首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A nicked theta-toxin (C theta), obtained by limited proteolysis with subtilisin Carlsberg, causes almost no hemolysis while it retains a nearly intact cholesterol binding site below 20 degrees C. Neither electron microscopic evidence for the formation of arc- and ring-shaped structures on the membrane nor toxin-stimulated influx of extracellular Ca2+ are detected in C theta-treated cells below 20 degrees C. Thus, event(s) in the lytic process are responsible for the temperature dependency of hemolysis, which is also supported by the observation that C theta requires higher Arrhenius activation energy for hemolysis than the native toxin. Using C theta as a probe due to its high affinity for membrane cholesterol without causing any obvious membrane changes, we demonstrated the possible existence of high- and low-affinity sites for theta-toxin on sheep erythrocytes. Both binding sites disappear by simultaneous treatment of the cells with sublytic doses of digitonin. Furthermore, C theta binds only to cholesterol among the chloroform/methanol-extractable, lipid components of sheep and human erythrocytes but not to the protein components derived from them. These results strongly suggest that cholesterol is an essential component of the both high- and low-affinity sites, and also imply that the modes of existence of cholesterol in the red cell membrane are heterogeneous.  相似文献   

2.
Molecular genecology is the study of geographical clines in frequencies of molecular markers and their relationship to ecological clines in environmental conditions. This study outlines the principles underlying the selection of populations, focusing on avoiding 'false positives'- noncausal correlations between allele frequency and the environment. The principles are illustrated by identifying a set of populations of Lolium perenne for the study of temperature responses. The selected set of populations encompasses a 20 degrees C range in mean January temperature. Their freezing tolerance shows a linear trend with winter temperature, LT50 decreasing by 0.25 degrees C for each 1 degrees C reduction in mean January temperature.  相似文献   

3.
The kinetics of azide binding to chloroperoxidase have been studied at eight pH values ranging from 3.0 to 6.6 at 9.5 +/- 0.2 degrees C and ionic strength of 0.4 M in H2O. The same reaction was studied in D2O at pD 4.36. In addition, results were obtained on azide binding to horseradish peroxidase at pD 4.36 and pH 4.56. Typical relaxation times were in the range 10-40 microseconds. The value of kH/kD(on) for chloroperoxidase is 1.16, and kH/kD(off) is 1.7; corresponding values for horseradish peroxidase are 1.10 and 2.4. The H/D solvent isotope effects indicate proton transfer is partially rate controlling and is more important in the dissociation of azide from the enzyme-ligand complex. A mechanism is proposed in which hydrazoic acid binds to chloroperoxidase in a concerted process in which its proton is transferred to a distal basic group. Hydrogen bonding from the newly formed distal acid to the bound azide facilitates formation of hydrazoic acid as the leaving group in the dissociation process. The binding rate constant data, kon, can be fit to the equation kon = k3/(1 + KA/[H+]), where k3 = 7.6 X 10(7) M-1 S-1 and KA, the dissociation constant of hydrazoic acid, is 2.5 X 10(-5) M. The same mechanism probably is valid for the ligand binding to horseradish peroxidase.  相似文献   

4.
It has been shown that under the effect of chlorpromazin (concentration to 2.10(-5) M) breaks observed on Arrhenius graphs of the rate constant of ANS binding with erythrocytes (k) at 28 and 36 degrees C are shifted to the region of low temperatures approximately to a similar interval (14-15 degrees C). The value k measured at 22 degrees C is not changed within the pH range of 5-7. It is concluded that breaks characterised the initial and final stages of temperature transition initiated in the zone of acid phospholipid of membranes.  相似文献   

5.
研究了不同温度和食用藻密度对发头裸腹潘种群动态和两性生殖的影响.结果表明:温度、食用藻密度对发头裸腹溞的种群密度、雄体密度和卵鞍数均有显著影响.高食用藻密度组的发头裸腹潘种群密度明显高于中、低食用藻密度组,其最大种群密度出现在20℃下的高食用藻密度组.在相同的温度下,发头裸腹溞的首次产幼溞数随食用藻密度的降低而减少,平均每个母潘首次产出的最大幼潘数出现在25℃下的高食用藻密度组.高食用藻密度组发头裸腹潘产生的雄体密度明显高于中、低食用藻密度组.发头裸腹溞的雄体密度与其种群密度之间存在极显著的相关性.发头裸腹溞所产的卵鞍数随食用藻密度的下降而下降,且25℃下发头裸腹溞所产的卵鞍数明显高于其他温度组.与温度相比,食用藻密度对发头裸腹潘的种群动态和两性生殖的影响更大.  相似文献   

6.
Although [3H]imipramine is a selective radioligand for the 5-hydroxytryptamine (5-HT) transporter in human platelets, its affinity for binding to the 5-HT transporter complex at 0 degrees C (0.6 nM) is significantly higher than its potency for inhibition of [3H]5-HT uptake at the physiological temperature of 37 degrees C (Ki = 29 nM). As this apparent discrepancy could be related to the assay temperature, we studied the thermodynamics of drug interaction with the 5-HT transporter at assay temperatures between 0 degrees C and 37 degrees C, using as radioligands [3H]imipramine (0 degrees C and 20 degrees C) and [3H]paroxetine (20 degrees C and 37 degrees C), a newly available probe for the 5-HT transporter. At 20 degrees C, Ki values of 14 tricyclic and nontricyclic drugs for inhibition of [3H]imipramine and [3H]paroxetine binding to human platelet membranes were highly significantly correlated (r = 0.98, p less than 0.001), validating the use of these two radioligands to study the 5-HT transporter over a temperature range larger than was previously possible with [3H]imipramine alone. The affinity of imipramine for the 5-HT transporter is progressively enhanced with decreasing incubation temperature, thus favoring the selectivity of [3H]imipramine for the 5-HT transporter at 0 degrees C. At 37 degrees C, the Ki of imipramine for inhibition of [3H]paroxetine binding is 32 nM, and equals its Ki value for inhibition of 5-HT uptake into human platelets. With the exception of chlorimipramine, other tricyclic 5-HT uptake inhibitors showed a temperature sensitivity in their interaction with the 5-HT transporter similar to that of imipramine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Effects of ionic strength and temperature on the interaction between Tb3+ and porcine intestinal brush-border membrane vesicles were studied. When Tb3+ was added to the vesicle suspension, Tb3+ fluorescence increased with increasing concentration of Tb3+, showing a saturation. The apparent dissociation constant of one of at least two components of this binding reaction was estimated to be about 12.5 microM at 25 degrees C, pH 7.4. But the affinity of Tb3+ for the membrane vesicles was variable with changes of ionic strength and temperature. The affinity was lowered by addition of KCl to medium and by increase of temperature above 30 degrees C. In addition, temperature-induced change in the affinity of Tb3+ for the membranes was reversible over a temperature range from 13 to 46 degrees C. Temperature-dependence profiles of the excimer formation efficiency of pyrene-labeled membranes and of the harmonic mean of the rotational relaxation times of pyrene molecules in the membranes revealed that the phase transition of the membrane lipids occurs at about 30 degrees C. Based on these results, characteristics of Tb3+ binding to the membranes are discussed in relation to the nature of lipid phase and surface charges of the membranes.  相似文献   

8.
Y Zhao  M Kawai 《Biophysical journal》1994,67(4):1655-1668
The effect of temperature on elementary steps of the cross-bridge cycle was investigated with sinusoidal analysis technique in skinned rabbit psoas fibers. We studied the effect of MgATP on exponential process (C) to characterize the MgATP binding step and cross-bridge detachment step at six different temperatures in the range 5-30 degrees C. Similarly, we studied the effect of MgADP on exponential process (C) to characterize the MgADP binding step. We also studied the effect of phosphate (Pi) on exponential process (B) to characterize the force generation step and Pi-release step. From the results of these studies, we deduced the temperature dependence of the kinetic constants of the elementary steps and their thermodynamic properties. We found that the MgADP association constant (K0) and the MgATP association constant (K1) significantly decreased when the temperature was increased from 5 to 20 degrees C, implying that nucleotide binding became weaker at higher temperatures. K0 and K1 did not change much in the 20-30 degree C range. The association constant of Pi to cross-bridges (K5) did not change much with temperature. We found that Q10 for the cross-bridge detachment step (k2) was 2.6, and for its reversal step (k-2) was 3.0. We found that Q10 for the force generation step (Pi-isomerization step, k4) was 6.8, and its reversal step (k-4) was 1.6. The equilibrium constant of the detachment step (K2) was not affected much by temperature, whereas the equilibrium constant of the force generation step (K4) increased significantly with temperature increase. Thus, the force generation step consists of an endothermic reaction. The rate constant of the rate-limiting step (k6) did not change much with temperature, whereas the ATP hydrolysis rate increased significantly with temperature increase. We found that the force generation step accompanies a large entropy increase and a small free energy change; hence, this step is an entropy-driven reaction. These observations are consistent with the hypothesis that the hydrophobic interaction between residues of actin and myosin underlies the mechanism of force generation. We conclude that the force generation step is the most temperature-sensitive step among elementary steps of the cross-bridge cycle, which explains increased isometric tension at high temperatures in rabbit psoas fibers.  相似文献   

9.
Deoxygenated sickle cell hemoglobin (Hb S) in 1.8 M phosphate buffer, and carbon monoxide (CO) saturated buffer were rapidly mixed using a stopped-flow apparatus. The binding of the CO to the Hb S polymers and the polymer melting was measured by time resolved optical spectroscopy. Polymer melting was associated with decreased turbidity, and CO binding to deoxy-Hb S was monitored by observation of changes in the absorption profile. The reaction temperature was varied from 20 degrees C to 35 degrees C. Polymer domain size at 20 degrees C was also varied. The data for mixtures involving normal adult hemoglobin (Hb A) fit well to a single exponential process whereas it was necessary to include a second process when fitting data involving Hb S. The overall Hb S-CO reaction rate decreased with increasing temperature from 20 degrees C to 35 degrees C, and increased with decreasing domain size. In comparison, Hb A-CO reaction rates increased uniformly with increasing temperature. Two competing reaction channels in the Hb S-CO reaction are proposed, one involving CO binding directly to the polymer and the other involving CO only binding to Hb molecules in the solution phase. The temperature dependence of the contribution of each pathway is discussed.  相似文献   

10.
Thermodynamics and kinetics for cyanide, azide, thiocyanate and imidazole binding to recombinant ferric Vitreoscilla sp. homodimeric hemoglobin (Vitreoscilla Hb) have been determined at pH 6.4 and 7.0, and 20.0 degrees C, in solution and in the crystalline state. Moreover, the three-dimensional structures of the diligated thiocyanate and imidazole derivatives of recombinant ferric Vitreoscilla Hb have been determined by X-ray crystallography at 1.8 A (Rfactor=19.9%) and 2.1 A (Rfactor=23.8%) resolution, respectively. Ferric Vitreoscilla Hb displays an anticooperative ligand binding behaviour in solution. This very unusual feature can only be accounted for by assuming ligand-linked conformational changes in the monoligated species, which lead to the observed 300-fold decrease in the affinity of cyanide, azide, thiocyanate and imidazole for the monoligated ferric Vitreoscilla Hb with respect to that of the fully unligated homodimer. In the crystalline state, thermodynamics for azide and imidazole binding to ferric Vitreoscilla Hb may be described as a simple process with an overall ligand affinity for the homodimer corresponding to that for diligation in solution. These data suggest that the ligand-free homodimer, observed in the crystalline state, is constrained in a low affinity conformation whose ligand binding properties closely resemble those of the monoligated species in solution. From the kinetic viewpoint, anticooperativity is reflected by the 300-fold decrease of the second-order rate constant for cyanide and imidazole binding to the monoligated ferric Vitreoscilla Hb with respect to that for ligand association to the ligand-free homodimer in solution. On the other hand, values of the first-order rate constant for cyanide and imidazole dissociation from the diligated and monoligated derivatives of ferric Vitreoscilla Hb in solution are closely similar. As a whole, ligand binding and structural properties of ferric Vitreoscilla Hb appear to be unique among all Hbs investigated to date.  相似文献   

11.
An unusual effect of temperature on the ATPase activity of E. coli F1Fo ATP synthase has been investigated. The rate of ATP hydrolysis by the isolated enzyme, previously kept on ice, showed a lag phase when measured at 15 degrees C, but not at 37 degrees C. A pre-incubation of the enzyme at room temperature for 5 min completely eliminated the lag phase, and resulted in a higher steady-state rate. Similar results were obtained using the isolated enzyme after incorporation into liposomes. The initial rates of ATP-dependent proton translocation, as measured by 9-amino-6-chloro-2-methoxyacridine (ACMA) fluorescence quenching, at 15 degrees C also varied according to the pre-incubation temperature. The relationship between this temperature-dependent pattern of enzyme activity, termed thermohysteresis, and pre-incubation with other agents was examined. Pre-incubation of membrane vesicles with azide and Mg2+, without exogenous ADP, resulted in almost complete inhibition of the initial rate of ATPase when assayed at 10 degrees C, but had little effect at 37 degrees C. Rates of ATP synthesis following this pre-incubation were not affected at any temperature. Azide inhibition of ATP hydrolysis by the isolated enzyme was reduced when an ATP-regenerating system was used. A gradual reactivation of azide-blocked enzyme was slowed down by the presence of phosphate in the reaction medium. The well-known Mg2+ inhibition of ATP hydrolysis was shown to be greatly enhanced at 15 degrees C relative to at 37 degrees C. The results suggest that thermohysteresis is a consequence of an inactive form of the enzyme that is stabilized by the binding of inhibitory Mg-ADP.  相似文献   

12.
The effect of growth temperature on the cellular fatty acid profiles of Bacillus subtilis and Bacillus megaterium was studied over a temperature range from 40 to 10 degrees C. As the growth temperature of B. subtilis was reduced, the lower-melting point anteiso-acids increased, while the higher-melting point iso-acids decreased. Consequently the ratio of branched- to straight-chain acids was unaffected by temperature, although changes in the position of fatty acid branching and the degree of unsaturated branched-chain fatty acids occurred. In B. megaterium a more complicated, biphasic behaviour was observed. Saturated, straight-chain and iso-branched acids decreased only from 40 degrees C down to 20-26 degrees C, and anteiso-acids decreased only from 20-26 degrees C to 10 degrees C, while unsaturated acids increased over the whole temperature range studied. Thus, in B. megaterium total branched-chain acids decreased and straight-chain acids increased as temperature decreased. However, the overall cellular content of lower-melting point fatty acids increased with decreasing temperature in both bacilli, and unsaturated fatty acids appeared to be essential components in the adaptation of the microbes to changes in temperatures. Since changes in the relative amounts of branched- and straight-chain fatty acid biosynthesis are known to reflect differences in fatty acid primers, temperature seems to affect not only the activity of the fatty acid desaturases but also the formation or availability of these primers. The results indicate, however, that notable species-specific regulatory features exist in this genus of bacteria.  相似文献   

13.
Stehle R  Lionne C  Travers F  Barman T 《Biochemistry》2000,39(25):7508-7520
The kinetics of the tryptophan fluorescence enhancement that occurs when myofibrils (rabbit psoas) are mixed with Mg-ATP were studied by stopped-flow in different solvents (water, 40% ethylene glycol, 20% methanol) at 4 degrees C. Under relaxing conditions (low Ca(2+)) in water (mu = 0.16 M, pH 7.4) and at high ATP concentrations, the transient was biphasic, giving a k(fast)(max) of 230 s(-)(1) and a k(slow)(max) of 15 s(-)(1). The kinetics of the two phases were compared with those obtained by chemical sampling using [gamma-(32)P]ATP and quenching in acid (P(i) burst experiments: these give unambiguously the ATP cleavage kinetics), or cold Mg-ATP (cold ATP chase: ATP binding kinetics). k(slow) is due to ATP cleavage, as with S1. Interestingly, k(fast) is slower than the ATP binding kinetics. Instead, this constant appears to report ATP-induced cross-bridge detachment from actin because (1) it was identical to the fluorescence transient obtained on addition of ATP to pyrene-labeled myofibrils; (2) when the initial filament overlap in the myofibrils was decreased, the amplitude of the fast phase decreased; (3) there was no fluorescent enhancement upon the addition of ADP to myofibrils. This is different from the situation with S1 or actoS1 where there was also a fast fluorescent ATP-induced transient but whose kinetics were identical to those of the tight ATP binding. To increase the time resolution and to confirm our results, we also carried out transient kinetics in ethylene glycol and methanol. We interpret our results by a scheme in which a rapid equilibrium between attached (AM.ATP) and detached (M.ATP) states is modulated by the fraction of myosin heads in rigor (AM) during the time of experiment.  相似文献   

14.
Isolated rat hepatocytes were pulse-labelled with [35S]methionine at 37 degrees C and subsequently incubated (chased) for different periods of time at different temperatures (37-16 degrees C). The time courses for the secretion of [35S]methionine-labelled albumin and haptoglobin were determined by quantitative immunoprecipitation of the detergent-solubilized cells and of the chase media. Both proteins appeared in the chase medium only after a lag period, the length of which increased markedly with decreasing chase temperature: from about 10 and 20 min at 37 degrees C to about 60 and 120 min at 20 degrees C for albumin and haptoglobin respectively. The rates at which the proteins were externalized after the lag period were also strongly affected by temperature, the half-time for secretion being 20 min at 37 degrees C and 200 min at 20 degrees C for albumin; at 16 degrees C no secretion could be detected after incubation for 270 min. Analysis by subcellular fractionation showed that part of the lag occurred in the endoplasmic reticulum and that the rate of transfer to the Golgi complex was very temperature-dependent. The maximum amount of the two pulse-labelled proteins in Golgi fractions prepared from cells after different times of chase decreased with decreasing incubation temperatures, indicating that the transport from the Golgi complex to the cell surface was less affected by low temperatures than was the transport from the endoplasmic reticulum to the Golgi complex.  相似文献   

15.
The inhibition of eel acetylcholinesterase by physostigmine at 20 degrees and 25 degrees C have been investigated. In our evaluation the unimolecular reactivation rate constant, k3, the carbamylation rate constant, k2, and the binding constant, Ka, are the first simultaneously determined. The mechanism of this reaction is discussed.  相似文献   

16.
Cellobiase has been isolated from the crude cellulase mixture of enzymes of Trichoderma viride using column chromatographic and ion-exchange methods. The steady-state kinetics of the hydrolysis of cellobiose have been investigated as a function of cellobiose and glucose concentrations, pH of the solution, temperature, and dielectric constant, using isopropanol-buffer mixtures. The results show that (i) there is a marked activation of the reaction by initial glucose concentrations of 4 X 10(-3) M to 9 X 10(-2) M and strong inhibition of the reaction at higher initial concentrations, (ii) the log rate -pH curve has a maximum at pH 5.2 and enzyme pK values of 3.5 and 6.8, (iii) the energy of activation at pH 5.1 is 10.2 kcal mol-1 over the temperature range 5-56 degrees C, and (iv) the rate decreases from 0 to 20% (v/v) isopropanol. The hydrolysis by cellobiase (EC 3.2.1.21) of p-nitrophenyl-beta-D-glucoside was examined by pre-steady-state methods in which [enzyme]0 greater than [substrate]0, and by steady-state methods as a function of pH and temperature. The results show (i) a value for k2 of 21 S-1 at pH 7.0 (where k2 is the rate constant for the second step in the assumed two-intermediate mechanism (formula: see text), (ii) a log rate -pH curve, significantly different from that for hydrolysis of cellobiose, in which the rate increases with decreasing pH below pH 4.5, is constant in the region pH 4.5-6, and decreases above pH 6 (exhibiting an enzyme pK value of 7.3), and (iii) an activation energy of 12.5 kcal mol-1 at pH 5.7 over the temperature range 10-60 degrees C.  相似文献   

17.
Isocitrate lyase (ICL) from Colwellia psychrerythraea, a psychrophilic bacterium, was purified and characterized. The subunit molecular mass was 64 kDa, which is larger than that of other bacterial ICLs. The optimal temperature for its activity was 25 degrees C, the value of K(m) for the substrate ( DL-isocitrate) was minimum at 15 degrees C, and the catalytic efficiency ( k(cat)/ K(m)) value was maximum at 20 degrees C. Furthermore, the enzyme was remarkably thermolabile and completely inactivated by incubation for 2 min at 30 degrees C. These features indicate that ICL from this bacterium is a typical cold-adapted enzyme. A partial amino acid sequence of the C. psychrerythraea ICL was very similar to that of the closely related psychrophile Colwellia maris. Expression of the gene encoding the C. psychrerythraea ICL was found to be induced by low temperatures and by acetate in the medium. The cold adaptation of the catalytic properties of ICL and the stimulated expression of its gene at low temperatures strongly suggest that this enzyme is important for the growth of this bacterium in a cold environment.  相似文献   

18.
The hygropreference of adult Cryptopygus antarcticus and Alaskozetes antarcticus was investigated over 2 h at 5, 10 and 20 degrees C, along humidity gradients (9-98% RH) established by means of different salt solutions. Two chamber arrangements were employed, linear and grid, to determine any influence of thigmotactic behaviour on distribution within the RH gradient. The humidity preference of both species varied with temperature. At 5 and 10 degrees C, C. antarcticus distributed homogeneously showing no clear RH preference. At 20 degrees C, this species preferred the highest humidity (98% RH). A. antarcticus demonstrated a preference for the lowest humidity (9% RH) at 5 degrees C, but at 10 degrees C its distribution differed between the two arena types. At 20 degrees C, A. antarcticus showed no clear humidity preference. Assays to control for experimental asymmetries along the gradient; thigmotactic behaviour; and aggregative behaviour exclude these factors as explanations for the observed results. The mean initial water content of samples did not differ significantly between temperature regimes (C. antarcticus: 68.6, 71.1 and 74.3%; A. antarcticus: 68.1, 70.1 and 68.6% at 5, 10 and 20 degrees C respectively), but the level of water loss increased significantly with temperature. The influence of desiccation tolerance and the ecological significance of the observed humidity preferences are discussed.  相似文献   

19.
The binding properties of a glutathione S-transferase (EC 2.5.1.18) from Schistosoma japonicum to substrate glutathione (GSH) has been investigated by intrinsic fluorescence and isothermal titration calorimetry (ITC) at pH 6.5 over a temperature range of 15-30 degrees C. Calorimetric measurements in various buffer systems with different ionization heats suggest that protons are released during the binding of GSH at pH 6.5. We have also studied the effect of pH on the thermodynamics of GSH-GST interaction. The behaviour shown at different pHs indicates that at least three groups must participate in the exchange of protons. Fluorimetric and calorimetric measurements indicate that GSH binds to two sites in the dimer of 26-kDa glutathione S-transferase from Schistosoma japonicum (SjGST). On the other hand, noncooperativity for substrate binding to SjGST was detected over a temperature range of 15-30 degrees C. Among thermodynamic parameters, whereas DeltaG degrees remains practically invariant as a function of temperature, DeltaH and DeltaS degrees both decrease with an increase in temperature. While the binding is enthalpically favorable at all temperatures studied, at temperatures below 25 degrees C, DeltaG degrees is also favoured by entropic contributions. As the temperature increases, the entropic contributions progressively decrease, attaining a value of zero at 24.3 degrees C, and then becoming unfavorable. During this transition, the enthalpic contributions become progressively favorable, resulting in an enthalpy-entropy compensation. The temperature dependence of the enthalpy change yields the heat capacity change (DeltaCp degrees ) of -0.238 +/- 0.04 kcal per K per mol of GSH bound.  相似文献   

20.
A nicked toxin whose hemolytic activity is temperature dependent was obtained by limited proteolysis of theta-toxin (Mr 54,000) with subtilisin. The nicked toxin (C theta) is a complex of two fragments: the N-terminal fragment (Mr 15,000) with basic isoelectric point and the C-terminal fragment (Mr 39,000) with the single cysteinyl residue of the toxin whose reduced form is essential for the hemolytic activity. C theta hemolyzes erythrocytes only at temperatures above 25 degrees C, whereas the native toxin hemolyzes them even at 10 degrees C. At temperatures below 25 degrees C, C theta does not hemolyze them although it does bind to membrane cholesterol and although no distinct difference was observed between the secondary structure of C theta and that of native toxin. It was found that C theta binds to the cells only in a reversible manner at low temperature, while the native one binds irreversibly to the cells within 10 min, which explains the cold lability of C theta on hemolysis. The structural basis of the cold lability was discussed through comparison of C theta with another nicked derivative of theta-toxin that was also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号