首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An enantioseparation of the antipsychotic drug butaclamol in human plasma by high-performance liquid chromatography (HPLC) with solid phase extraction is presented. The separation was achieved on the vancomycin macrocyclic antibiotic chiral stationary phase (CSP) Chirobiotic V with a polar ionic mobile phase (PIM) consisting of methanol : glacial acetic acid : triethylamine (100:0.2:0.05, v/v/v) at a flow rate of 0.5 ml/min. The detection wavelength was 262 nm. Bond Elut C18 solid phase extraction cartridges were used in the sample preparation of butaclamol samples from plasma. The method was validated over the range of 100-3,000 ng/ml for each enantiomer concentration (R(2) > 0.999). Recoveries for (+)- and (-)-butaclamol were in the range of 94-104% at the 300-2,500 ng/ml level. The method proved to be precise (within-run precision ranged from 1.1-2.6% and between-run precision ranged from 1.9-3.2%) and accurate (within-run accuracies ranged from 1.5-5.8% and between-run accuracies ranged from 2.7-7.7%). The limit of quantitation (LOQ) and limit of detection (LOD) for each enantiomer in human plasma were 100 ng/ml and 50 ng/ml, respectively.  相似文献   

2.
Resolution of racemic thioridazine obtained from Thioril tablets (Cipla Ltd., Goa, India) into its enantiomers has been achieved by HPLC using a beta-cyclodextrin (CD)-bonded stationary phase. Thioridazine was isolated from commercial formulations and was purified using preparative TLC. The purity was ascertained by RP-HPLC. For the resolution of rac-thioridazine using cyclodextrin based CSP and mobile phase of 0.05 M phosphate buffer (pH 6.5)-acetonitrile (50:50) was found to be successful. The optimum conditions of resolution were established by systematically studying the effect of organic modifier, concentration of buffer, pH and flow rate of mobile phase. The detection limit was found to be 10 microg (5 microg of each enantiomer). The enantiomeric purity of each of the resolved isomers was verified by optical rotation.  相似文献   

3.
Enantiomeric resolution of teratolol was achieved on a vancomycin macrocyclic antibiotic chiral stationary phase known as Chirobiotic V with UV detection set at 220 nm. The polar ionic mobile phase (PIM) consisted of methanol-glacial acetic acid-triethylamine (100:0.01:0.015, v/v/v) has been used at a flow rate of 0.8 ml min(-1) . The calibration curves in plasma were linear over the range of 5-500 ng ml(-1) for each enantiomer with detection limit of 2 ng ml(-1) . The proposed method was validated in compliance with the international conference on harmonization (ICH) guidelines. The developed method applied for the trace analyses of tertatolol enantiomers in plasma and for the pharmacokinetic study of tertatolol enantiomers in rat plasma. The assay proved to be suitable for therapeutic drug monitoring and chiral quality control for tertatolol formulations by HPLC.  相似文献   

4.
The enantiomers of the antiinflammatory drug Etodolac were separated without derivatization on Chiralcel OD and Pirkle (R)-DNBPG columns. Enantiomeric purity can be determined in less than 10 min. Optimization of separation was evaluated using various concentrations of 2-propanol (doped with TFA) in hexane as the mobile phase. © 1993 Wiley-Liss, Inc.  相似文献   

5.
A stereospecific HPLC method for separation of Frovatriptan enantiomers in bulk drug and pharmaceutical formulations was developed and validated on a normal-phase amylose derivertized chiral column. The effects of the organic modifiers namely 2-propanol, ethanol and diethyl amine (DEA) in the mobile phase were optimized to obtain the best enantiomeric separation. Calibration curves were linear over the range of 200-6150 ng/mL, with a regression coefficient (R(2)) of 0.9998. The limit of detection (LOD) and limit of quantification (LOQ) were 65 ng/mL and 200 ng/mL, respectively. The method was accurate and precise and suitable for the intended purpose. Analysis results were compared with the results obtained by using a validated chiral CE method and found to be in very good agreement. This method can be successfully applied to the enantiomeric purity analysis of Frovatriptan in pharmaceutical bulk drug samples and formulations.  相似文献   

6.
Wang P  Liu D  Jiang S  Gu X  Zhou Z 《Chirality》2007,19(2):114-119
Amylopectin-tris(phenylcarbamate) was synthesized and coated to aminopropylsilica to prepare chiral stationary phase. The chiral separations of fungicide enantiomers were performed by the CSP using high-performance liquid chromatography. Mobile phase was n-hexane and isopropanol, and flow rate was 1.0 ml/min. Detection wavelength was 230 nm. The influence of the percentage of isopropanol in the mobile phase on the separations was studied. Twelve chiral fungicides were tested and seven of them were found to show stereoselectivity on the CSP. The enantiomers of metalaxyl and benalaxyl got near baseline separations and myclobutanil, hexconazole, tebuconazole, uniconazole, and paclobutrazol enantiomers were completely separated. The decreasing percentage of isopropanol in the mobile phase resulted in better separation and longer analysis time. The enantiomers were identified by a circular dichroism (CD) detector and the CD spectra of the individual enantiomers were also studied by online scanning.  相似文献   

7.
Fluorescent anthryl (ADAM) derivatives of hepoxilins have been shown to possess good chromatographic properties affording good sensitivity for the high-performance liquid chromatographic analysis and detection of these compounds and related eicosanoids (12-hydroxyeicosatetraenoic acid) in biological samples. We report herein the separation of all possible stereoisomers of hepoxilins A3 and B3 as their methyl esters as well as their ADAM ester and acetate derivatives on a cellulose trisdimethylphenylcarbamate chiral stationary phase (Chiracel OD) in the normal-phase mode. This methodology is important to address the mechanistic route of biosynthesis of these products.  相似文献   

8.
A direct, isocratic, and simple reversed-phase HPLC method was described for the separation of enantiomers of the proton pump inhibitor, rac-pantoprazole (PAN) using cellulose-based chiral stationary phases (Chiralcel OD-R and Chiralcel OJ-R). Some structurally related chiral benzimidazole sulfoxides, rac-omeprazole (OME) and raclansoprazole (LAN), were also studied. Chiralcel OJ-R was successful in the resolution of enantiomers of rac-PAN and rac-OME, while Chiralcel OD-R was most suitable for resolving the enantiomers of rac-LAN. Highest enantioselectivity to rac-PAN and rac-OME was achieved on Chiralcel OJ-R by using acetonitrile as an organic modifier, whereas methanol afforded better resolution of rac-LAN on Chiralcel OD-R than acetonitrile. Increases in buffer concentration and column temperature decreased retention and did not improve the resolution of the enantiomers on both columns. Using a mixture of 50 mM sodium perchlorate solution and acetonitrile as a mobile phase at a flow rate of 0.5 ml/min, maximum separation factors of 1.26 and 1.13 were obtained for the enantiomers of rac-PAN and rac-OME using a Chiralcel OJ-R column, while maximum separation factor of 1.16 was obtained for the enantiomers of rac-LAN using a Chiralcel OD-R column. © 1995 Wiley-Liss, Inc.  相似文献   

9.
We present a method for the enantioselective analysis of albendazole sulfoxide (ABZSO) in plasma for application in clinical pharmacokinetic studies. ABZSO enantiomers were separated on a 5-μm Chiralcel OB-H® column (4.6 × 150 mm) using hexane:ethanol (93:7, v/v) as the mobile phase and fluorescence detection. ABZSO was extracted with chloroform:isopropanol (8:2, v/v) from 500-μl aliquots of acidified plasma, with full drug recovery. The proposed method presented quantitation limits of 20 ng/ml for (−)ABZSO and 50 ng/ml for (+)ABZSO and was linear up to a concentration of 5,000 ng/ml of each enantiomer. Chirality 9:722–726, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
A method is described that combines chiral HPLC and off-line GC with mass-selective detection for the quantitation of the enantiomers of nisoldipine [(±)-I] in human plasma. An isotope-labelled internal standard [nine-fold deuterated (±)-I] is used throughout the assay. The limit of quantification is 0.1 μg/l for each enantiomer. Data on the precision, accuracy and selectivity of the method are presented. Enantioselective analysis was performed in subjects receiving the racemic drug in tablet form. In healthy volunteers the maximum concentration and the area under the curve of the pharmacologically more active (+)-enantiomer were greater by 9-fold and 13-fold, respectively, compared to those of the (−)-enantiomer. In elderly hypertensive patients plasma concentrations of (+)-I were ca. five times as high as those of the (−)-enantiomer. Stereoselectivity was not affected by hepatic impairment. After intravenous administration of (±)-I there were no relevant differences between the plasma concentrations of the enantiomers.  相似文献   

11.
Vancomycin immobilized on silica served as the chiral stationary phase (CSP) in this investigation with polar organic solvents as the mobile phase in liquid chromatography (LC). It was shown that trace amounts of water were beneficial for improving peak shape and efficiency. To regulate the retention and selectivity an acid and/or base were added to the mobile phase where an excess of acid was shown to be preferential for enantioseparation. An unusual increase in selectivity with increasing temperature was shown for the acidic drug, thalidomide. Additionally, nonlinear van't Hoff plots were obtained for metoprolol enantiomers that showed increased retention with increasing temperature. Metoprolol also showed unusual behavior in the polar organic phase when water was added to resemble reversed-phase chromatography, with minimum retention observed at high water or high methanol concentrations. In both instances a high degree of electrostatic interaction between metoprolol and vancomycin was concluded. Metoprolol and ten of its analogs were examined on this CSP to evaluate the enantiorecognition process. A comparison in enantioselectivity for a number of acidic and basic drugs using this CSP was also carried out using the polar organic phase, reversed phase, and normal phase LC which were all compared to the results obtained in supercritical fluid chromatography (SFC). Polar organic phase LC offered a better separation of basic molecules while reversed phase LC was preferred for the resolution of acids. SFC showed the broadest enantioselectivity overall and normal phase LC indicated similar properties, as expected, to SFC but with lower column efficiency. Copyright 2000 Wiley-Liss, Inc.  相似文献   

12.
A chiral stationary phase (CSP) recently developed by bonding (diphenyl-substituted 1,1'-binaphthyl) crown ether to silica gel for the liquid chromatographic separation of enantiomers was applied to the resolution of investigational fluoroquinolone antibacterial agents including gemifloxacin (formerly LB20304a). All fluoroquinolone compounds used in this study were resolved quite well on the CSP. Especially, the resolution of gemifloxacin and its analogs on the CSP was excellent and even greater than that on the commercial Crownpak CR(+). The resolution was found to be dependent on the type and the content of organic, acidic, and inorganic modifiers added to the mobile phase and on the column temperature.  相似文献   

13.
We present a method for the enantioselective analysis of propafenone in human plasma for application in clinical pharmacokinetic studies. Propafenone enantiomers were resolved on a 10-μm Chiralcel OD-R column (250×4.6 mm I.D.) after solid-phase extraction using disposable solid-phase extraction tubes (RP-18). The mobile phase used for the resolution of propafenone enantiomers and the internal standard propranolol was 0.25 M sodium perchlorate (pH 4.0)–acetonitrile (60:40, v/v), at a flow-rate of 0.7 ml/min. The method showed a mean recovery of 99.9% for (S)-propafenone and 100.5% for (R)-propafenone, and the coefficients of variation obtained in the precision and accuracy study were below 10%. The proposed method presented quantitation limits of 25 ng/ml and was linear up to a concentration of 5000 ng/ml of each enantiomer.  相似文献   

14.
The first CE method enabling the quantitation of the two enantiomers of bupropion was developed in this work. Electrokinetic chromatography (EKC) mode using cyclodextrins as chiral selectors was employed. A study on the enantiomeric separation ability of different neutral and anionic CDs was carried out. Sulfated-beta-CD was shown to provide the highest values for the enantiomeric resolution. The influence of some experimental conditions, such as pH, chiral selector concentration, temperature, and separation voltage on the enantiomeric separation of bupropion was also studied. The use of 10 mM sulfated-beta-CD in 50 mM borate buffer (pH 9.0) with an applied voltage of 30 kV and a temperature of 30 degrees C enabled the separation of the enantiomers of bupropion with high resolution (Rs > 7) and short analysis time (approximately 3.5 min). Finally, the method was successfully applied to the quantitation of bupropion in two pharmaceutical formulations.  相似文献   

15.
A high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI/MS) method for simultaneous stereoselective analysis of venlafaxine (VEN) and its major metabolite O-desmethylvenlafaxine (ODV) enantiomers in human plasma has been developed and validated. Chiral chromatography is performed on the CHRIOBIOTIC V (5 microm, 250 mm x 4.6 mm) column with mobile phase constituted of 30 mmol/l ammonium acetate-methanol (15:85, pH 6.0) at a flow rate of 1.0 ml/min and a postcolumn splitting ratio of 3:1. The compounds were ionized in the electrospray ionization (ESI) ion source of the mass spectrometer and detected using the selected ion recording (SIR) mode. Calibration curves obtained from spiked plasma were linear in the range of 5.0-400 ng/ml for S-(+)-VEN and R-(-)-VEN, 4.0-280 ng/ml for S-(+)-ODV and R-(-)-ODV, respectively, with linear correlation coefficient all above 0.999. The average extraction recoveries for all the four analytes were above 76%. The methodology recoveries were higher than 92%. The limit of detection were 1.0 ng/ml for S-(+)-VEN and R-(-)-VEN, 1.5 ng/ml for S-(+)-ODV and R-(-)-ODV, respectively. The intra- and inter-day variation coefficients were less than 9%.  相似文献   

16.
Carvedilol is an antihypertensive drug available as a racemic mixture. (?)‐(S)‐carvedilol is responsible for the nonselective β‐blocker activity but both enantiomers present similar activity on α1‐adrenergic receptor. To our knowledge, this is the first study of carvedilol enantiomers in human plasma using a chiral stationary phase column and liquid chromatography with tandem mass spectrometry. The method involves plasma extraction with diisopropyl ether using metoprolol as internal standard and direct separation of the carvedilol enantiomers on a Chirobiotic T® (Teicoplanin) column. Protonated ions [M + H]+ and their respective ion products were monitored at transitions of 407 > 100 for the carvedilol enantiomers and 268 > 116 for the internal standard. The quantification limit was 0.2 ng ml?1 for both enantiomers in plasma. The method was applied to study enantioselectivity in the pharmacokinetics of carvedilol administered as a single dose of 25 mg to a hypertensive patient. The results showed a higher plasma concentration of (+)‐(R)‐carvedilol (AUC0–∞ 205.52 vs. 82.61 (ng h) ml?1), with an enantiomer ratio of 2.48. Chirality, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
A novel method for the separation and simultaneous determination of urinary D- and L-lactic acid enantiomers by high performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS) is presented. The chiral separation was optimized on a Chirobiotic teicoplanin aglyocone (TAG) column. Most interestingly, the addition of water in small volume fraction to the polar organic mobile phase was found to significantly improve the chromatography. Calibration curves were linear (r2>0.9950) over the range 3-1000 mg/L for L-lactic acid and 0.5-160.8 mg/L for D-lactic acid. The limit of detection (LOD) (S/N=3) and limit of quantification (LOQ) (S/N=10) were determined experimentally (n=3) to be 0.2 and 0.5mg/L for L-lactic acid and 0.4 and 1.3 mg/L for D-lactic acid, respectively. The normal patient range of L-lactic acid was 1-20 microg/mg creatinine with an elevated value of 85 microg/mg creatinine. For D-lactic acid, the range of normal values were between 0 and 5 microg/mg creatinine with an elevated value of 40 microg/mg creatinine. Finally, the validated method allows for rapid analysis with a total run time of 7.5 min.  相似文献   

18.
This paper describes the enantiorecognition of (±)nicotine and (±)nornicotine by high-performance liquid chromatography using two derivatized cellulose chiral stationary phases (CSPs) operated in the normal phase mode. It was found that different substituents linked to the cellulose backbone significantly influence the chiral selectivity of the derivatized CSP. The results showed that, in general, the tris(4-methylbenzoyl) cellulose CSP (Chiralcel OJ) surpasses tris(3,5-dimethylphenyl carbamoyl) cellulose CSP (Chiralcel OD). On the former column, the resolution (±)nicotine and (±)nornicotine enantiomers depended largely on mobile phase compositions. For the separation of the nicotine enantiomers, the addition of trifluoroacetic acid to a 95:5 hexane/alcohol mobile phase greatly improved the enantioresolution, probably due to enhanced hydrogen bonding interactions between the protonated analytes and the CSP. For (±)nornicotine separation, a reduction in the concentration of alcohol in the mobile phase was more effective than the addition of trifluoroacetic acid. Possible solute-mobile phase-stationary phase interactions are discussed to explain how different additives in the mobile phase and different substituents on the cellulose glucose units of the CSPs affect the separation of both pairs of enantiomers. Chirality 10:364–369, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    19.
    Penbutolol is a β-adrenoceptor blocking agent, and it contains the clinically relevant (?)-S-enantiomer. It was reported that the (+)-R-enantiomer of penbutolol is pharmacologically 50 times less active than the (?)-S-isomer in β-sympatholysis and without intrinsic sympathomimetic activity and refractory period in the heart muscle. Furthermore, the (+)-R-enantiomer does possess mutagenic activity. A high-performance liquid chromatographic (HPLC) method is described for direct identification, stereochemical separation, and quantitation of (+)-R-enantiomer in the clinically used (?)-S-isomer. The method involves the use of cellulose tris-3,5-dimethylphenyl carbamate chiral stationary phase coated on silica gel (OD-Chiralcel column). The capacity factors (k′) for the first eluted enantiomer and stereochemical separation factor (α) obtained were 1.32 and 1.98, respectively. The maximum stereochemical resolution factor (R) was 5.05. The method could be applied for optical purity determination of (?)-(S)-penbutolol in pharmaceutical formulation to detect for the presence of the undesirable (+)-R-enantiomer.  相似文献   

    20.
    We used a novel chromatographic method to rapidly and simply characterize the pharmacokinetics of benidipine enantiomers in human plasma. The stereoisomers of benidipine were extracted from plasma using diethylether under alkaline conditions. After evaporating the organic layer, the residue was reconstituted in the mobile phase (methanol:acetic acid:triethylamine, 100:0.01:0.0001, v/v/v). The enantiomers in the extract were separated on a macrocyclic antibiotic (Vancomycin) chiral stationary phase column. The mobile phase was eluted at 1 ml/min and was split by an interface. One-fifth of the eluent was used to quantify both isomers in a tandem mass spectrometer in multiple reaction-monitoring mode. The coefficient of variation of the precision of the assay was less than 8%, the assay accuracy was between 93.4 and 113.3%, and the limit of detection was 0.05 ng/ml for 1 ml of plasma. The method described above was used to measure the concentration of both benidipine enantiomers in plasma from healthy subjects who received a single oral dose of a racemate of 8 mg benidipine. The C(max) and AUC(inf) values of (+)-alpha benidipine were higher than those of (-)-alpha benidipine by 1.96- and 1.85-fold, respectively (p<0.001), whereas, the T(max) and t(1/2) for each of the benidipine stereoisomers were not significantly different.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号