, oxotremorine, produced a significant increase in extracellular [GLU] and [GABA]. The effects of McN-A-343 on extracellular [GLU] and [GABA] were blocked by pirenzepine, a M1 muscarinic receptor antagonist. These results suggest that M1 muscarinic receptor stimulation increases the extracellular concentrations of GLU and GABA in the medial prefrontal cortex of the rat.  相似文献   

13.
Bayer S  Jellali A  Crenner F  Aunis D  Angel F 《Life sciences》2003,72(13):1481-1493
In the enteric nervous system, activation of neuronal GABA(A)- and GABA(B)-receptors has been shown to modulate neuronal activity. The consequences of this modulation depend on the location in the gastrointestinal tract or the animal species studied. These data illustrate the complexity of GABA-induced effects. Furthermore, the GABA(C)-receptor has been identified in a neuroendocrine cell line suggesting a modulating role of this third type of GABA receptor in intestinal functions. Therefore, the modulating role of GABA-receptor agonists was determined in circular preparations of rat distal colon during electrical nerve stimulation (NS) in vitro. Mechanical response to NS was characterized by a relaxation followed at the end of the stimulation by an off-contraction. In normal Krebs solution (basal conditions), muscimol and baclofen, respectively GABA(A)- and GABA(B)-agonists, induced a significant increase of the electrically induced off-contraction. The GABA(C) agonist, CACA, showed no significant effect on the response to NS. Excitatory effects of muscimol on the off-contraction were abolished in the presence of atropine. Furthermore, in the presence of atropine, muscimol increased the amplitude of the electrically induced relaxation; similarly the baclofen-induced increase of off-contraction amplitude was significantly lower than that observed in control conditions. Baclofen and muscimol effects on the off-contraction were abolished in the presence of hexamethonium or guanethidine. Furthermore, muscimol and baclofen did not induce any significant change on the response to NS in the presence of L-NAME and apamin together. Thus, it seems that in rat distal colon, GABA regulates significantly both excitatory (through GABA(A)- and GABA(B)-receptors) and inhibitory (through GABA(A)-receptors) neuronal activities. We also gave evidence for a possible interplay between GABAergic intrinsic neurons and adrenergic nerve terminals. Finally, it is shown for the first time the presence of the GABA vesicular transporter (VIAAT) around myenteric ganglia of rat colon.  相似文献   

14.
The aim of this study was to investigate the role of inhibitory processes in S-1 cortex of cats. The inhibition was evoked by "natural" afferent stimulation of the fascial vibrissae. For this purpose, two neighboring vibrissae were sequentially stimulated by mechanical deflection; single unit activity was recorded simultaneously from the cortex. Results showed that conditioning by afferent stimulation significantly influenced the directional sensitivity of cortical neurons. These data and analysis of spatial pattern of stimulated vibrissa indicate that detector neurons could be quickly modified during sensory processing.  相似文献   

15.
The present study was designed to examine whether trigeminal nociceptive inputs are involved in the modulation of parasympathetic reflex vasodilation in the jaw muscles. This was accomplished by investigating the effects of noxious stimulation to the orofacial area with capsaicin, and by microinjecting GABA(A) and GABA(B) receptor agonists or antagonists into the nucleus of the solitary tract (NTS), on masseter hemodynamics in urethane-anesthetized rats. Electrical stimulation of the central cut end of the cervical vagus nerve (cVN) in sympathectomized animals bilaterally increased blood flow in the masseter muscle (MBF). Increases in MBF evoked by cVN stimulation were markedly reduced following injection of capsaicin into the anterior tongue in the distribution of the lingual nerve or lower lip, but not when injected into the skin of the dorsum of the foot. Intravenous administration of either phentolamine or propranolol had no effect on the inhibitory effects of capsaicin injection on the increases of MBF evoked by cVN stimulation, which were largely abolished by microinjecting the GABA(B) receptor agonist baclofen into the NTS. Microinjection of the GABA(B) receptor antagonist CGP-35348 into the NTS markedly attenuated the capsaicin-induced inhibition of MBF increase evoked by cVN stimulation, while microinjection of the GABA(A) receptor antagonist bicuculline did not. Our results indicate that trigeminal nociceptive inputs inhibit vagal-parasympathetic reflex vasodilation in the masseter muscle and suggest that the activation of GABA(B) rather than GABA(A) receptors underlies the observed inhibition in the NTS.  相似文献   

16.
Transcranial direct current stimulation (tDCS) is a safe, non-invasive technique for transiently modulating the balance of excitation and inhibition within the human brain. It has been reported that anodal tDCS can reduce both GABA mediated inhibition and GABA concentration within the human motor cortex. As GABA mediated inhibition is thought to be a key modulator of plasticity within the adult brain, these findings have broad implications for the future use of tDCS. It is important, therefore, to establish whether tDCS can exert similar effects within non-motor brain areas. The aim of this study was to assess whether anodal tDCS could reduce inhibitory interactions within the human visual cortex. Psychophysical measures of surround suppression were used as an index of inhibition within V1. Overlay suppression, which is thought to originate within the lateral geniculate nucleus (LGN), was also measured as a control. Anodal stimulation of the occipital poles significantly reduced psychophysical surround suppression, but had no effect on overlay suppression. This effect was specific to anodal stimulation as cathodal stimulation had no effect on either measure. These psychophysical results provide the first evidence for tDCS-induced reductions of intracortical inhibition within the human visual cortex.  相似文献   

17.
Aging reduces the GABA-dependent 36Cl- flux in rat brain membrane vesicles   总被引:4,自引:0,他引:4  
The function of the chloride channel associated to GABAA receptor complex was analyzed in the brain of aged rats by measuring the chloride flux across the neuronal membrane and its modulation by drugs acting at the level of the GABA receptor complex and 35S-TBPS binding. The basal 36Cl- uptake by brain membrane vesicles of aged rats was higher (22%) than that observed in those of adult rats. The higher 36Cl- uptake found in cortical membrane vesicles of senescent rats was not sensitive to the action of bicuculline indicating that it was not the consequence of a tonic GABAergic modulation. Moreover, the stimulation of 36Cl- uptake induced by GABA was markedly lower in membrane vesicles of aged rats than that observed in those of adult rats. Accordingly, the stimulation of 36Cl- efflux elicited by GABA (18%) and pentobarbital (26%) was higher in membrane vesicles of adult rats with respect to that (8 and 16%, respectively) of old rats. Finally, a significant decrease of 35S-TBPS binding was observed in membrane preparation from the cerebral cortex, cerebellum and hippocampus of aged-rats. Scatchard plot analysis indicated that the decrease was entirely due to a reduction in the total number of binding sites with no change in their affinity. All together the results indicate that in the rat brain the function of the chloride channel coupled to the GABA/benzodiazepine/barbiturate receptor complex is reduced by aging.  相似文献   

18.
He DF  Chen FJ  Zhou SC 《生理学报》2004,56(3):374-378
在SD大鼠上应用多顺利完成微电极方法,观察微电泳CABA及其受体的拮抗剂或激动剂对杏仁外侧核(LA)抑制皮层AⅠ神经元声反应效应的影响。结果显示,电泳GABA能抑制皮层AⅠ区神经元的电活动,电泳GABAA受体拮抗剂bicuculline(BIC)则能易化其反应;电刺激LA能抑制皮层AⅠ区听神经元声反应,电泳GABA产生类拟于刺激LA的抑制效应;LA对皮层AⅠ区神经的抑制效应能被BIC所翻转,而不能被什氨酸受体拮抗剂strychnine所翻转,电泳GABAB型受体例激动剂baclofen对神经元声反应无影响。上术结果表明,GABA可能是介民LA抑制皮层AⅠ区神经元声反应的最终递质,并且是通过GABAA受体作用的。  相似文献   

19.
Waking noncurarized rabbits were subjected to defensive conditioning. Subcutaneous injections of GABA derivative conditioning. Subcutaneous injections of GABA derivative Phenibut (nootropic) (40 mg/kg) were shown to accelerate the acquisition of internal inhibition, to decrease and stabilize the time of intersignal reactions, to increase the heart rate, and to decrease the respiration rate. At the early stage of conditioning, Phenibut facilitated movements in response to a conditioned stimulus. Consequently, when using nootropics for normalization and improvement of the CNS operation, one should take into account their effects not only on excitation but also on inhibition in the CNS, as well not only on cognitive processes but also on the somatic state. The findings confirm the involvement of GBABergic neurotransmitter system in the internal inhibitory conditioning.  相似文献   

20.
Evoked activity of sensorimotor cortical neurones in response to stimulation of the pyramidal tract, medial lemniscus and reticular nucleus of the midbrain tegmentum; driving reaction of cortical neurones at stimulation of these brain structures of growing frequency, and conditioned reflexes elaborated by combination of direct stimulation of the sensorimotor cortex and electrocutaneous stimulation were studied in awake nonimmobilized rabbits. Application to the cortex of GABA solutions of low concentration (less than or equal to 1%) emphasizes the evoked neuronal responses, facilitates the appearance of driving reaction and contributes to the manifestation of the temporary connection. Application of GABA solutions of higher concentration (greater than 2%) leads to opposite effects. Positive correlation is found between electrical and behavioural phenomena. The described experimental approach may be used for analysis of various types of influences on temporary connection formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号