首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Epstein-Barr virus (EBV) is an oncogenic virus associated with a number of human malignancies including Burkitt lymphoma, nasopharyngeal carcinoma, lymphoproliferative disease and, though still debated, breast carcinoma. A subset of latent EBV antigens is required for mediating immortalization of primary B-lymphocytes. Here we demonstrate that the carboxy-terminal region of the essential latent antigen, EBNA-3C, interacts specifically with the human metastatic suppressor protein Nm23-H1. Moreover, EBNA-3C reverses the ability of Nm23-H1 to suppress the migration of Burkitt lymphoma cells and breast carcinoma cells. We propose that EBNA-3C contributes to EBV-associated human cancers by targeting and altering the role of the metastasis suppressor Nm23-H1.  相似文献   

2.
3.
Nasopharyngeal carcinomas (NPC) are usually Epstein-Barr virus (EBV) positive, but, with the exception of C666-1 cells, these cells lose the EBV genomes when grown in culture. Maintenance of EBV requires the viral EBV nuclear antigen 1 (EBNA1) protein, which ensures the replication and mitotic segregation of the genomes through interactions with OriP. Here we compare the abilities of C666-1 and NPC cells that have lost EBV genomes to replicate and segregate OriP plasmids. We found that either cell line can replicate and maintain OriP plasmids for extended periods under conditions where low levels of EBNA1 are expressed but that high EBNA1 levels selectively interfered with mitotic segregation.  相似文献   

4.
G protein-coupled receptors (GPCRs) represent a vast family of transmembrane proteins involved in the regulation of several physiological responses. The thromboxane A2 receptor (present as two isoforms: TP alpha and TP beta) is a GPCR displaying diverse pharmacological effects. As seen for many other GPCRs, TP beta is regulated by agonist-induced internalization. In the present study, we report the identification by yeast two-hybrid screening of Nm23-H2, a nucleoside diphosphate kinase, as a new interacting molecular partner with the C-terminal tail of TP beta. This interaction was confirmed in a cellular context when Nm23-H2 was co-immunoprecipitated with TP beta in HEK293 cells, a process dependent on agonist stimulation of the receptor. We observed that agonist-induced internalization of TP beta was regulated by Nm23-H2 through modulation of Rac1 signaling. Immunofluorescence microscopy in HEK293 cells revealed that Nm23-H2 had a cytoplasmic and nuclear localization but was induced to translocate to the plasma membrane upon stimulation of TP beta to show extensive co-localization with the receptor. Our findings represent the first demonstration of an interaction of an Nm23 protein with a membrane receptor and constitute a novel molecular regulatory mechanism of GPCR endocytosis.  相似文献   

5.
6.
7.
8.
The Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS), and the induction of an invasive cellular phenotype by KSHV following de novo infection is an important pathogenic component mediating tumor progression. The metastasis suppressor gene known as Nm23-H1 regulates tumor cell invasiveness, but whether KSHV itself regulates Nm23-H1 expression or subcellular localization, and whether this impacts cell invasiveness, has not been established. We found that KSHV increases expression and nuclear translocation of Nm23-H1 and that nuclear translocation of Nm23-H1 is regulated by the KSHV-encoded latency-associated nuclear antigen (LANA). Moreover, activation of the Ras-BRaf-MAPK (mitogen-activated protein kinase) signal transduction pathway, secretion of promigratory factors associated with this pathway, and cell invasiveness are dependent on KSHV regulation of Nm23-H1. Finally, induction of cytoplasmic overexpression of Nm23-H1 using a pharmacologic inhibitor of DNA methylation reduced KSHV-associated Ras-BRaf-MAPK pathway activation and suppressed KSHV-induced invasiveness. These data provide the first evidence for KSHV regulation of Nm23-H1 as a mechanism for KSHV induction of an invasive cellular phenotype and support the potential utility of targeting Nm23-H1 as a therapeutic approach for the treatment of KS.  相似文献   

9.
Five human lymphoblastoid cell lines immortalized in vitro with the B95-8 EBV strain, chosen to have a low number of copies of EBV genome, were examined to detect variations in electrophoretic mobility of viral restriction fragments and in the karyotype. Patterns of mobility detected with different viral probes are always the same as those obtained with fragments from purified virus-plasmidic DNA, with one exception. This "non-plasmidic" pattern occurs with a probe containing the termini of the linear virion DNA and consists in an increase of the molecular weight and in the appearance of more than one band. Cytogenetic studies carried on the same cell populations used as source of DNA, early after immortalization, showed a diploid modal chromosome number and no G banding rearrangements.  相似文献   

10.
11.
J Finke  M Rowe  B Kallin  I Ernberg  A Rosn  J Dillner    G Klein 《Journal of virology》1987,61(12):3870-3878
The Epstein-Barr virus nuclear antigen 5 (EBNA-5) is encoded by highly spliced mRNA from the major IR1 (BamHI-W) repeat region of the virus genome. A mouse monoclonal antibody, JF186, has been raised against a synthetic 18-amino-acid peptide deduced from the EBNA-5 message of B95-8 and Raji cells. The antibody showed characteristic coarse nuclear granules by indirect immunofluorescence and revealed multiple EBNA-5 species by immunoblotting and immunoprecipitation. The B95-8 line itself and all B95-8 virus-carrying cells, whether lymphoblastoid cell lines or in vitro-converted sublines of Epstein-Barr virus (EBV)-negative Burkitt's lymphoma (BL) lines, were EBNA-5 positive. Among 36 cell lines carrying different EBV strains, only 10 expressed the B95-8-Raji-prototype EBNA-5 recognized by JF186; this was probably due to genetic variation in the epitope recognized by JF186, as shown for P3HR-1. Human antibodies, affinity purified against EBNA-5-JF186 immunoprecipitates, detected EBNA-5 in the majority of EBV-positive BL lines and in all lymphoblastoid cell lines containing the BL-derived viruses. Thus, EBNA-5 can be expressed by all virus isolates examined, but is down-regulated, together with other latent gene products, in a minority of BL lines which have a particular cellular phenotype. EBNA-5 was detected as a ladder of protein species of 20 to 130 kilodaltons (kDa), with a regular spacing of 6 to 8 kDa, consistent with the coding capacity of the combined BamHI-W 66- and 132-base-pair exons, together with shifts of 2 to 4 kDa, consistent with the size of the separate 66- and 132-base-pair exons. Multiple EBNA-5 proteins can be expressed by the single cell as shown by cloning of newly infected cells.  相似文献   

12.
The Nm23-H1 gene is a metastasis suppressor gene. However, its biochemical mechanism of suppressing the metastatic potential of cancer cells is still unknown. The previous hypothesis that a histidine protein kinase activity may contributes to the motility-suppressive effect of Nm23-H1 could not explain why the H118F mutant, a kinase-deficient mutant, still had motility-suppressive ability. We conducted a study on the double mutant P96S/S120G of Nm23-H1 and succeeded in introducing the RP-HPLC method in NDPK assay. The results showed that the double mutant P96S/S120G, when expressed in the bacteria, was completely aggregated in inclusion bodies; this mutant abrogated not only its motility-suppressive ability, but also its NDPK activity. Based on previous work and this study, we prompted that the deficiency of motility-suppressive function of S120G, P96S, and P96S/S120G mutants was due to their altered structure, which might deprive Nm23-H1 of most activities including kinase activity or interactions with other proteins.  相似文献   

13.
The Epstein-Barr virus (EBV) nuclear antigen EBNA-1 plays an integral role in the maintenance of latency in EBV-infected B lymphocytes. EBNA-1 binds to sequences within the plasmid origin of replication (oriP). It is essential for the replication of the latent episomal form of EBV DNA and may also regulate the expression of the EBNA group of latency gene products. We have used sequence-specific DNA-binding assays to purify EBNA-1 away from nonspecific DNA-binding proteins in a B-lymphocyte cell extract. The availability of this eucaryotic protein has allowed an examination of the interaction of EBNA-1 with its specific DNA-binding sites and an evaluation of possible roles for the different binding loci within the EBV genome. DNA filter binding assays and DNase I footprinting experiments showed that the intact Raji EBNA-1 protein recognized the two binding site loci in oriP and the BamHI-Q locus and no other sites in the EBV genome. Competition filter binding experiments with monomer and multimer region I consensus binding sites indicated that cooperative interactions between binding sites have relatively little impact on EBNA-1 binding to region I. An analysis of the binding parameters of the Raji EBNA-1 to the three naturally occurring binding loci revealed that the affinity of EBNA-1 for the three loci differed. The affinity for the sites in region I of oriP was greater than the affinity for the dyad symmetry sites (region II) of oriP, while the physically distant region III locus showed the lowest affinity. This arrangement may provide a mechanism whereby EBNA-1 can lowest affinity. This arrangement may provide a mechanism whereby EBNA-1 can mediate differing regulatory functions through differential binding to its recognition sequence.  相似文献   

14.
Epstein-Barr virus (EBV) is associated with human cancers, including nasopharyngeal carcinoma, Burkitt's lymphoma, gastric carcinoma and, somewhat controversially, breast carcinoma. EBV infects and efficiently transforms human primary B lymphocytes in vitro. A number of EBV-encoded genes are critical for EBV-mediated transformation of human B lymphocytes. In this study we show that an EBV-infected lymphoblastoid cell line obtained from the spontaneous outgrowth of B cells from a leukemia patient contains a deletion, which involves a region of approximately 16 kbp. This deletion encodes major EBV genes involved in both infection and transformation of human primary B lymphocytes and includes the glycoprotein gp350, the entire open reading frame of EBNA3A, and the amino-terminal region of EBNA3B. A fusion protein created by this deletion, which lies between the BMRF1 early antigen and the EBNA3B latent antigen, is truncated immediately downstream of the junction 21 amino acids into the region of the EBNA3B sequence, which is out of frame with respect to the EBNA3B protein sequence, and indicates that EBNA3B is not expressed. The fusion is from EBV coordinate 80299 within the BMRF1 sequence to coordinate 90998 in the EBNA3B sequence. Additionally, we have shown that there is no detectable induction in viral replication observed when SNU-265 is treated with phorbol esters, and no transformants were detected when supernatant is used to infect primary B lymphocytes after 8 weeks in culture. Therefore, we have identified an EBV genome with a major deletion in critical genes involved in mediating EBV infection and the transformation of human primary B lymphocytes that is incompetent for replication of this naturally occurring EBV isolate.  相似文献   

15.
The aim of our work was to study (1) the antioxidant properties of lipoic acid (LA) and its reduced metabolite dihydrolipoic acid (DHLA) formed by reduction of LA and (2) the effects of treatment with LA and DHLA on (a) K(+) efflux from human red blood cells and (b) post-ischemic recovery and oxidative stress in isolated perfused rat hearts challenged with an ischemia-reperfusion (IR) sequence. In vitro, we used xanthine and xanthine oxidase to generate superoxide anion, which is not directly measurable by electron paramagnetic resonance (EPR), but specifically oxidizes the spin probe CPH into an EPR-detectable long lasting CP(*) nitroxide radical. While 5 mM of LA was ineffective in reducing the kinetics of CP(*) nitroxide formation, DHLA was shown to lessen this rate in a dose-dependent manner and at 30 mM was even more efficient than 300 UI/ml SOD. These results are in agreement with the fact that DHLA is able to directly scavenge superoxide anion. Red cells are a good model to investigate oxidative damage in biological membranes; hence, we used a suspension of erythrocytes incubated with 2,2(')-azobis(2-amidinopropane) hydrochloride (AAPH) which generates in vitro free radicals. DHLA provided more effective protection of red cells membranes than LA; DHLA was comparable to Trolox for its antioxidant potency. In vivo, treatment of rats (50 mg/kg/day i.p. for 7 days) with LA induced a slight increase in coronary flow (CF) in isolated perfused hearts, after 30 min of global total ischemia. This effect was not associated with an improvement in contractile function and reduction of myocardial oxidative stress. In conclusion, because of their ability to scavenge free radicals, LA and to an even greater degree DHLA were able to protect the membranes of red blood cells. This finding suggests that LA and DHLA might be useful in the treatment of diseases associated with oxidative stress such as diabetes.  相似文献   

16.
17.
Thymine glycol (Tg) is one of predominant oxidative DNA lesions caused by ionizing radiation and other oxidative stresses. Human NTH1 is a bifunctional enzyme with DNA glycosylase and AP lyase activities and removes Tg as the first step of base excision repair (BER). We have searched for the factors interacting with NTH1 by using a pull-down assay and found that GST-NTH1 fusion protein precipitates proliferating cell nuclear antigen (PCNA) and p53 as well as XPG from human cell-free extracts. GST-NTH1 also bound to recombinant FLAG-tagged XPG, PCNA, and (His)6-tagged p53 proteins, indicating direct protein-protein interaction between those proteins. Furthermore, His-p53 and FLAG-XPG, but not PCNA, stimulated the Tg DNA glycosylase/AP lyase activity of GST-NTH1 or NTH1. These results provide an insight into the positive regulation of BER reaction and also suggest a possible linkage between BER of Tg and other cellular mechanisms.  相似文献   

18.
The replication and stable maintenance of latent Epstein-Barr virus (EBV) DNA episomes in human cells requires only one viral protein, Epstein-Barr nuclear antigen 1 (EBNA1). To gain insight into the mechanisms by which EBNA1 functions, we used a yeast two-hybrid screen to detect human proteins that interact with EBNA1. We describe here the isolation of a protein, EBP2 (EBNA1 binding protein 2), that specifically interacts with EBNA1. EBP2 was also shown to bind to DNA-bound EBNA1 in a one-hybrid system, and the EBP2-EBNA1 interaction was confirmed by coimmunoprecipitation from insect cells expressing these two proteins. EBP2 is a 35-kDa protein that is conserved in a variety of organisms and is predicted to form coiled-coil interactions. We have mapped the region of EBNA1 that binds EBP2 and generated internal deletion mutants of EBNA1 that are deficient in EBP2 interactions. Functional analyses of these EBNA1 mutants show that the ability to bind EBP2 correlates with the ability of EBNA1 to support the long-term maintenance in human cells of a plasmid containing the EBV origin, oriP. An EBNA1 mutant lacking amino acids 325 to 376 was defective for EBP2 binding and long-term oriP plasmid maintenance but supported the transient replication of oriP plasmids at wild-type levels. Thus, our results suggest that the EBNA1-EBP2 interaction is important for the stable segregation of EBV episomes during cell division but not for the replication of the episomes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号