首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Ecology of Vibrio vulnificus in estuarine waters of eastern North Carolina   总被引:2,自引:0,他引:2  
While several studies on the ecology of Vibrio vulnificus in Gulf Coast environments have been reported, there is little information on the distribution of this pathogen in East Coast waters. Thus, we conducted a multiyear study on the ecology of V. vulnificus in estuarine waters of the eastern United States, employing extensive multiple regression analyses to reveal the major environmental factors controlling the presence of this pathogen, and of Vibrio spp., in these environments. Monthly field samplings were conducted between July 2000 and April 2002 at six different estuarine sites along the eastern coast of North Carolina. At each site, water samples were taken and nine physicochemical parameters were measured. V. vulnificus isolates, along with estuarine bacteria, Vibrio spp., Escherichia coli organisms, and total coliforms, were enumerated in samples from each site by using selective media. During the last 6 months of the study, sediment samples were also analyzed for the presence of vibrios, including V. vulnificus. Isolates were confirmed as V. vulnificus by using hemolysin gene PCR or colony hybridization. V. vulnificus was isolated only when water temperatures were between 15 and 27 degrees C, and its presence correlated with water temperature and dissolved oxygen and vibrio levels. Levels of V. vulnificus in sediments were low, and no evidence for an overwintering in this environment was found. Multiple regression analysis indicated that vibrio levels were controlled primarily by temperature, turbidity, and levels of dissolved oxygen, estuarine bacteria, and coliforms. Water temperature accounted for most of the variability in the concentrations of both V. vulnificus (47%) and Vibrio spp. (48%).  相似文献   

2.
While numerous studies have characterized the distribution and/or ecology of various pathogenic Vibrio spp., here we have simultaneously examined several estuarine sites for Vibrio vulnificus, V. cholerae, and V. parahaemolyticus. For a one year period, waters and sediment were monitored for the presence of these three pathogens at six different sites on the east coast of North Carolina in the United States. All three pathogens, identified using colony hybridization and PCR methods, occurred in these estuarine environments, although V. cholerae occurred only infrequently and at very low levels. Seventeen chemical, physical, and biological parameters were investigated, including salinity, water temperature, turbidity, dissolved oxygen, levels of various inorganic nutrients and dissolved organic carbon, as well as total vibrios, total coliforms, and E. coli. We found each of the Vibrio spp. in water and sediment to correlate to several of these environmental measurements, with water temperature and total Vibrio levels correlating highly (P<0.0001) with occurrence of the three pathogens. Thus, these two parameters may represent simple assays for characterizing the potential public health hazard of estuarine waters.  相似文献   

3.
The coastal ecosystems of California are highly utilized by humans and animals, but the ecology of fecal bacteria at the land–sea interface is not well understood. This study evaluated the distribution of potentially pathogenic bacteria in invertebrates from linked marine, estuarine, and freshwater ecosystems in central California. A variety of filter-feeding clams, mussels, worms, and crab tissues were selectively cultured for Salmonella spp., Campylobacter spp., Escherichia coli-O157, Clostridium perfringens, Plesiomonas shigelloides, and Vibrio spp. A longitudinal study assessed environmental risk factors for detecting these bacterial species in sentinel mussel batches. Putative risk factors included mussel collection near higher risk areas for livestock or human sewage exposure, adjacent human population density, season, recent precipitation, water temperature, water type, bivalve type, and freshwater outflow exposure. Bacteria detected in invertebrates included Salmonella spp., C. perfringens, P. shigelloides, Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio alginolyticus. Overall, 80% of mussel batches were culture positive for at least one of the bacterial species, although the pathogens Campylobacter, E. coli-O157, and Salmonella were not detected. Many of the same bacterial species were also cultured from upstream estuarine and riverine invertebrates. Exposure to human sewage sources, recent precipitation, and water temperature were significant risk factors for bacterial detection in sentinel mussel batches. These findings are consistent with the hypothesis that filter-feeding invertebrates along the coast concentrate fecal bacteria flowing from land to sea and show that the relationships between anthropogenic effects on coastal ecosystems and the environmental niches of fecal bacteria are complex and dynamic.  相似文献   

4.
Although the presence of pathogenic Vibrio spp. in estuarine environments of northern New England has been known for some time (C. H. Bartley and L. W. Slanetz, Appl. Microbiol. 21: 965-966, 1971, and K. R. O'Neil, S. H. Jones, and D. J. Grimes, FEMS Microbiol. Lett. 60:163-167, 1990), their virulence and the relative threat they may pose to human health has yet to be evaluated. In this study, the virulence potential of 33 Vibrio parahaemolyticus isolates collected from the Great Bay Estuary of New Hampshire was assessed in comparison to that of clinical strains. The environmental isolates lack thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH), which are encoded by tdh and trh, respectively. Though not hemolytic, they do possess putative virulence factors, such type III secretion system 1, and are highly cytotoxic to human gastrointestinal cells. The expression of known and putative virulence-associated traits, including hemolysin, protease, motility, biofilm formation, and cytotoxicity, by clinical reference isolates correlated with increased temperature from 28°C to 37°C. In contrast, the environmental isolates did not induce their putative virulence-associated traits in response to a temperature of 37°C. We further identified a significant correlation between hemolytic activity and growth phase among clinical strains, whereby hemolysin production decreases with increasing cell density. The introduction of a tdh::gfp promoter fusion into the environmental strains revealed that they regulate this virulence-associated gene appropriately in response to temperature, indicating that their existing regulatory mechanisms are primed to manage newly acquired virulence genes.  相似文献   

5.
Vibrio aestuarianus is frequently found in coastal areas and can infect and induce mortalities in the pacific oyster Crassostrea gigas. However, nothing is known about its distribution and seasonality in the estuarine environment, especially where oyster farming is practiced. Its occurrence was investigated in sediment and oyster haemolymph at 2 oyster farms in Brittany (France) over 2 yr during 2 periods, from June to September 2007 and from February to June 2008. Total heterotrophic bacteria (HB) were cultured on marine agar while total Vibrio spp. and V aestuarianus were selectively numerated using thiosulfate citrate bile salts sucrose agar (TCBS agar) and the species-specific hybridisation method, respectively. PCR was performed to detect V aestuarianus in sediment when it became unculturable. Both total Vibrio spp. and V aestuarianus had a seasonal trend. The highest concentrations were recovered in the warmest months. Its abundance ranged from 10(2) to 4 x 10(5) CFU ml(-1) in haemolymph and from 10(3) to 1 x 10(4) CFU g(-1) in the sediment. Temperature was the main factor influencing the concentration of Vibrio spp. and V. aestuarianus in the sediment. Thus V aestuarianus might subsist during the cold seasons in the sediment, from which it can emerge when environmental conditions became favourable.  相似文献   

6.
Aims: Pathogenic Vibrio spp., including V. cholerae and V. vulnificus, are commonly found along the estuaries of the south‐east United States; however, it is often difficult to recover these species directly from environmental samples. Pre‐enrichment assays are commonly used to improve the detection of pathogenic vibrios from environmental sources. Here, we evaluated a novel enrichment procedure using freshly collected and autoclaved natural estuarine water amended with 1% peptone (designated as estuarine peptone water, EPW) and compared it to traditional alkaline peptone water (APW) for detection by PCR of V. cholerae and V. vulnificus. Methods and Results: Of the 50 samples collected in total, V. cholerae DNA was detected in APW 10% of the time and in EPW 40% of the time. Likewise, the cholera toxin gene (ctxA) was detected in 4 vs 18% of the samples using APW and EPW, respectively. Conversely, APW showed improved recovery for V. vulnificus relative to EPW with respective detection frequencies of 46 and 20%. Results showed similar patterns across different sample types (water and plankton). Conclusions: While enrichment in traditional APW was adequate for the recovery of Vibrio vulnificius, use of sterile estuarine water amended with peptone significantly improved the detection of V. cholerae and the virulence gene ctxA from estuarine sources.  相似文献   

7.
Aims: The aim of this study was to investigate the presence of Vibrio vulnificus and potentially pathogenic strains of Vibrio parahaemolyticus in mullets collected from estuarine environment in Italy. Methods and Results: Two hundred and ninety‐five mullets were analysed by culture using the selective medium thiosulfate citrate bile salt sucrose agar, during a monitoring period of 2 years (2008–2009). Presumptive Vibrio colonies were initially identified by using biochemical tests, and strains identified as V. parahaemolyticus and V. vulnificus were subsequently examined by PCR for the presence of species‐specific and virulence genes (toxR, trh, tdh and vvh). V. parahaemolyticus was found in 55% (162/295) of fishes and V. vulnificus in 1% (3/295) with a higher presence in summer months. The trh+/tdh? strains were detected in 16% (47/295) of samples and only one strain resulted trh+/tdh+. One of the V. parahaemolyticus trh+ strains isolated belonged to the O1:KUT (K untypeable), a serotype recently associated to gastroenteritis in Italy. Conclusions: This is the first report demonstrating a high percentage of potential pathogenic V. parahaemolyticus trh+ strains in estuarine fishes of the Mediterranean area. Significance and Impact of the Study: These findings indicate the potential human health risk associated with the presence of pathogenic Vibrio spp. in wild fishes.  相似文献   

8.
Invertebrates show considerable potential as sentinel organisms for the monitoring of the health status of aquatic systems. They are generally small, abundant, relatively sessile, and may readily bioaccumulate toxins. Cascade-like stress responses can occur following acute or chronic exposures to contaminated environments and as such, the overall health status of individuals within those environments, both in terms of histopathological lesions and the presence of infecting organisms, may ultimately reflect the general health status of these sites. The current study provides baseline multi-organ histopathological data for two common crustacean species, the shore crab (Carcinus maenas) and the brown shrimp (Crangon crangon) collected from six UK estuarine sites. Changes in the metabolic condition of crustaceans from these sites (measured in terms of connective tissue storage cell status) were interpreted in relation to other health measures (including parasite load and the presence of microbial pathogens). The relative ease at which a holistic assessment of health can be made using histopathology and the suitability of these species as environmental sentinels provide support for the inclusion of crustaceans as indicators of aquatic environmental health. Studies linking disease status to burdens of industrial contamination in these environments are now required.  相似文献   

9.
AIMS: The purpose of this study was to compare a recently described medium, thiosulphate-chloride-iodide (TCI), for the isolation of estuarine vibrios with thiosulphate-citrate-bile salts-sucrose (TCBS). METHODS: A total of 492 colonies which developed on these media from estuarine water samples taken monthly over a 10-month period were examined. RESULTS: A much larger number of colonies developed on TCBS than TCI, and minimal taxonomic criteria indicated that a higher percentage (61%) of TCBS colonies could be identified as Vibrio spp. when compared with TCI (46%). SIGNIFICANCE: This study suggests that TCBS is a superior medium when compared with TCI for the isolation of Vibrio spp. from estuarine waters. Because of the public health risk presented by V. vulnificus, V. parahaemolyticus, V. cholerae and other vibrios, the selection of the most appropriate medium for their isolation is extremely important.  相似文献   

10.
Faecal contamination of estuarine and coastal waters can pose a risk to human health, particularly in areas used for shellfish production or recreation. Routine microbiological water quality testing highlights areas of faecal indicator bacteria (FIB) contamination within the water column, but fails to consider the abundance of FIB in sediments, which under certain hydrodynamic conditions can become resuspended. Sediments can enhance the survival of FIB in estuarine environments, but the influence of sediment composition on the ecology and abundance of FIB is poorly understood. To determine the relationship between sediment composition (grain size and organic matter) and the abundance of pathogen indicator bacteria (PIB), sediments were collected from four transverse transects of the Conwy estuary, UK. The abundance of culturable Escherichia coli, total coliforms, enterococci, Campylobacter, Salmonella and Vibrio spp. in sediments was determined in relation to sediment grain size, organic matter content, salinity, depth and temperature. Sediments that contained higher proportions of silt and/or clay and associated organic matter content showed significant positive correlations with the abundance of PIB. Furthermore, the abundance of each bacterial group was positively correlated with the presence of all other groups enumerated. Campylobacter spp. were not isolated from estuarine sediments. Comparisons of the number of culturable E. coli, total coliforms and Vibrio spp. in sediments and the water column revealed that their abundance was 281, 433 and 58-fold greater in sediments (colony forming units (CFU)/100g) when compared with the water column (CFU/100ml), respectively. These data provide important insights into sediment compositions that promote the abundance of PIB in estuarine environments, with important implications for the modelling and prediction of public health risk based on sediment resuspension and transport.  相似文献   

11.
12.
13.
Vibrio parahaemolyticus is a gram-negative, halophilic bacterium indigenous to marine and estuarine environments and it is capable of causing food and water-borne illness in humans. It can also cause disease in marine animals, including cultured species. Currently, culture-based techniques are used for quantification of V. parahaemolyticus in environmental samples; however, these can be misleading as they fail to detect V. parahaemolyticus in a viable but nonculturable (VBNC) state which leads to an underestimation of the population density. In this study, we used a novel fluorescence visualization technique, called recognition of individual gene fluorescence in situ hybridization (RING-FISH), which targets chromosomal DNA for enumeration. A polynucleotide probe labeled with Cyanine 3 (Cy3) was created corresponding to the ubiquitous V. parahaemolyticus gene that codes for thermolabile hemolysin (tlh). When coupled with the Kogure method to distinguish viable from dead cells, RING-FISH probes reliably enumerated total, viable V. parahaemolyticus. The probe was tested for sensitivity and specificity against a pure culture of tlh+, tdh, trhV. parahaemolyticus, pure cultures of Vibrio vulnificus, Vibrio harveyi, Vibrio alginolyticus and Vibrio fischeri, and a mixed environmental sample. This research will provide additional tools for a better understanding of the risk these environmental organisms pose to human health.  相似文献   

14.
Vibrio spp. thrive in warm water and moderate salinity, and they are associated with aquatic invertebrates, notably crustaceans and zooplankton. At least 12 Vibrio spp. are known to cause infection in humans, and Vibrio cholerae is well documented as the etiological agent of pandemic cholera. Pathogenic non-cholera Vibrio spp., e.g., Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Incidence of vibriosis is rising globally, with evidence that anthropogenic factors, primarily emissions of carbon dioxide associated with atmospheric warming and more frequent and intense heatwaves, significantly influence environmental parameters, e.g., temperature, salinity, and nutrients, all of which can enhance growth of Vibrio spp. in aquatic ecosystems. It is not possible to eliminate Vibrio spp., as they are autochthonous to the aquatic environment and many play a critical role in carbon and nitrogen cycling. Risk prediction models provide an early warning that is essential for safeguarding public health. This is especially important for regions of the world vulnerable to infrastructure instability, including lack of ‘water, sanitation, and hygiene’ (WASH), and a less resilient infrastructure that is vulnerable to natural calamity, e.g., hurricanes, floods, and earthquakes, and/or social disruption and civil unrest, arising from war, coups, political crisis, and economic recession. Incorporating environmental, social, and behavioural parameters into such models allows improved prediction, particularly of cholera epidemics. We have reported that damage to WASH infrastructure, coupled with elevated air temperatures and followed by above average rainfall, promotes exposure of a population to contaminated water and increases the risk of an outbreak of cholera. Interestingly, global predictive risk models successful for cholera have the potential, with modification, to predict diseases caused by other clinically relevant Vibrio spp. In the research reported here, the focus was on environmental parameters associated with incidence and distribution of clinically relevant Vibrio spp. and their role in disease transmission. In addition, molecular methods designed for detection and enumeration proved useful for predictive modelling and are described, namely in the context of prediction of environmental conditions favourable to Vibrio spp., hence human health risk.  相似文献   

15.
The present paper describes and discusses the seasonal cycle of primary production, standing-stock, climatological and environmental factors, and their interrelationships in a mangrove swamp of the estuarine type (25°S, South Latitude, Cananéia, Brasil). Comparisons with values of primary production for other tropical and temperate environments have been made. Further lines of work are indicated.  相似文献   

16.
Vibrios are halophilic bacteria that are ubiquitous in marine environments. Their occurrence in tropical lakes has rarely been investigated. In this study, the predominance and diversity of Vibrio spp. was investigated over a 12-month period in a coastal lagoon, Songkhla Lake, in southern Thailand. Water samples were collected at 2 stations in the estuary near Yor Island in Songkhla Lake. The predominant vibrios were detected by a culture-based method, using thiosulfate-citrate-bile salt-sucrose agar and CHROMagar Vibrio. The diversity of Vibrio spp. was evaluated using denaturant density gradient electrophoresis (DGGE). The highest numbers of total vibrios and Vibrio parahaemolyticus in both areas were observed during the summer. There was no significant correlation between the numbers of vibrios, including V. parahaemolyticus, and either the water temperature or plankton density. Variations in Vibrio species were observed with changes in salinity. Vibrio parahaemolyticus and V. cholerae non-O1/non-O139 were detected during the rainy season when the salinity dropped to nearly 0 parts per thousand. In both areas, V. alginolyticus was the most prominent species detected by the culture method, whereas Vibrio parahaemolyticus was detected by DGGE, every month. Other Vibrio spp. of potential public health concern were also detected by the culture method; they included V. vulnificus , V. fluvialis , and V. mimicus .  相似文献   

17.
While several studies on the ecology of Vibrio vulnificus in Gulf Coast environments have been reported, there is little information on the distribution of this pathogen in East Coast waters. Thus, we conducted a multiyear study on the ecology of V. vulnificus in estuarine waters of the eastern United States, employing extensive multiple regression analyses to reveal the major environmental factors controlling the presence of this pathogen, and of Vibrio spp., in these environments. Monthly field samplings were conducted between July 2000 and April 2002 at six different estuarine sites along the eastern coast of North Carolina. At each site, water samples were taken and nine physicochemical parameters were measured. V. vulnificus isolates, along with estuarine bacteria, Vibrio spp., Escherichia coli organisms, and total coliforms, were enumerated in samples from each site by using selective media. During the last 6 months of the study, sediment samples were also analyzed for the presence of vibrios, including V. vulnificus. Isolates were confirmed as V. vulnificus by using hemolysin gene PCR or colony hybridization. V. vulnificus was isolated only when water temperatures were between 15 and 27°C, and its presence correlated with water temperature and dissolved oxygen and vibrio levels. Levels of V. vulnificus in sediments were low, and no evidence for an overwintering in this environment was found. Multiple regression analysis indicated that vibrio levels were controlled primarily by temperature, turbidity, and levels of dissolved oxygen, estuarine bacteria, and coliforms. Water temperature accounted for most of the variability in the concentrations of both V. vulnificus (47%) and Vibrio spp. (48%).  相似文献   

18.
Mass mortality events of benthic invertebrates in the Mediterranean Sea are becoming an increasing concern with catastrophic effects on the coastal marine environment. Sea surface temperature anomalies leading to physiological stress, starvation and microbial infections were identified as major factors triggering animal mortality. However the highest occurrence of mortality episodes in particular geographic areas and occasionally in low temperature deep environments suggest that other factors play a role as well. We conducted a comparative analysis of bacterial communities associated with the purple gorgonian Paramuricea clavata, one of the most affected species, collected at different geographic locations and depth, showing contrasting levels of anthropogenic disturbance and health status. Using massive parallel 16SrDNA gene pyrosequencing we showed that the bacterial community associated with healthy P. clavata in pristine locations was dominated by a single genus Endozoicomonas within the order Oceanospirillales which represented ∼90% of the overall bacterial community. P. clavata samples collected in human impacted areas and during disease events had higher bacterial diversity and abundance of disease-related bacteria, such as vibrios, than samples collected in pristine locations whilst showed a reduced dominance of Endozoicomonas spp. In contrast, bacterial symbionts exhibited remarkable stability in P. clavata collected both at euphotic and mesophotic depths in pristine locations suggesting that fluctuations in environmental parameters such as temperature have limited effect in structuring the bacterial holobiont. Interestingly the coral pathogen Vibrio coralliilyticus was not found on diseased corals collected during a deep mortality episode suggesting that neither temperature anomalies nor recognized microbial pathogens are solely sufficient to explain for the events. Overall our data suggest that anthropogenic influence may play a significant role in determining the coral health status by affecting the composition of the associated microbial community. Environmental stressful events and microbial infections may thus be superimposed to compromise immunity and trigger mortality outbreaks.  相似文献   

19.
Aim:  To evaluate the reliability of culture-independent methods in comparison with culture-dependent ones for the detection of Arcobacter spp. in estuarine waters of Southern Italy.
Methods and Results:  PCR and fluorescent in situ hybridization (FISH) procedures were used to detect arcobacters directly in water samples and after enrichment cultures. The samples totally were positive by molecular methods (PCR and FISH) but only 75% were culture positive, confirming the limitation of these latter to detect Arcobacter spp. in natural samples. Culturable arcobacters were retrieved in all times except in July, and isolated species were ascribed only to Arcobacter cryaerophilus .
Conclusions:  Culturable and nonculturable forms of Arcobacter in the estuarine environment were present. PCR assays were more sensitive than traditional culture in detecting Arcobacter butzleri and A. cryaerophilus . FISH comparatively to PCR technique may provide information about cell morphology and viability of single cells.
Significance and Impact of the Study:  Our investigation indicates the existence of an environmental reservoir of potential pathogenic arcobacters in an estuarine Italian area, which may survive under a viable but not culturable state.  相似文献   

20.
Assessing how natural environmental drivers affect biodiversity underpins our understanding of the relationships between complex biotic and ecological factors in natural ecosystems. Of all ecosystems, anthropogenically important estuaries represent a ‘melting pot'' of environmental stressors, typified by extreme salinity variations and associated biological complexity. Although existing models attempt to predict macroorganismal diversity over estuarine salinity gradients, attempts to model microbial biodiversity are limited for eukaryotes. Although diatoms commonly feature as bioindicator species, additional microbial eukaryotes represent a huge resource for assessing ecosystem health. Of these, meiofaunal communities may represent the optimal compromise between functional diversity that can be assessed using morphology and phenotype–environment interactions as compared with smaller life fractions. Here, using 454 Roche sequencing of the 18S nSSU barcode we investigate which of the local natural drivers are most strongly associated with microbial metazoan and sampled protist diversity across the full salinity gradient of the estuarine ecosystem. In order to investigate potential variation at the ecosystem scale, we compare two geographically proximate estuaries (Thames and Mersey, UK) with contrasting histories of anthropogenic stress. The data show that although community turnover is likely to be predictable, taxa are likely to respond to different environmental drivers and, in particular, hydrodynamics, salinity range and granulometry, according to varied life-history characteristics. At the ecosystem level, communities exhibited patterns of estuary-specific similarity within different salinity range habitats, highlighting the environmental sequencing biomonitoring potential of meiofauna, dispersal effects or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号