首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
BACKGROUND: The alkaline phosphatase (AP) substrate 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-(3H)-quinazolinone (ELF((R))-97 for enzyme-labeled fluorescence) has been found useful for the histochemical detection of endogenous AP activity and AP-tagged proteins and oligonucleotide probes. In this study, we evaluated its effectiveness at detecting endogenous AP activity by flow cytometry. METHODS: The ELF-97 phosphatase substrate was used to detect endogenous AP activity in UMR-106 rat osteosarcoma cells and primary cultures of chick chondrocytes. Cells were labeled with the ELF-97 reagent and analyzed by flow cytometry using an argon ultraviolet (UV) laser. For comparison purposes, cells were also assayed for AP using a Fast Red Violet LB azo dye assay previously described for use in detecting AP activity by flow cytometry. RESULTS: The ELF-97 phosphatase substrate effectively detected endogenous AP activity in UMR-106 cells, with over 95% of the resulting fluorescent signal resulting from AP-specific activity (as determined by levamisole inhibition of AP activity). In contrast, less than 70% of the fluorescent signal from the Fast Red Violet LB (FRV) assay was AP-dependent, reflecting the high intrinsic fluorescence of the unreacted components. The ELF-97 phosphatase assay was also able to detect very low AP activity in chick chondrocytes that was undetectable by the azo dye method. CONCLUSIONS: The ELF-97 phosphatase assay was able to detect endogenous AP activity in fixed mammalian and avian cells by flow cytometry with superior sensitivity to previously described assays. This work also shows the applicability of ELF-97 to flow cytometry, supplementing its previously demonstrated histochemical applications.  相似文献   

2.
Alkaline phosphatase activity is a common marker of phosphate stress in many phytoplankton, but it has been difficult to attribute alkaline phosphatase activity to specific organisms or groups of phytoplankton in the field with traditional biochemical procedures. A new alkaline phosphatase substrate, ELF-97 (enzyme-labeled fluorescence), shows promise in this regard. When a phosphate group is cleaved from the ELF-97 reagent, the remaining molecule precipitates near the site of enzyme activity, thus fluorescently tagging cells with alkaline phosphatase activity. We characterized ELF-97 labeling in axenic cultures of a common dinoflagellate, Prorocentrum minimum, in order to understand ELF-97 labeling dynamics when phosphate nutrition varies. Enzyme activity, as detected by ELF-97 labeling, appears to be induced in late-log- or early-stationary-phase cultures if cells are grown in low-phosphate media and is lost when phosphate-stressed cells are refed with phosphate. ELF-97 appears to label an inducible intracellular alkaline phosphatase in P. minimum based on confocal microscopy studies. This may limit the use of this reagent to organisms that lack high levels of constitutive intracellular phosphatases. After laboratory cultures were characterized, ELF-97 was used to assay field populations of P. minimum in Narragansett Bay during two 1-week periods, and 12 to 100% of the P. minimum cells were labeled. The level of cell labeling was reduced by 3 days of incubation with added inorganic phosphate. Our results indicate that ELF-97 is an excellent new tool for monitoring phytoplankton phosphate stress in the environment when the data are supported by appropriate laboratory studies.  相似文献   

3.
Telford W  Cox W  Singer V 《Cytometry》2001,43(2):117-125
BACKGROUND: The fluorogenic alkaline phosphatase (AP) substrate 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-(3H)-quinazolinone (ELF(R)-97 phosphate, for Enzyme-Labeled Fluorescence) has been used primarily in microscope-based imaging applications to detect endogenous AP activity, antigens and various ligands in cells and tissues, and nucleic acid hybridization. In a previous study, we demonstrated the applicability of ELF-97 phosphate for detecting endogenous AP activity by flow cytometry. In this study, we show that the spectral characteristics and high signal-to-noise ratio provided by the ELF-97 phosphate make it a useful label for immunodetection via flow cytometry. It can be combined with a variety of other fluorochromes for multiparametric flow cytometry analysis of both endogenous AP activity and intracellular and extracellular immunolabeling with AP-conjugated antibodies. METHODS: ELF-97 phosphate detection of endogenous AP activity in UMR-106 rat osteosarcoma cells was combined with intracellular antigen detection using Oregon Green 488 dye-conjugated secondary antibodies and DNA content analysis using propidium iodide (PI) or 7-aminoactinomycin D (7-AAD). ELF-97 phosphate detection of endogenous AP was also tested for spectral compatibility with a variety of other commonly used fluorochromes. ELF-97 phosphate was then used to directly label intracellular antigens via AP-conjugated antibodies, again combined with the analysis of DNA content using PI and 7-AAD. ELF-97 phosphate was also used to directly detect extracellular antigens. It was combined with Oregon Green 488 dye, phycoerythrin (PE), and PE-Cy5 dye-labeled antibodies for simultaneous four-color analysis. All samples were analyzed on a dual-beam flow cytometer, with UV excitation of the ELF-97 alcohol reaction product. RESULTS: Application of the ELF-97 phosphate to detect AP was found to be compatible with immunodetection and DNA staining techniques. It was also spectrally compatible with a variety of other fluorochromes. Endogenous AP activity could be detected simultaneously with both intracellular antigens labeled using Oregon Green 488 dye, PE, Cy5 dye and Alexa Fluor 568 dye-conjugated antibodies, and DNA content analysis with PI or 7-AAD. This multiparametric assay accurately delineated the distribution of AP in cycling cells and was able to identify cell subsets with varying endogenous AP levels. The ELF-97 alcohol reaction product was found to be an effective label for intracellular antigen immunolabeling with AP-conjugated reagents, and could also be combined with PI and 7-AAD. ELF-97 phosphate was also found to be a useful label for extracellular antigen immunolabeling with AP conjugates, and was compatible with Oregon Green 488 dye, PE, and PE-Cy5 dye-labeled antibodies for four-color surface labeling with minimal spectral overlap and color compensation. CONCLUSIONS: ELF-97 phosphate was shown to be a useful label for both endogenous and antibody-conjugated AP activity as detected by flow cytometry. Its spectral characteristics allow it to be combined with a variety of fluorochromes for multiparametric analysis. Cytometry 43:117-125, 2001. Published 2001 Wiley-Liss, Inc.  相似文献   

4.
For in vivo demonstration of acid phosphatase activity in the rhizosphere of soil-grown plants filter papers were treated with a mixture of 1-naphthyl phosphate as substrate and the diazonium salt Fast Red TR as an indicator. After enzymatic hydrolysis, 1-naphthol forms a red complex with Fast Red TR. This method was applied to 8-day old maize plants and 3-year old Norway spruce plants growing in rhizoboxes in soil under non-sterile conditions. The treated filter paper is placed at the surface of roots and soil and acid phosphatase activity is visualized as a red-coloured root print on the filter paper. The method can be used as a qualitative analysis of acid phosphatase in the rhizosphere. It also allows a rough estimate of phosphatase activity in different root zones.  相似文献   

5.
We have used naphthol-ASMX-phosphate and Fast Red TR in combination with alkaline phosphatase (APase) to produce fluorescent precipitated reaction products in a non-radioactive in situ hybridization (ISH) method. To obtain optimal and discrete localization of the strongly red fluorescent ISH signals, the enzyme precipitation procedure was optimized. The optimal reaction time and the concentrations of substrate and capture agent were determined. Furthermore, polyvinyl alcohol (PVA) was used to increase the viscosity of the reaction mixture and thus to reduce diffusion of the reaction product. Our results show that the APase-Fast Red detection method has at least the same sensitivity as currently observed in other immunofluorescent detection systems. A single copy DNA sequence of 15.8 KB could be localized with high efficiency in metaphase spreads and in interphase nuclei. Double labeling procedures, in which the FITC- and azo-dye fluorescence are combined, are also feasible. The red fluorescent ISH signals showed hardly any fading as compared with FITC fluorescence on exposure to either light from the mercury-arc lamp or laser light. Therefore, these red fluorescent signals with a virtually permanent character allow a better analysis and three-dimensional localization of such cytochemically detected genomic fractions by means of confocal scanning laser microscopy as compared with the use of FITC, TRITC, or Texas Red as label.  相似文献   

6.
We demonstrate micron scale control of bioactivity through the use of multiphoton excited photochemistry, where this technique has been used to cross-link three-dimensional matrixes of alkaline phosphatase, bovine serum albumin, and polyacrylamide and combinations therein. Using a fluorescence-based assay (ELF-97), the enzymatic activity has been studied using a Michaelis-Menten analysis, and we have measured the specificity constants kcat/KM for alkaline phosphatase in both the protein and polymer matrixes to be on the order of 10(5)-10(6) M(-1) s(-1)and are comparable to known literature values in other environments. It is found that the enzyme is simply entrapped in the polymer matrix, whereas it is completely covalently bound in the protein structures. The relative reaction rate of alkaline phosphatase bound to BSA with the ELF substrate was measured as a function of cross-link density and was found to decrease in the more tightly formed matrixes, indicating a decrease in the diffusion in the matrix.  相似文献   

7.
Alkaline phosphatase activity in whitefly salivary glands and saliva   总被引:9,自引:0,他引:9  
Alkaline phosphatase activity was histochemically localized in adult whiteflies (Bemisia tabaci B biotype, syn. B. argentifolii) with a chromogenic substrate (5-bromo-4-chloro-3-indolylphosphate) and a fluorogenic substrate (ELF-97). The greatest amount of staining was in the basal regions of adult salivary glands with additional activity traced into the connecting salivary ducts. Other tissues that had alkaline phosphatase activity were the accessory salivary glands, the midgut, the portion of the ovariole surrounding the terminal oocyte, and the colleterial gland. Whitefly nymphs had activity in salivary ducts, whereas activity was not detected in two aphid species (Rhodobium porosum and Aphis gossypii). Whitefly diet (15% sucrose) was collected from whitefly feeding chambers and found to have alkaline phosphatase activity, indicating the enzyme was secreted in saliva. Further studies with salivary alkaline phosphatase collected from diet indicated that the enzyme had a pH optimum of 10.4 and was inhibited by 1 mM cysteine and to a lesser extent 1 mM histidine. Dithiothreitol, inorganic phosphate, and ethylenediaminetetraacetic acid (EDTA) also inhibited activity, whereas levamisole only partially inhibited salivary alkaline phosphatase. The enzyme was heat tolerant and retained approximately 50% activity after a 1-h treatment at 65 degrees C. The amount of alkaline phosphatase activity secreted by whiteflies increased under conditions that stimulate increased feeding. These observations indicate alkaline phosphatase may play a role during whitefly feeding.  相似文献   

8.
The ELF-97 phosphatase substrate was used to examine phosphatase activity in four strains of the estuarine heterotrophic dinoflagellate, Pfiesteria shumwayae. Acid and alkaline phosphatase activities also were evaluated at different pH values using bulk colorimetric methods. Intracellular phosphatase activity was demonstrated in P. shumwayae cells that were actively feeding on a fish cell line and in food limited cells that had not fed on fish cells for 3 days. All strains, whether actively feeding or food limited showed similar phosphatase activities. P. shumwayae cells feeding on fish cells showed ELF-97 activity near, or surrounding, the food vacuole. Relatively small, spherical ELF-97 deposits were also observed in the cytoplasm and sometimes near the plasma membrane. ELF-97 fluorescence was highly variable among cells, likely reflecting different stages in digestion and related metabolic processes. The location of enzyme activity and supporting colorimetric measurements suggest that, as in other heterotrophic protists, acid phosphatases predominate in P. shumwayae and have a general catabolic function.  相似文献   

9.
Cell preparations in cytochemistry are conventionally analyzed with transmitted light after fixation and reaction with agents such as azo-coupling dyes. With cell suspensions stained with fluorescent cytochemical dyes, cells can also be analyzed and sorted by flow cytometry. We have exploited the intense red fluorescence of Fast Red Violet LB generated in cytochemical reactions to perform flow cytometric analyses of alkaline phosphatase (AP) expression in rat bone marrow stromal cells. By modifying staining protocols of single-cell suspensions, we demonstrate that in comparison to staining with Fast Red TR, the method is specific, can distinguish among various levels of enzyme expression within the whole population, and permits enzyme kinetic studies of heterogeneous cell populations. The method was applied to study the effect of the glucocorticoid dexamethasone (Dx) on cell proliferation and AP expression. In low AP-expressing cells, Dx treatment at 10(-8) M increased the [3H]-thymidine labeling index from 3.85% to 5.24% (p less than 0.01). In contrast, high AP-expressing cells were unlabeled by [3H]-thymidine. The staining and analytical methods reported here facilitate the detection, isolation, and quantification of subpopulations of bone marrow stromal cells that express alkaline phosphatase activity. These experiments demonstrate the value of flow cytometry as an adjunct to conventional cytochemical methods.  相似文献   

10.
We applied HNPP (2-hydroxy-3-naphthoic acid-2′-phenylanilide phosphate) to direct in situ PCR for the routine detection of specific bacterial cells at the single-cell level. PCR was performed on glass slides with digoxigenin-labeled dUTP. The digoxigenin-labeled PCR products were detected with alkaline phosphatase-labeled antidigoxigenin antibody and HNPP which was combined with Fast Red TR. A bright red fluorescent signal was produced from conversion to HNP (dephosphorylated form) by alkaline phosphatase. We used the ECOL DNA primer set for amplification of ribosomal DNA of Escherichia coli to identify cells specifically at the single-cell level in a bacterial mixture. High-contrast images were obtained under an epifluorescence microscope with in situ PCR. By image analysis, E. coli cells in polluted river water also were detected.  相似文献   

11.
Summary Cyanine dye fluorescence and alkaline phosphatase activities have been compared directly by confocal microscopy in a wide variety of cells present in the follice-associated epithelium of the mouse Peyer's patch to test the hypothesis that antigen-transporting M cells have a low membrane potential. In order to make these comparisons it was first necessary to equilibrate living tissue with the membrane potential sensitive dye DIOC5(3), fix with glutaraldehyde and then incubate the fixed tissue with naphthol AS-BI phosphate, a substrate which is hydrolysed by alkaline phosphatase present in the luminal membrane of these epithelial cells. Naphthol AS-BI produced by this reaction, is then coupled to Fast Red TR diazonium salt at the site of hydrolysis. Selecting the 488 nm wavelength of the argon laser source then allows one to measure alkaline phosphatase activities as Fast Red absorbance and membrane potentials by DIOC5(3) fluorescence.Results obtained show a linear correlation between membrane potential and alkaline phosphatase activity. Relative lack of alkaline phosphatase activity, determined in fixed tissue, has been used previously to identify antigen-transporting M cells (Smithet al., 1987). The present work shows that it is now possible to recognize these cells in living tissue by measurement of DIOC5(3) fluorescence. The possible importance of this finding in providing a way to study cell surface-antigen interactions taking place in living tissue is discussed.  相似文献   

12.
Human papillomavirus (HPV) infection with potentially oncogenic types 16 or 18 is common in genital lesions especially in uterine carcinomas. In such lesions, in situ hybridization with non-radioactive probes is a powerful tool for the histopathologist to detect and type HPV DNA either on cell deposits or on tissue sections. The use of an immunohistochemical method involving alkaline phosphatase and Fast Red TR salt/naphthol AS-MX phosphate is proposed for use with conventional bright-field or fluorescence microscopy as well as by laser scanning confocal microscopy. The alkaline phosphatase-Fast Red reaction has the advantage of producing a red precipitate that permits the detection of in situ hybridization signals by bright-field microscopy, and of obtaining a strong red fluorescence characterized by a lack of bleaching when excited by a green light. Therefore, the alkaline phosphatase-Fast Red reaction is well adapted for observations by fluorescence and confocal microscopy, the latter method allowing the detection, in tissue sections of cervical intraepithelial lesions, of small punctate and large diffuse hybridization signals, considered as integrated and episomal states of HPV DNA respectively. The combination of in situ hybridization with the alkaline phosphatase-Fast Red reaction and confocal microscopy is particularly convincing when hybridization signals are of small size and/or of low fluorescence intensity, especially if they are present in various focal planes; in such conditions, infected cells are easily detected by three-dimensional reconstruction. Therefore, this combination is a suitable method for identifying and characterizing HPV DNA in cells and tissue sections This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

13.
Summary A new technique of quantitative histochemistry has been developed to study the cellular composition of the follicle-associated epithelium of the mouse Peyer's patch. This technique involves applying naphthol AS-BI phosphate to the surface of intact tissue where it is hydrolysed by alkaline phosphatase present in the luminal membrane of the epithelial cells. Naphthol AS-BI produced by this reaction is then coupled to Fast Red TR diazonium salt at the site of hydrolysis. M cells present in the epithelium contain little alkaline phosphatase activity and, therefore, remain white. Treatment with Alcian Blue is finally used to label goblet cells. Subsequent quantitative analysis of alkaline phosphatase-rich cells is carried out by scanning microdensitometry. Using this technique it is possible to detect two populations of alkaline phosphatase-containing cells in mice reared in a normal animal house environment.These results are discussed in relation to possible interactions taking place between enteric antigens and the gut-associated lymphoid tissue which could reduce the ability of follicle-associated enterocytes to express alkaline phosphatase.  相似文献   

14.
Synopsis The numerous osteoclasts in a giant cell tumour of bone were found to possess at least two distinct phosphatases capable of hydrolysing naphthol AS-TR phosphate. An acid phosphatase, with optimum activity about pH 4.7, could be demonstrated by simultaneous coupling with Fast Bordeaux OL or Red Violet LB, but not with Fast Red TR. The last-named salt, on the other hand, could be used for demonstrating a phosphatase with an optimum pH of activity about 7.3, showing some activity as an alkaline phosphatase at pH 8.3. This enzyme was markedly inhibited by zinc ions and could not be demonstrated by simultaneous coupling with diazonium salts stabilized with zinc chloride. The acid phosphatase was much less sensitive to zinc, but showed marked inhibition by aluminium, which had comparatively little effect on the other enzyme. Some discrepancies between the published formulae of stable diazonium salts and the substances found to be present in them are discussed.  相似文献   

15.
We describe a fluorescent histochemical technique for detection of nonspecific alkaline phosphatase (APase) in cells. The technique utilizes standard azo dye chemistry with naphthol AS-MX phosphate as substrate and fast red TR as the diazonium salt. The reaction product is a highly fluorescent red precipitate. Pre-implantation mouse embryos were used to establish optimal fixation and staining protocols and the specificity and sensitivity of the method. Fixation was in 4% paraformaldehyde for 1 hr, as glutaraldehyde induced autofluorescence of the cells. Maximal discriminable staining was detected after 15-20 min in the stain solution. The stain solution itself proved to be non-fluorescent, thus allowing visual observation of the progress of the staining reaction by fluorescence microscopy in its presence. To test the specificity of this fluorescent APase stain, a variety of cell types of known APase reactivity were stained by this protocol. Mouse lymphocytes and STO fibroblasts were negative, whereas F9 teratocarcinoma cells, intestinal epithelial cells, and rat fetal primordial germ cells were all found to be highly positive for APase activity, in agreement with published results on APase localization in these cells.  相似文献   

16.
Current techniques for studying phytoplankton physiology in the field, such as measurements of biochemical activities, nutrient addition bioassays, and determination of photosynthetic efficiency, are useful for assessing the physiology of the bulk community but suffer from a lack of specificity. This would be improved by the development of single-cell methods for monitoring in situ physiology. Here we develop and test an antibody-based assay for identifying phosphate stress in the model dinoflagellate Prorocentrum minimum (Pavillard) Schiller. Antiserum was raised against a cell-surface alkaline phosphatase purified from P. minimum. Western screening indicated that the antiserum reacted with phosphate-stressed cells but not nitrate-stressed or phosphate-replete cells in culture. Immunodepletion confirmed the identification of this protein as an alkaline phosphatase. Based on Western blots, the antiserum appeared to be specific for phosphate-regulated proteins in P. minimum because there is no discernible cross-reaction with closely related P. micans. A whole-cell immunofluorescence assay was used to identify phosphate stress in field populations of P. minimum from Narragansett Bay, Rhode Island. The percentage of labeled P. minimum cells in this environment during the summer of 1998 decreased through time as the inorganic phosphate concentration increased. The percentage of antibody-labeled cells significantly correlated with the percentage of ELF-97-labeled cells determined as another single-cell assay of phosphate stress. This is the first antibody-based method developed for monitoring cell-specific physiology in a dinoflagellate, and the method described here may serve as a model for developing similar tools in other species of phytoplankton.  相似文献   

17.
An in situ hybridization technique with HNPP (2-hydroxy-3-naphthoic acid-2'-phenylanilide phosphate) and Fast Red TR was used to detect specific bacterial cells at the single-cell level. By this technique, the fluorescent signals of target bacterial cells were up to eight times more intense than those of standard fluorescence in situ hybridization with mono-fluorescein isothiocyanate-labeled oligonucleotide probes. This novel HNPP-Fast Red TR whole-cell hybridization technique is available for the identification of small or low-rRNA-content bacterial cells in the natural environment.  相似文献   

18.
 We report a new technique using fluorescent probes to detect a mRNA and a protein simultaneously in the Drosophila embryo. For in situ hybridization, 3-hydroxy-N-2′-biphenyl-2-naphthalenecarboxamide phosphate ester (HNPP)/Fast Red TR was used as a fluorescent substrate for alkaline phosphatase. It was possible to compare protein and mRNA expression on a cell by cell basis with a laser scanning confocal microscope. We applied this technique to analyse the dynamics of Distal-less (Dll) enhancer activity in the thoracic limb primordium in the early Drosophila embryo. We stained embryos bearing the Dll early enhancer (Dll-304) fused to the Escherichia coli lacZ gene. LacZ mRNA was detectable in the ventral region of the limb primordium, and β-galactosidase protein in the dorsal region. In the middle, both mRNA and protein were detectable. These results suggest that the Dll enhancer is activated in the ventral region of the limb primordium and that Dll-positive cells migrate from a ventral position to a dorsal one within a single limb primordium. Received: 7 April 1997 / Accepted: 15 May 1997  相似文献   

19.
We developed a method using nitrocellulose membranes and image analysis to localise and quantify acid phosphatase activity in the rhizosphere of two plant species, one with cluster roots (Dryandra sessilis (Knight) Domin) and another with ectomycorrhizal roots (Pinus taeda L.). Membranes were placed in contact with roots and then treated with a solution of x, α-naphthyl phosphate and Fast Red TR. Acid phosphatase activity was visualised as a red imprint on the membrane. We quantified acid phosphatase activity by image analysis of scanned imprints. The method was used to estimate the spatial distribution of acid phosphatase activity within particular root classes (lateral roots, mycorrhizal roots, root clusters). Over 95% of the acid phosphatase activity of the root system of D. sessilis was associated with cluster roots, and between 20 and 32% of the root surface active. About 26 % of the acid phosphatase activity of the root system of P. taeda was associated with mycorrhizal roots and unsuberised white root tips and less than 10% of the root surface was active, irrespective of root type. This non-destructive method can be used for rapid, semi-quantitative assessment of acid phosphatase activity in the laboratory and in situ. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Histochemical detection of tartrate-resistant acid phosphatase (TRAP) activity is a fundamental technique for visualizing osteoclastic bone resorption and assessing osteoclast activity status in tissues. This approach has mostly employed colorimetric detection, which has limited quantification of activity in situ and co-labelling with other skeletal markers. Here, we report simple colorimetric and fluorescent TRAP assays in zebrafish and medaka, two important model organisms for investigating the pathogenesis of bone disorders. We show fluorescent TRAP staining, utilising the ELF97 substrate, is a rapid, robust, and stable system to visualise and quantify osteoclast activity in zebrafish, and is compatible with other fluorescence stains, transgenic lines and antibody approaches. Using this approach, we show that TRAP activity is predominantly found around the base of the zebrafish pharyngeal teeth, where osteoclast activity state appears to be heterogeneous.Key words: TRAP, tartrate-resistant acid phosphatase, osteoclast, ELF97, fracture, zebrafish, medaka  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号