首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Primary cultures of vascular smooth muscle cells, isolated from rat aorta, were grown under normoxic (20% O2) and mildly hypoxic (5 % O2) conditions. Cells from both conditions were compared for growth characteristics, morphology, protein synthesis, lysosomal enzyme activity, and oxygen consumption. In no case was a consistently significant difference observed. These observations indicate that these cells can adapt or are adapted to mildly hypoxic conditions. Moreover, these results may indicate that the culture of vascular smooth muscle cells in mild hypoxia represents a closer approximation of in vivo growth conditions for these cells.Supported by HL19242  相似文献   

2.
Modulation of epithelial cell proliferation by the dissolved oxygen concentration (PO2) of the growth medium was assessed with primary human foreskin epithelium and a continuous monkey kidney epithelial cell line (LLC-MK2). Direct measurement of the growth medium PO2 provides the first quantitative evaluation of epithelial cell proliferation as a function of PO2 provides the first quantitative evaluation of epithelial cell proliferation as a function of PO2. Sustained proliferation of LLC-MK2 cells occurs in serum-free medium equilibrated with a gas phase containing 18% or 30% O2 v/v. Mid-logarithmic phase cultures rapidly consume dissolved oxygen; this results in a 60–70 mm Hg decline in PO2 and leads to a stable growth medium PO2 between 70 and 100 mm Hg, well above anoxic values. In contrast, if culture medium is equilibrated with a gas phase containing 0% or 1% O2 v/v to yield a growth medium PO2 ~ 20–40 mm Hg, proliferation of LLC-MK2 and primary foreskin epithelial cells is retarded, and LLC-MK2 cells use little dissolved oxygen. Gentle, continuous rocking to prevent diffusion gradient formation enhances proliferation slightly at the higher PO2, but neither periodic fluid renewals nor continued rocking stimulates cells retarded by a lowered oxygen concentration to resume proliferation. The data collectively demonstrate that epithelial cell proliferation requires a PO2 > 40 mm Hg, and threshold requirements are probably closer to 70 mm Hg. Glycolysis continues at a PO2 insufficient for proliferation, but more lactic acid accumulates in actively proliferating cultures than in cultures equilibrated with 0% oxygen. We conclude that epithelial cells in vitro both consume more oxygen and require a higher PO2 for continued proliferation, and that the oxygen requirement for epithelial cell proliferation exceeds that of a comparable population of fibroblasts for which low oxygen may enhance survival and proliferation.  相似文献   

3.
A population of neonatal mouse keratinocytes (epidermal basal cells) was obtained by gentle, short-term trypsin separation of the epidermal and dermal skin compartments and discontinuous Ficoll gradient purification of the resulting epidermal cells. Over 4--6 wk of culture growth at 32--33 degrees C, the primary cultures formed a complete monolayer that exhibited entire culture stratification and upper cell layer shedding. Transmission and scanning electron microscopy demonstrated that the keratinocyte cultures progressed from one to two cell layers through a series of stratification and specialization phenomena to a six to eight cell layer culture containing structures characteristic of epidermal cells and resembling in vivo epidermal development. The temporal development of primary epidermal cell culture specialization was confirmed by use of two histological techniques which differentially stain the specializing upper cell layers of neonatal mouse skin. No detectable dermal fibroblast co-cultivation was demonstrated by use of the leucine aminopeptidase histochemical technique and routine electron microscope surveillance of the cultures. Incorporation of [3H]thymidine ([3H]Tdr) was greater than 85% into DNA and was inhibited by both 20 micron cytosine arabinoside (Ara-C) and low temperature. Autoradiography and 90% inhibition of [3H]Tdr incorporation by 2 mM hydroxyurea indicated that keratinocyte culture DNA synthesis was scheduled (not a repair phenomenon). The primary keratinocytes showed an oscillating pattern of [3H]Tdr incorporation into DNA over the initial 23--25 days of growth. Autoradiography demonstrated that the cultures contained 10--30% proliferative stem cells from days 2-25 of culture. The reproducibility of both the proliferation and specialization patterns of the described primary epidermal cell culture system indicates that these cultures are a useful tool for investigations of functioning epidermal cell homeostatic control mechanisms.  相似文献   

4.
Modulation of fibroblast proliferation by oxygen free radicals.   总被引:25,自引:0,他引:25       下载免费PDF全文
The major unexplained phenomenon in fibrotic conditions is an increase in replicating fibroblasts. In this report we present evidence that oxygen free radicals can both stimulate and inhibit proliferation of cultured human fibroblasts, and that fibroblasts themselves release superoxide (O2.-) free radicals. Fibroblasts released O2.- in concentrations which stimulated proliferation, a finding confirmed by a dose-dependent inhibition of proliferation by free radical scavengers. Oxygen free radicals released by a host of agents may thus provide a very fast, specific and sensitive trigger for fibroblast proliferation. Prolonged stimulation may result in fibrosis, and agents which inhibit free radical release may have a role in the prevention of fibrosis.  相似文献   

5.
The growth factors, cytokines, adhesive molecules and extracellular matrix components play the leading role in the processes of intercellular interactions. Literary data on structure and mechanisms of functioning of the growth factors and their receptors are summarised in the present review. Some aspects of regulatory functions of such growth factors as EGF, TGFalpha, TGFbeta, FGF, KGF, AR, and HGF in these processes in epidermis keratinocytes both in vivo and in vitro as example were also considered.  相似文献   

6.
We have studied the effects of interleukin-6 (IL-6) on human epidermal keratinocytes by using serum-free culture conditions that allow the serial transfer, differentiation, and formation of well-organized multilayered epithelia. IL-6 at 2.5 ng/ml or higher concentrations promoted keratinocyte proliferation, with an ED50 of about 15 ng/ml and a maximum effect at 50 ng/ml. IL-6 was 10-fold less potent than epidermal growth factor (EGF) or transforming growth factor-α (TGF-α) and supported keratinocyte growth for up to eight cumulative cell generations. IL-6-treated keratinocytes formed highly stratified colonies with a narrower proliferative/migratory rim than those keratinocytes stimulated with EGF or TGF-α; confluent epithelial sheets treated with IL-6 also underwent an increase in the number of cell layers. We also examined the effect of IL-6 on the keratin cytoskeleton. Immunostaining with anti-K16 monoclonal antibodies showed that the keratin network was aggregated and reorganized around cell nucleus and that this was not attributable to changes in keratin levels. This is the first report concerning the induction of the reorganization of keratin intermediate filaments by IL-6 in human epidermal keratinocytes.This work was supported in part by CONACyT grant nos. 1314P-N9507 and G28272-N.  相似文献   

7.
1,25-Dihydroxyvitamin D3 [1,25(OH)2D3] has been proposed as a physiologic regulator of keratinocyte growth and differentiation. Utilizing a proliferative serum-free culture system, we have found that at physiologic (picomolar) concentrations this hormone stimulated proliferation of primary mouse epidermal keratinocytes; at higher (nanomolar to micromolar) doses, growth was inhibited by 1,25(OH)2D3. We investigated the nature of the signal transduction mechanism underlying the response to 1,25(OH)2D3 and observed little or no effect of either low or high concentrations of the hormone on cytosolic calcium levels or Fos expression. Furthermore, the protein kinase C inhibitor, Ro 31-7549, had very little effect on the growth inhibition induced by a high dose (1 μM) of 1,25(OH)2D3. This lack of rapid signal transduction events was consistent with the inability of a short (4-hour) exposure to 1,25(OH)2D3 to initiate a complete growth-inhibitory response as measured using [3H]thymidine incorporation. Our results indicate that physiologic concentrations of 1,25(OH)2D3 are required for optimal keratinocyte growth. Furthermore, we found no evidence of rapid effects of 1,25(OH)2D3 and suggest that in mouse epidermal keratinocytes, the response to this hormone is mediated by a slow transduction pathway, such as that activated by the intracellular 1,25(OH)2D3 receptor (VDR). © 1995 Wiley-Liss, Inc.  相似文献   

8.
Na(+) cotransporters have a substantial role in neuronal damage during brain hypoxia. We proposed these cotransporters have beneficial roles in oxygen-sensing mechanisms that increase periarteriolar nitric oxide (NO) concentration ([NO]) during mild to moderate oxygen deprivation. Our prior studies have shown that cerebral neuronal NO synthase (nNOS) is essential for [NO] responses to decreased oxygen tension and that endothelial NO synthase (eNOS) is of little consequence. In this study, we explored the mechanisms of three specific cotransporters known to play a role in the hypoxic state: KB-R7943 for blockade of the Na(+)/Ca(2+) exchanger, bumetanide for the Na(+)-K(+)-2Cl(-) cotransporter, and amiloride for Na(+)/H(+) cotransporters. In vivo measurements of arteriolar diameter and [NO] at normal and locally reduced oxygen tension in the rat parietal cortex provided the functional analysis. As previously found for intestinal arterioles, bumetanide-sensitive cotransporters are primarily responsible for sensing reduced oxygen because the increased [NO] and dilation were suppressed. The Na(+)/Ca(2+) exchanger facilitated increased NO formation because blockade also suppressed [NO] and dilatory responses to decreased oxygen. Amiloride-sensitive Na(+)/H(+) cotransporters did not significantly contribute to the microvascular regulation. To confirm that nNOS rather than eNOS was primarily responsible for NO generation, eNOS was suppressed with the fusion protein cavtratin for the caveolae domain of eNOS. Although the resting [NO] decreased and arterioles constricted as eNOS was suppressed, most of the increased NO and dilatory response to oxygen were preserved because nNOS was functional. Therefore, nNOS activation secondary to Na(+)-K(+)-2Cl(-) cotransporter and Na(+)/Ca(2+) exchanger functions are key to cerebral vascular oxygen responses.  相似文献   

9.
Neospora caninum, like Toxoplasma gondii, undergoes stage conversion in chronically infected animals, and forms tissue cysts which contain the slowly proliferating bradyzoite stage. These tissue cysts are delineated by a cyst wall, protect the parasite from physiological and immunological reactions on part of the host, and bradyzoites remain viable within an infected host for many years. However, unlike T. gondii, N. caninum bradyzoites have been difficult to obtain using in vitro culture techniques, and current protocols, based on those developed for T. gondii, have been shown to be not very efficient in promoting tachyzoite-to-bradyzoite stage conversion. We report here an alternative in vitro culture method to obtain stage conversion of N. caninum from the proliferative to the cystic stage by using the Nc-Liverpool isolate, murine epidermal keratinocytes as host cells, and continuous treatment of infected cultures with 70 microM sodium nitroprusside for up to 8 days. This treatment significantly reduced parasite proliferation as assessed by Neospora-specific quantitative real-time PCR. The expression of bradyzoite markers was analysed by immunofluorescence following 4 and 8 days of in vitro culture using antibodies directed against bradyzoite antigen 1, the mAbCC2, and the lectin Dolichos biflorus agglutinin. Expression of the tachyzoite-specific immunodominant antigen NcSAG1 and the tachyzoite antigen NcMIC1 was also assessed. Transmission electron microscopy revealed that the majority of parasitophorous vacuoles were in the process of forming a distinct cyst wall through accumulation of granular material at the periphery of the vacuole, and parasites exhibited the typical features of bradyzoites. These findings demonstrate the usefulness of this culture technique as a promising way to study tachyzoite-to-bradyzoite stage conversion in N. caninum in vitro.  相似文献   

10.
The different endowment with key enzymes and thus different metabolic capacities of periportal and perivenous cell types led to the model of "metabolic zonation." The periportal and perivenous hepatocytes receive different signals owing to the decrease of substrate concentrations including O2 and hormone levels during passage of blood through the liver sinusoids. These different signal patterns should be important for the short-term regulation of metabolism and also for the long-term induction and maintenance of the different enzyme pathways by control of gene expression. The periportal to perivenous drop in oxygen tension was considered to be a key regulator in the zonated expression of carbohydrate-metabolizing enzymes. In primary hepatocyte cultures, glucagon activated the phosphoenolpyruvate carboxykinase (PCK) gene to higher levels under arterial than under venous oxygen. The insulin-dependent activation of the glucokinase (GK) gene was reciprocally modulated by oxygen. Exogenously added hydrogen peroxide mimicked the effects of arterial oxygen on both the glucagon-dependent PCK gene and the insulin-dependent GK activation. Therefore, the oxygen sensor could be a hydrogen peroxide-producing oxidase which could contain a heme group for "measuring" the O2 tension. This notion was corroborated by the finding that CO mimicked the positive effect of O2 on PCK gene activation. Transfection of PCK promoter-CAT gene constructs into primary hepatocytes showed that the oxygen modulation of the PCK gene activation occurred in the region -281/+69. The modulation by O2 was not mediated by isolated cAMP-responsive elements. Nuclear protein extracts prepared from hepatocytes cultured under venous Po2 as compared to arterial Po2 showed an enhanced binding activity to the promoter fragment -149/-43. Oxidative conditions such as H2O2 reduced the DNA-binding activity, thus supporting the role of H2O2 as a mediator in the O2 response of the PCK and GK genes.  相似文献   

11.
12.
A method for the control of dissolved oxygen tension in growing microbial cultures is described. The apparatus consists of a motor-driven air sparge pipe which may be lowered or raised to give a variable point of entry of the air stream into the culture liquid and hence a variable gas dispersion and gas–liquid contact time. Control of the sparge pipe position is by means of a feedback control loop consisting of a dissolved oxygen probe, an on/off controller, and a reversing electric motor which drives the sparge pipe. The difficulty presented by the relatively slow response of the oxygen probe has been overcome by incorporating an adjustable rate of control action.  相似文献   

13.
14.
Cell cycle progression is dependent on intracellular iron level and chelators lead to iron depletion and decrease cell proliferation. This antiproliferative effect can be inhibited by exogenous iron. In this work, we present the synthesis of new synthetic calix[4]arene podands bearing two aspartic/glutamic acid, ornithine groups or hydrazide function at the lower rim, designed as potential iron chelators. The synthesis only afforded calix[4]arenes in the cone conformation. We report their effect on cell proliferation, in comparison with the new oral chelator ICL670A (4-[3,5-bis-(2-hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid). The antiproliferative effect of these new compounds was studied in the rat hepatoma cell line Fao by measuring mitochondrial succinate dehydrogenase activity. Their cytotoxicity was evaluated by extracellular LDH activity. Preliminary results indicated that among all tested compounds, monohydrazidocalix[4]arene 2 which is not cytotoxic in Fao cells exhibits interesting antiproliferative activity. This effect, independent on iron depletion, remains to be further explored. Moreover, it also shows that new substituted calix[4]arenes could open the way to new valuable medicinal chemistry scaffolding.  相似文献   

15.
The effects of providing low oxygen tension in the gas phase of two different types of cell culture systems were investigated. The clonal growth of granulocyte-macrophage progenitor cells in an agar culture system was improved markedly by incubation within a low oxygen tension gas phase (48 mmHg – 6.8%) instead of the conventional air (135 mmHg – 19%), the effects being measured by increases in numbers of colony forming cells detected and in the colony sizes. The increased efficiency of colony formation was observed both with mouse and human marrow cells. A similar effect was observed in a liquid adherence culture system with primary cultures of foetal mouse fibroblasts both at clonal and higher cell densities.  相似文献   

16.
R D Koos  M A Feiertag 《Steroids》1989,54(5):553-562
Studies were carried out on the effect of oxygen tension on progesterone (P) accumulation in rat granulosa cell cultures. At 1-2% oxygen, basal, luteinizing hormone (LH)-stimulated, and follicle stimulating hormone (FSH)-stimulated P accumulations were 20, 18, and 11%, respectively, of P levels at 20% oxygen. Basal P accumulation was also inhibited at 5% oxygen, but LH- and FSH-stimulated P levels were 50% and 40% higher, respectively, than at 20% oxygen. P levels at 10% oxygen were intermediate between those at 5% and 20% oxygen. The inhibitory effect of 1-2% oxygen on P accumulation was reversible: LH-stimulated P accumulation was inhibited in cultures incubated in 1-2% oxygen for 24 h, but rebounded during a subsequent 24 h period in 20% oxygen to the same level as that in cultures maintained continuously in 20% oxygen. We conclude that oxygen tension does influence granulosa cell steroidogenesis in vitro. Changes in blood flow and oxygen delivery to the ovary before and after ovulation could, therefore, effect the pattern of steroidogenesis during this period.  相似文献   

17.
Human epidermal keratinocytes (HEK) are skin cells of primary importance in maintaining the body’s defensive barrier and are used in vitro to assess the irritation potential and toxicity of chemical compounds. Microfluidic systems hold promise for high throughput irritant and toxicity assays, but HEK growth kinetics have yet to be characterized within microscale culture chambers. This research demonstrates HEK patterning on microscale patches of Type I collagen within microfluidic channels and maintenance of these cells under constant medium perfusion for 72 h. HEK were shown to maintain 93.0%–99.6% viability at 72 h under medium perfusion ranging from 0.025–0.4 μl min−1. HEK maintained this viability while ∼100% confluent—a level not possible in 96 well plates. Microscale HEK cultures offer the ability to precisely examine the morphology, behavior and viability of individual cells which may open the door to new discoveries in toxicological screening methods and wound healing techniques.  相似文献   

18.
The antiproliferative effects of the iron chelator O-trensox and the ornithine-decarboxylase (ODC) inhibitor alpha-difluoromethylornithine (DFMO) were characterized in the rat hepatoma cell line FAO, the rat liver epithelial cell line (RLEC) and the primary rat hepatocyte cultures stimulated by EGF. We observed that O-trensox and DFMO decreased cell viabilty and DNA replication in the three culture models. The cytostatic effect of O-trensox was correlated to a cytotoxicity, higher than for DFMO, and to a cell cycle arrest in G0/G1 or S phases. Moreover, O-trensox and DFMO decreased the intracellular concentration of spermidine in the three models without changing significantly the spermine level. We concluded that iron, but also polyamine depletion, decrease cell growth. However, the drop in cell proliferation obtained with O-trensox was stronger compared to DFMO effect. Altogether, our data provide insights that, in the three rat liver cell culture models, the cytostatic effect of the iron chelator O-trensox may be the addition of two mechanisms: iron and polyamine depletion.  相似文献   

19.
Interleukin 15 (IL-15) is a potent stimulator of proliferation and an inhibitor of apoptosis in lymphocytes. We attempted to elucidate the mechanism of IL-15 function in HaCaT keratinocytes. We found that 5-bromo-2(')-deoxyuridine incorporation increased in a dose-dependent manner with IL-15. This was blocked by MEK inhibitor U0126 or PI 3-K inhibitor LY294002. ERK1/2 and Akt phosphorylation by IL-15 were detected in a dose- and time-dependent manner. U0126 and LY294002 abolished ERK1/2 and Akt phosphorylation, respectively. DNA fragmentation and Annexin V binding accompanied by UVB-induced apoptosis were reduced by 30-50% with IL-15. Taken together, IL-15 induced cellular proliferation and had an anti-apoptotic effect on keratinocytes, in which ERK1/2 and Akt phosphorylation played crucial roles. The signal transduction pathways of IL-15 in keratinocytes were partially elucidated; they share a substantial part with growth signals induced by EGF. These results suggest a therapeutic approach to inflammatory skin diseases by controlling these signals.  相似文献   

20.
The effect of the epidermal mitogen, 8-bromo-cAMP, on keratinocyte differentiation was studied. A 3 X 10(-4) M dose of 8-bromo-cAMP was added to primary neonatal mouse epidermal keratinocyte cultures that slowly proliferate, stratify and differentiate over 2-3 weeks time. [3H]Thymidine autoradiography coupled with an NH4Cl plus reducing agent technic which separates basal and differentiating keratinocytes was used to determine the target cell for the 8-bromo-cAMP mitogenic effect. A histologic stain and a four buffer protein extraction protocol, in conjunction with PAGE and fluorographic technics, were used to assess the differentiation of the cultures. The data indicated that 8-bromo-cAMP primarily stimulated the proliferation of the basal cell monolayer. Simultaneous with the mitogenic effect was an increase in the production of keratohyalin granule, keratin and cell envelope proteins, which are specific markers of epidermal differentiation. The results indicate that keratinocytes stimulated by the epidermal mitogen 8-bromo-cAMP simultaneously express differentiation-related processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号