首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Changes in the concentration of glycogen in various areas of the brain of epileptic rats were investigated. Epilepsy was induced by implantation of cobalt discs on the right sensory motor cortex and epileptic animals have shown clear tonic-clonic jerks of the contra-lateral fore and hind limbs. It was found that glycogen concentration was increased by 29% in the epileptogenic sensory motor cortex as compared to the same area in the contra-lateral hemisphere. Glycogen concentration in other areas within the same hemisphere remained unaffected. Implantation of nickel or copper on the same sensory motor cortex, which did not cause the typical limb jerks of epilepsy, had no effect on glycogen concentration in the same treated areas. Assay of relevant metabolites in the epileptic cortex showed an increase in the concentration of pyruvate and glucose-6-phosphate, by 218% and 112% respectively. The results suggest that the increased glycogen concentration in epileptogenic focus results from increased uptake of glucose due to neuronal hyperexcitability.  相似文献   

2.

Purpose

Identification of critical areas in presurgical evaluations of patients with temporal lobe epilepsy is the most important step prior to resection. According to the “epileptic focus model”, localization of seizure onset zones is the main task to be accomplished. Nevertheless, a significant minority of epileptic patients continue to experience seizures after surgery (even when the focus is correctly located), an observation that is difficult to explain under this approach. However, if attention is shifted from a specific cortical location toward the network properties themselves, then the epileptic network model does allow us to explain unsuccessful surgical outcomes.

Methods

The intraoperative electrocorticography records of 20 patients with temporal lobe epilepsy were analyzed in search of interictal synchronization clusters. Synchronization was analyzed, and the stability of highly synchronized areas was quantified. Surrogate data were constructed and used to statistically validate the results. Our results show the existence of highly localized and stable synchronization areas in both the lateral and the mesial areas of the temporal lobe ipsilateral to the clinical seizures. Synchronization areas seem to play a central role in the capacity of the epileptic network to generate clinical seizures. Resection of stable synchronization areas is associated with elimination of seizures; nonresection of synchronization clusters is associated with the persistence of seizures after surgery.

Discussion

We suggest that synchronization clusters and their stability play a central role in the epileptic network, favoring seizure onset and propagation. We further speculate that the stability distribution of these synchronization areas would differentiate normal from pathologic cases.  相似文献   

3.
Neuroactive Amino Acids in Focally Epileptic Human Brain: A Review   总被引:3,自引:0,他引:3  
Studies of neuroactive amino acids and their regulatory enzymes in surgically excised focally epileptic human brain are reviewed. Concentrations of glutamate, aspartate and glycine are significantly increased in epileptogenic cerebral cortex. The activities of the enzymes, glutamate dehydrogenase and aspartate aminotransferase, involved in glutamate and aspartate metabolism are also increased. Polyamine synthesis is enhanced in epileptogenic cortex and may contribute to the activation of N-methyl-D-aspartate (NMDA) receptors. Nuclear magnetic resonance spectroscopy (NMRS) reveals that patients with poorly controlled complex partial seizures have a significant diminution in occipital lobe gamma aminobutyric acid (GABA) concentration. The activity of the enzyme GABA-aminotransaminase (GABA-T) which catalyzes GABA degredation is not altered in epileptogenic cortex. NMRS studies show that vigabatrin, a GABA-T inhibitor and effective antiepileptic, significantly increases brain GABA. Glutamate decarboxylase (GAD), responsible for GABA synthesis, is diminished in interneurons in discrete regions of epileptogenic cortex and hippocampus. In vivo microdialysis performed in epilepsy surgery patients provides measurements of extracellular amino acid levels during spontaneous seizures. Glutamate concentrations are higher in epileptic hippocampi and increase before seizure onset reaching potentially excitotoxic levels. Frontal or temporal cortical epileptogenic foci also release aspartate, glutamate and serine particularly during intense seizures or status epilepticus. GABA in contrast, exhibits a delayed and feeble rise in the epileptic hippocampus possibly due to a reduction in the number and/or efficiency of GABA transporters.  相似文献   

4.
The origin of generalized absence epilepsy is still not known. In the last century, four theories have dominated the debate about the origin of the bilateral synchronous generalized spike-wave discharges associated with absence seizures: the "centrencephalic" theory [Penfield and Jasper], the "cortical" [Bancaud, Niedermeyer, Luders], the "cortico-reticular" theory [Gloor, Kostop[oulos, Avoli] and the "thalamic clock" theory [Buzsaki]. There is now some evidence that absence epilepsy, as studied in the WAG/Rij model, is a corticothalamic type of epilepsy. A new hypothesis is proposed which suggests that a cortical focus in the somatosensory cortex is driving the widespread corticothalamic networks during spontaneous absence seizures. This modern theory was given the name "hot spot' theory" [Meeren et al., 2002]. According to the present view three brain structures are critically involved and their integrity seems a minimal and sufficient condition for the occurrence of spike-wave discharges. Firstly, the reticular thalamic nucleus is involved and most likely its rostral pole. Secondly, the thalamocortical relay cells in the ventrobasal complex play a role and, thirdly and most importantly, the cerebral cortex with its epileptic zone. The zone in which the epileptic focus seems to be localised is located on the somato-sensory cortex, and more precisely in the area on which the peri-oral region including the upper lip, projects.  相似文献   

5.
An injection of cobalt chloride solution into the unilateral sensorimotor cortex of rats induced electrographic epileptic activity, which was followed by a peripheral motor disturbance. Brain slices were prepared from the cortical region including the injection site and from the other cortical regions of rats between 8 and 50 days after the injection. In the cortical slices, we examined cyclic AMP accumulations elicited by adenosine and its stable analogue 2-chloroadenosine. Adenosine and 2-chloroadenosine at their maximal dose increased cyclic AMP accumulation six- to 10-fold and 10–15-fold, respectively, and the elicitation was markedly inhibited by the adenosine antagonist 8-phenyltheophylline. The cyclic AMP accumulation was increased in the primary epileptic region of the cortex adjacent to the injection site of cobalt chloride solution, whereas it was unchanged in the other cortical regions. The increase in cyclic AMP accumulation was observed regardless of the presence or absence of the adenosine uptake inhibitor dipyridamole, the phosphodiesterase inhibitor DL-4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone, and adenosine deaminase. Such an increased accumulation of cyclic AMP in the primary epileptic cortex was detected as early as 8 days after the injection. The cyclic AMP accumulation continued to increase and reached a peak level 17–19 days after the injection, and it returned to the control levels after 40–50 days, in correspondence with the electrographic and behavioral findings. It is concluded that alterations in adenosine receptormediated generation of cyclic AMP in the primary epileptic cortex are closely associated with the central process of cobalt-induced epilepsy. In general, the adenosine-sensitive cyclic AMP-generating systems may serve as a common mechanism in experimental models of epilepsy.  相似文献   

6.
Application of penicillin solution to the motor cortex in rats evoked the appearance of interictal discharges and epileptic seizures. After administration of diazepam in a dose of 2 mg/kg, Na,K-ATPase activity in the unpurified synaptosomes fraction of the cortex in the zone of the focus was increased by practically 100% compared with the level of activity of the enzyme in the focus without diazepam. Interictal discharges and epileptic seizures underwent different changes following intramuscular injection of diazepam. The frequency and variability of amplitude of the interictal discharges increased after administration of diazepam, whereas epileptic seizures were depressed. This effect was potentiated with an increase in the dose of diazepam. It is suggested that the opposite action of diazepam on epileptic seizures and interictal discharges may be evidence that the mechanisms lying at the basis of the development of these phenomena are different.Institute of General Pathology and Pathological Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 12, No. 4, pp. 349–357, July–August, 1980.  相似文献   

7.
The study provides detailed biochemical correlates to the common histopathological diagnoses in epilepsy. A dot immunobinding procedure was used for quantification of NSE, GFA, S-100, NCAM, NF 68 and NF 200. The material consisted of samples from 48 patients either selected for surgical treatment of partial epilepsy or for disorders not related to epilepsy. The histopthological diagnosis of the epileptic cases was: MCD (mild cortical dysplasia, microdysgenesis), gliosis, astrocytoma, ganglioglioma, oligodendroglioma and single cases. The concentration in non-epileptic white matter, in per cent of that in grey matter was: NSE, 85; GFA, 175; S-100, 117; NCAM, 43; NF 68,227 and NF 200, 173. The concentration of NSE as well as of GFA was close to normal in the specimens of the MCD and gliosis groups and of one subgroup of the astrocytomas. There was a striking inverse relationship of the GFA vs the NSE concentrations in the whole material. The concentrations of S-100 showed no such inverse relationship to NSE levels. In all the epileptic groups, total NCAM was lower than 50% of that of the non-epileptic group. The mean NF 68 and NF 200 concentration in the gliosis and astrocytoma groups was 75% of the of the non-epileptic group while the corresponding value for the MCD group was 50%. There was a positive correlation of immunochemically determined GFA and the histopathological gliosis score in the samples of epileptogenic cortex. There was no correlation between the concentration of GFA in the samples and the duration of epilepsy. The concentration of neuronal markers was relatively unaffected in the cortex of most patients with epilepsy related to MCD, gliosis and even to astrocytoma infiltration, even after years of seizures.Special issue dedicated to Dr. Claude Baxter.  相似文献   

8.

Abstact

Background

Gamma amino butyric acid (GABA), the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tones that counter balances neuronal excitation. When this balance is perturbed, seizures may ensue.

Methods

In the present study, alterations of the general GABA, GABAA and GABAB receptors in the cerebral cortex of the epileptic rat and the therapeutic application of Bacopa monnieri were investigated.

Results

Scatchard analysis of [3H]GABA, [3H]bicuculline and [3H]baclofen in the cerebral cortex of the epileptic rat showed significant decrease in Bmax (P < 0.001) compared to control. Real Time PCR amplification of GABA receptor subunits such as GABAAά1, GABA, GABA, GABAB and GAD where down regulated (P < 0.001) in epileptic rats. GABAAά5 subunit and Cyclic AMP responsible element binding protein were up regulated. Confocal imaging study confirmed the decreased GABA receptors in epileptic rats. Epileptic rats have deficit in radial arm and Y maze performance.

Conclusions

Bacopa monnieri and Bacoside-A treatment reverses epilepsy associated changes to near control suggesting that decreased GABA receptors in the cerebral cortex have an important role in epileptic occurrence; Bacopa monnieri and Bacoside-A have therapeutic application in epilepsy management.  相似文献   

9.
Several studies have demonstrated high polyamine levels in brain diseases such as epilepsy. Epilepsy is the fourth most common neurological disorder and affects people of all ages. Excitotoxic stress has been associated with epilepsy and it is considered one of the main causes of neuronal degeneration and death. The transgenic mouse line Dach-SMOX, with CD1 background, specifically overexpressing spermine oxidase in brain cortex, has been proven to be highly susceptible to epileptic seizures and excitotoxic stress induced by kainic acid. In this study, we analysed the effect of spermine oxidase over-expression in a different epileptic model, pentylenetetrazole. Behavioural evaluations of transgenic mice compared to controls showed a higher susceptibility towards pentylentetrazole. High-performance liquid chromatography analysis of transgenic brain from treated mice revealed altered polyamine content. Immunoistochemical analysis indicated a rise of 8-oxo-7,8-dihydro-2′-deoxyguanosine, demonstrating an increase in oxidative damage, and an augmentation of system xc− as a defence mechanism. This cascade of events can be initially linked to an increase in protein kinase C alpha, as shown by Western blot. This research points out the role of spermine oxidase, as a hydrogen peroxide producer, in the oxidative stress during epilepsy. Moreover, Dach-SMOX susceptibility demonstrated by two different epileptic models strongly indicates this transgenic mouse line as a potential animal model to study epilepsy.  相似文献   

10.
Abstract— This study was carried out to ascertain what biochemical changes might be present in cobalt-induced epilepsy in the rat. Sodium, potassium, calcium, magnesium, Na-K ATPase activity, water content, protein content and the ability of the tissue to utilize oxygen were measured in (1) the area of the cerebral cortex in which the cobalt was implanted; (2) in an area adjacent to but not including the area of the lesion; and (3) in the homotopic area of the contralateral cerebral cortex. The greatest changes were observed in the area of the lesion itself, with marked increases in calcium, magnesium and sodium contents and decreases in potassium content, Na-K ATPase activity, protein content and the ability of the tissue to utilize oxygen. The only significant findings in the area adjacent to the lesion and in the contralateral cortex were a modest elevation of sodium and a modest decrease in potassium at different time periods after implantation of the cobalt. We feel that the changes observed at the site of cobalt implantation may reflect tissue destruction which is unrelated to the epileptic process.  相似文献   

11.
In 53 children aged 3–14 years with temporal epilepsy, coherent analysis of the EEG was performed. Significant interhemispheric differences in coherence dependent on clinical manifestations of the disease were detected. In patients with epileptic seizures, a decrease in coherence on the side of the epileptic focus was recorded, which indicates destruction of the hemisphere. During clinical remission, the coherence on the side of the focus increased to values higher than in the contralateral, “healthy” hemisphere. It may be assumed that an increase in coherence against the background of clinical remission reflects the functioning of an antiepileptic system aimed at inhibiting the spread of the epileptic activity.  相似文献   

12.
Kainic acid (KA) induced epileptic seizures in mice is a commonly used experimental model of epilepsy. Previous studies have suggested the roles of various neurotransmitters and oxidative stress in KA-induced seizures. An important role of hypothyroidism has also been suggested in epilepsy. Thiamazole (TZ) is an anti-hyperthyroid drug with antioxidant property. This study reports the effect of TZ on KA-induced epileptic seizures in mice, produced by intraperitoneal (IP) injection of KA (18 mg/kg). Prior to KA injection, the animals were treated with TZ (12.5, 25 and 50 mg/kg IP). Our results showed that in KA alone group, about half of the animals developed seizures. Pre-treatment of mice with TZ significantly increased the frequency of seizures in dose-dependent manner. Administration of TZ significantly reduced the latency time and aggravated the severity of seizures. TZ also increased the mortality in KA-treated mice. Striatal dopamine and serotonin levels were markedly increased in KA alone treated mice, which were not significantly affected by TZ treatment. Among the indices of oxidative stress, we observed a significant reduction in cerebral vitamin E whereas the levels of cerebral malondialdehyde and conjugated dienes were significantly increased in animals with high severity of seizures. In conclusion, TZ potentiated the frequency and severity of experimental seizure in mice. There is a possibility of altered metabolism of KA in presence of TZ that might have potentiated the toxicity of KA. These findings suggest a caution while administering anti-hyperthyroid drugs in epileptic seizures.  相似文献   

13.
Positron emission tomography (PET) is a powerful clinical and research tool that, in the past two decades, has provided a great amount of novel data on the pathophysiology and functional consequences of human epilepsy. PET studies revealed cortical and subcortical brain dysfunction of a widespread brain circuitry, providing an unprecedented insight in the complex functional abnormalities of the epileptic brain. Correlation of metabolic and neuroreceptor PET abnormalities with electroclinical variables helped identify parts of this circuitry, some of which are directly related to primary epileptogenesis, while others, adjacent to or remote from the primary epileptic focus, may be secondary to longstanding epilepsy. PET studies have also provided detailed data on the functional anatomy of cognitive and behavioral abnormalities associated with epilepsy. PET, along with other neuroimaging modalities, can measure longitudinal changes in brain function attributed to chronic seizures as well as therapeutic interventions. This review demonstrates how development of more specific PET tracers and application of multimodality imaging by combining structural and functional neuroimaging with electrophysiological data can further improve our understanding of human partial epilepsy, and helps more effective application of PET in presurgical evaluation of patients with intractable seizures.  相似文献   

14.
Epilepsy, a prevalent neurological disease characterized by spontaneous recurrent seizures (SRS), is often refractory to treatment with anti-seizure drugs (ASDs), so that more effective ASDs are urgently needed. For this purpose, it would be important to develop, validate, and implement new animal models of pharmacoresistant epilepsy into drug discovery. Several chronic animal models with difficult-to-treat SRS do exist; however, most of these models are not suited for drug screening, because drug testing on SRS necessitates laborious video-EEG seizure monitoring. More recently, it was proposed that, instead of monitoring SRS, chemical or electrical induction of acute seizures in epileptic rodents may be used as a surrogate for testing the efficacy of novel ASDs against refractory SRS. Indeed, several ASDs were shown to lose their efficacy on acute seizures, when such seizures were induced by pentylenetetrazole (PTZ) in epileptic rather than nonepileptic rats, whereas this was not observed when using the maximal electroshock seizure test. Subsequent studies confirmed the loss of anti-seizure efficacy of valproate against PTZ-induced seizures in epileptic mice, but several other ASDs were more potent against PTZ in epileptic than nonepileptic mice. This was also observed when using the 6-Hz model of partial seizures in epileptic mice, in which the potency of levetiracetam, in particular, was markedly increased compared to nonepileptic animals. Overall, these observations suggest that performing acute seizure tests in epileptic rodents provides valuable information on the pharmacological profile of ASDs, in particular those with mechanisms inherent to disease-induced brain alterations. However, it appears that further work is needed to define optimal approaches for acute seizure induction and generation of epileptic/drug refractory animals that would permit reliable screening of new ASDs with improved potential to provide seizure control in patients with pharmacoresistant epilepsy.  相似文献   

15.
It was shown in the experiments on rats that intracerebroventricular administration of kainic acid (0.01, 0.05 microgram) after brain trauma, resulted in the occurrence of behavioral and electrographic convulsive disturbances; maximal expression of epileptic activity was obtained in entorhinal cortex and ventral hippocampus. Kainic acid induced epileptic reactions in nontraumatized rats only if injected in dose 0.1 microgram. Brain trauma did not lead to changes in seizures intensity induced by systemic picrotoxin administration. It is concluded that the formation of generator of pathologically enhanced excitation in limbic structures via increase of excitor glutamatergic neurotransmission is the important mechanism of traumatic epilepsy.  相似文献   

16.
In the rat pilocarpine model, 1 h of status epilepticus caused significant inhibition of Mg(2+)/Ca(2+) ATPase-mediated Ca(2+) uptake in cortex endoplasmic reticulum (microsomes) isolated immediately after the status episode. The rat pilocarpine model is also an established model of acquired epilepsy. Several weeks after the initial status epilepticus episode, the rats develop spontaneous recurrent seizures, or epilepsy. To determine whether inhibition of Ca(2+) uptake persists after the establishment of epilepsy, Ca(2+) uptake was studied in cortical microsomes isolated from rats displaying spontaneous recurrent seizures for 1 year. The initial rate and total Ca(2+) uptake in microsomes from epileptic animals remained significantly inhibited 1 year after the expression of epilepsy compared to age-matched controls. The inhibition of Ca(2+) uptake was not due to individual seizures nor an artifact of increased Ca(2+) release from epileptic microsomes. In addition, the decreased Ca(2+) uptake was not due to either selective isolation of damaged epileptic microsomes from the homogenate or decreased Mg(2+)/Ca(2+) ATPase protein in the epileptic microsomes. The data demonstrate that inhibition of microsomal Mg(2+)/Ca(2+) ATPase-mediated Ca(2+) uptake in the pilocarpine model may underlie some of the long-term plasticity changes associated with epileptogenesis.  相似文献   

17.
The hypothesis that the seizure susceptibility of chronically denervated cortex is due to interruption of recurrent inhibitory pathways was tested by examining the release of 3H-labeled gamma-aminobutyric acid ([3H]GABA) from chronic slabs and normal cortex of cats. Seizure activity was maintained throughout the test periods in both normal and chronically isolated cortex. When methacholine was used to evoke seizure activity, [3H]GABA release was depressed in both normal and epileptic cortex, suggesting that the mechanism of seizure genesis by cholinomimetics involves suppression of inhibitory neuron activity. Pentylenetetrazol-induced seizures evoked a small, equal increase in [3H]GABA efflux from epileptic and normal cortex. Continuous electrical stimulation evoked a large, and again equal increase in [3H]GABA release. Preseizure efflux of [3H]GABA was the same from chronic slabs and normal cortex in all experiments. Since the interruption of recurrent inhibitory pathways by chronic denervation would result in a decreased resting and seizure-evoked release of [3H]GABA, results obtained do not support the above-mentioned hypothesis.  相似文献   

18.
ObjectiveEpileptic seizures are defined as manifest of excessive and hyper-synchronous activity of neurons in the cerebral cortex that cause frequent malfunction of the human central nervous system. Therefore, finding precursors and predictors of epileptic seizure is of utmost clinical relevance to reduce the epileptic seizure induced nervous system malfunction consequences. Researchers for this purpose may even guide us to a deep understanding of the seizure generating mechanisms. The goal of this paper is to predict epileptic seizures in epileptic rats.MethodsSeizures were induced in rats using pentylenetetrazole (PTZ) model. EEG signals in interictal, preictal, ictal and postictal periods were then recorded and analyzed to predict epileptic seizures. Epileptic seizures were predicted by calculating an index in consecutive windows of EEG signal and comparing the index with a threshold. In this work, a newly proposed dissimilarity index called Bhattacharyya Based Dissimilarity Index (BBDI), dynamical similarity index and fuzzy similarity index were investigated.ResultsBBDI, dynamical similarity index and fuzzy similarity index were examined on case and control groups and compared to each other. The results show that BBDI outperforms dynamical and fuzzy similarity indices. In order to improve the results, EEG sub-bands were also analyzed. The best result achieved when the proposed dissimilarity index was applied on Delta sub-band that predicts epileptic seizures in all rats with a mean of 299.5 s.ConclusionThe dissimilarity of neural network activity between reference window and present window of EEG signal has a significant increase prior to an epileptic seizure and the proposed dissimilarity index (BBDI) can reveal this variation to predict epileptic seizures. In addition, analyzing EEG sub-bands results in more accurate information about constituent neuronal activities underlying the EEG since certain changes in EEG signal may be amplified when each sub-band is analyzed separately.SignificanceThis paper presents application of a dissimilarity index (BBDI) on EEG signals and its sub-bands to predict PTZ-induced epileptic seizures in rats. Based on the results of this work, BBDI will predict epileptic seizures more accurately and more reliably compared to current indices that increases epileptic patient comfort and improves patient outcomes.  相似文献   

19.
We retrospectively evaluated a set of 205 children with autism and compared it to the partial sub-set of 71 (34.6%) children with a history of regression. From 71 children with regression, signs of epileptic processes were present in 43 (60.6%), 28 (65.12%) suffered clinical epileptic seizures, and 15 (34.9%) just had an epileptiform abnormality on the EEG. In our analysis, autistic regression is substantially more associated with epileptic process symptoms than in children with autism and no history of regression. More than 90% of children with a history of regression also show IQ < 70 and reduced functionality. Functionality and IQ further worsens with the occurrence of epileptic seizures (98% of children with regression and epilepsy have IQ < 70). We proved that low IQ and reduced functionality significantly correlate rather with epileptic seizures than just sub-clinical epileptiform abnormality on EEG. Clinical epileptic seizures associated with regression significantly influence the age of regression and its clinical type. The age of regression is higher compared to children with regression without epileptic seizures (in median: 35 months of age in patients with seizures while only 24 months in other patients). Patients with seizures revealed regression after 24th months of age in 68% of cases, while patients without seizures only in 27%. However, coincidence with epilepsy also increased the occurrence of regression before the 18th month of age (23% of patients), while only 4% of patients without epilepsy revealed regression before the 18th month. Epileptic seizures are significantly associated especially with behaviour regression rather than speech regression or regression in both behaviour and speech. Also epileptic seizures diagnosed before correct diagnosis of autism were significantly associated with delayed regression (both behavioural and speech regression).  相似文献   

20.
The genetics of epilepsy in the Belgian tervuren and sheepdog   总被引:1,自引:0,他引:1  
Idiopathic epilepsy is characterized by recurrent seizure activity without an identifiable underlying anatomic defect. Dogs experiencing repeated bouts of severe seizures are given therapeutic medication to control their frequency and severity. Idiopathic epilepsy has been reported in many dog breeds and was identified as the predominant health issue facing dog breeds in a recent survey by the American Kennel Club. A growing body of evidence supports a hereditary basis for idiopathic epilepsy, with a variety of genetic inheritance models proposed. In the Belgian tervuren and sheepdog, epilepsy is highly heritable with a polygenic mode of inheritance, though apparently influenced by a single autosomal recessive locus of large effect. In an effort to establish molecular linkage between the epileptic phenotype and the locus of large effect, we have screened genomic DNA from families of affected tervuren and sheepdogs with 100 widely dispersed, polymorphic canine microsatellite markers (0.595 average PIC value). Although not significant (LOD scores <3.0), three genomic regions have shown nominal linkage between markers and the epileptic phenotype. Additional related dogs are being screened with these and additional markers to increase the power to detect the presence of a linked locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号