首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary While the in vitro clonal propagation of peat mosses (Sphagnaceae) in bioreactors has been established since the late 1980s, it has never been possible to regenerate Sphagnum species from isolated protoplasts, which is a key step towards the production of closely defined genetically modified clones. The present study describes an efficient protocol for protoplast isolation and regeneration of Sphagnum fallax. Protoplast survival rates of over 50% and regeneration rates of up to 20% were achieved by using excised capitulum buds as starting material and by co-cultivating Sphagnum protoplasts with protoplasts from a chlorophyll-deficient Solanum hybrid clone. Besides the effects of nutrient components and differential osmotic readjustment of the regenerant cell clusters, the interference of unique Sphagnum phenolics, sphagnum acid and hydroxybutenolide, with protoplast isolation efficiency is demonstrated.  相似文献   

2.
A protocol is presented for regenerating plants from protoplasts of tropical mulberry. Leaves from seedling node cultures maintained in vitro were used as donor tissue. Optimal cell wall digestion was achieved with a combination of cellulase (2%) and macerozyme (1%). The plant growth regulator (PGR) combination zeatin (2.3 μM) and 2,4-dichlorophenoxyacetic acid (2,4-D) (2.3 μM) resulted in the highest number (29%) of cell divisions. First cell divisions were observed at day 4 after plating. Only zeatin (2.3 μM) and 2-methoxy-3,6-dichlorobenzoic acid (dicamba) (13.5 μM) supplemented medium supported subsequent divisions in protoplast cultures. Microcolonies reached a cell number of approximately 50, after 40 to 42 days of culture. The cells of these colonies continued dividing, leading to formation of microcalli. Whole plants were obtained after culture of microcalli on Murashige and Skoog (MS) medium containing thidiazuron (TDZ) (4.5 μM) and indole-3-acetic acid (IAA) (17.1 μM). The regenerated shoots were rooted on MS medium supplemented with 4.9 μM indole butyric acid (IBA). With a low survival rate during acclimation, regenerated plants were established in the greenhouse.  相似文献   

3.
Arachis correntina (Burkart) Krapov. & W.C. Gregory is a herbaceous perennial leguminous plant growing in the Northeast of the Province Corrientes, Argentina. It is important as forage. The development of new A. correntina cultivars with improved traits could be facilitated through the application of biotechnological strategies. The purpose of this study was to investigate the plant regeneration potential of mature leaves of A. correntina in tissue culture. Buds were induced from both petiole and laminae on 0.7% agar-solidified medium containing 3% sucrose, salts and vitamins from Murashige and Skoog (MS) supplemented with 0.5–25 M thidiazuron (TDZ). Shoot induction was achieved by transference of calli with buds to MS supplemented with 5 M TDZ. Fifty-four percent of the regenerated shoot rooted on MS + 5 M naphthaleneacetic acid. Histological studies revealed that shoots regenerated via organogenesis.  相似文献   

4.
Leaves of Solanum virginianum plants were used for protoplast isolation. To support cell wall formation and cell division, protoplasts were cultured in thin alginate layers floated in liquid medium. When protoplasts were plated at a density of 1.0 × 106/ml in Kao and Michyaluk (KMp8) medium supplemented with 0.5 mg/l zeatin, 1.0 mg/l 2,4-dichlorophenoxyacetic acid, and 1.0 mg/l α-naphthaleneacetic acid, 42.3% of the dividing cells developed microcalli in 3–4 weeks. Shoot formation via organogenesis of protoplast-derived calli was achieved for 28% of calli transferred to solidified KMp8 medium supplemented with 2.0 g/l zeatin and 0.1 mg/l 3-indol acetic acid in about 2 weeks. Further shoot development was observed in Murashige and Skoog (MS) medium without growth regulators and roots were induced after transfer to MS medium containing 1.0 mg/l 3-indol butyric acid. Regenerated plants have normal morphology.  相似文献   

5.
Fertile regenerated plants were obtained from protoplasts via somatic embryogenesis in Coker 201 (Gossypium hirsutum L.). Protoplasts were isolated from six different explantsleaves, hypocotyls, young roots, embryogenic callus, immature somatic embryos and suspension cultures and cultured in liquid thin layer KM8P medium. Callus-forming percentage of 20–50% was obtained in protoplast cultures from embryogenic callus, immature embryos and suspension cultures, and visible callus formed within 2 months. Callus-forming percentage of 5–20% in protoplast cultures from young roots, hypocotyls and leaves, and visible callus formed in 3 months. NAA 5.371 μM/kinetin 0.929 μM was effective to stimulate protoplast division and callus formation from six explants. Percentage of callus formation in the medium with 2,4-D 0.452 μM/kinetin 0.465 μM was over 40% from suspension cultures and immature embryos, 25% from embryogenic callus and 10% from hypocotyls. Callus from protoplasts developed into plantlets via somatic embryogenesis. Over 100 plantlets were obtained from protoplasts derived from 6 explants. Ten plants have been transferred to the soil, where they all have set seeds.  相似文献   

6.
Summary Totipotent callus of Cypripedium formosanum, an endangered slipper orchid species, was induced from seed-derived protocorm segments on a quarter-strength Murashige and Skoog medium containing 4.52 μM 2,4-dichlorophenoxyacetic acid and 4.54 μM 1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea (thidiazuron). This callus proliferated well and was maintained by subculturing on the same medium. On average, 13 protocorm-like bodies could be obtained from a piece of 4 mm callus after being transferred to the medium with 4.44 μM N6-benzyladenine after 8 wk of culture. The regenerated protocorm-like bodies formed shoots and roots on medium containing 1 g l−1 activated charcoal and 20 g l−1 potato homogenate. After 24 wk of culture on this medium, well-developed plantlets ready for potting were established.  相似文献   

7.
A method for isolation and shoot regeneration from electrofused protoplasts of L. angustifolius and L. subcarnosus was developed. Viable protoplasts were isolated from leaves of in-vitro grown seedlings at an average yield of 6 × 105 protoplasts g−1 fresh weight. Liquid and agarose solidified B5 media were used for protoplast culture. In the liquid-culture system, all tested media, VKM, P1 and KM8p, were applicable for inducing cell division (84% of all tested petri dishes at four weeks) and colony formation. Media containing additional carbohydrates were suitable to produce compact calli with green and brown pigmentations in different combinations. Analysis of callus with molecular markers allowed to identify six somatic hybrids. However, none of the parental-protoplast derived cell colonies could develop shoots. This is the first report on protoplast fusion of L. angustifolius and L. subcarnosus with subsequent shoot regeneration.  相似文献   

8.
Summary Lolium temulentum L. (Darnel ryegrass) is a self-fertile and diploid grass species with a relatively short life cycle. We propose to use L. temulentum as a model system for genetic manipulation studies in forage and turf grasses, since most of the important grasses are outcrossing, require vernalization to flower, and in some cases are polyploid. As the first step to develop an efficient regeneration and transformation system, we performed a large-scale genotype screening for tissue culture responses using 46 L. temulentum accessions. Embryogenic callus formation frequency ranged from <1% to 11% across all accessions tested. Embryogenic calluses of a few responsive accessions were used to establish cell suspension cultures. The regeneration frequency of green plantlets from the established cell suspension ranged from 15% to 39%. After transferring the regenerants to the greenhouse, fertile plants were readily obtained without any vernalization treatment. This efficient plant regeneration system is being used for genetic transformation studies. With the development of genomics approaches for the improvement of forage and turf grasses, L. temulentum could serve as a model system for testing gene functions.  相似文献   

9.
A system for plant regeneration from protoplasts of the moss, Atrichum undulatum (Hedw.) P. Beauv. in vitro, is first reported. Viable protoplasts were isolated at about 9 × 105 protoplasts g−1 fresh weight from 10 to 18 days protonemata. For regeneration of protoplasts, viable protoplasts were cultured in liquid–solid medium containing surface liquid medium MS (0.4 M mannitol) and subnatant solid medium Benecke (0.3 M mannitol) at 20 °C under a 16-h photoperiod white light after 12 h preculture in darkness at 20 °C. The great majority of protoplasts follow a regenerative sequence: formation of asymmetric cells in 2–3 days; division of the asymmetric cells to 2–3 cells in 4–5 days, and further develop to produce a new chloronemal filament in 15 days. Juvenile gametophyte can be visible in 20 days. The plating ratio of cell cluster regenerated from protoplasts reaches up to 45%. Transient expression experiments indicate the electroporation uptake of DNA is possible.  相似文献   

10.
Summary Protoplasts were isolated from Agrobacterium rhizogenes A4-transformed cell line of Medicago sativa L. The highest yield of protoplasts (4.2×106 per g fresh weight) was obtained from 12-d-old calluses after being subeultured on fresh medium. The viability of protoplasts reached over 80%. Protoplasts were induced to undergo sustained divisions when cultured in Durand et al. (DPD) medium supplemented with 2 mgl−1 (9.05 μM) 2,4-dichlorophenoxyacetic acid, 0,2mgl−1 (0.93 μM) kinetin, 0.3 M mannitol, 2% (w/v) sucrose, and 500 mgl−1 casein hydrolyzate at a plating density of 1.0×105 per ml. An agarose-beads culture method was appropriate for protoplast division of transformed alfalfa. The division frequency was about 30%. Numerous hairy roots were induced from protocalluses on Murashige and Skoog medium without growth regulators. Paper electrophoresis revealed that all of the regenerated hairy roots tested synthesized the corresponding opines. This protoplast culture system would be valuable for further somatic hybridization in forage legumes.  相似文献   

11.
Hairy roots were induced from androgenic embryos of horse chestnut (Aesculus hippocastanum L.) by infection with Agrobacterium rhizogenes strain A4GUS. Single roots were selected according to their morphology in the absence of antibiotic or herbicide resistance markers. Seventy-one putative transformed hairy root lines from independent transformation events were established. Regeneration was induced in MS liquid medium supplemented with 30 6-benzylaminopurine (BA), and the regenerants were multiplied on MS solid medium containing 10 M BA. Following elongation on MS medium supplemented with 1 M BA and 500 mg/l polyvinylpyrrolidone, the shoots were subjected to a root-inducing treatment. Stable integration of TL-DNA within the horse chestnut genome was confirmed by Southern hybridization. The copy number of transgenes was estimated to be from two to four.Communicated by E.D. Earle  相似文献   

12.
Pathogens Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm) contain a large number (> 12,000) of Simple Sequence Repeats (SSRs). To study the extent to which these features have contributed to the diversification of genes, we have conducted comparative studies with nineteen genomes of these bacteria. We found 210 genes with characteristic types of SSR variations. SSRs with nonamer repeat units were the most abundant, followed by hexamers and trimers. Amino acids with smaller and nonpolar R-groups are preferred to be encoded by the variant SSRs, perhaps due to their minimal impacts to protein functionality. A majority of these genes appears to code for surface or secreted proteins that may directly interact with the host factors during pathogenesis or other environmental factors. There also are others that encode diverse functions in the cytoplasm, and this protein variability may reflect an extensive involvement of phase variation in survival and adaptation of these pathogens.  相似文献   

13.
Plants were regenerated from root explants of Arabidopsis halleri (L.) O’Kane and Al-Shehbaz via a three-step procedure callus induction, induction of somatic embryos and shoot development. Callus was induced from root segments, leaflets and petiole segments after incubation for 2 weeks in Murashige and Skoog medium (MS) supplemented with 0.5 mg/l−1 (2.26 μM) 2,4-D (2,4-dichlorophenoxyacetic acid) and 0.05 mg/l−1 (0.23 μM) kinetin. Only calli developed from root segments continued to grow when transferred to a regeneration medium containing 2.0 mg/l−1 (9.8 μM) 6-γ-γ-(dimethylallylamino)-purine (2ip) and 0.05 mg/l−1 (2.68 μM) α-naphthalenacetic acid (NAA) and eventually 40 of them developed embryogenic structures. On the same medium 38 of these calli regenerated shoots. Rooting was achieved for 50 of the shoots subcultured in MS medium without hormones. The regeneration ability of callus derived from root cuttings, observed in this study, makes this technique useful for genetic transformation experiments and in vitro culture studies.  相似文献   

14.
15.
Guar (Cyamopsis tetragonoloba L. Taub) is a drought tolerant and multipurpose grain legume cash crop grown primarily under rainfed conditions in several countries. The effect of various growth regulators and their combinations on a variety of explants, namely the embryo, cotyledons, cotyledonary nodes, shoot tip and hypocotyle, has been studied and an efficient system for callus induction and regeneration from callus has been developed. It was established that Murashige and Skoogs culture medium containing 2,4-dichlorophenoxyacetic acid (10.0M) in combination with 6-benzylaminopurine (5.0M) with embryo or cotyledon explants is most suitable for induction of green and friable morphogenic callus, with a range of 82.5–95% of cultured explants responding to callus induction. Efficient de novo shoot regeneration was achieved by culturing the callus obtained on this medium on Murashige and Skoogs medium containing 1-naphthlenacetic acid (13.0M) in combination with 6-benzylaminopurine (5.0M) with a range of 82.1–88.4% of callus clumps producing 20–25 shoots. In vitro rooting of cultured shoots was obtained on half-salt concentration of Murashige and Skoogs culture medium supplied with indole-3-butyric acid (5.0M) on which 82–90% of cultured shoots produced healthy roots. The in vitro regenerated plants were grown to pod setting and subsequent maturity under greenhouse conditions.  相似文献   

16.
Summary An efficient system for the regeneration of plants from protoplasts was developed in Alstroemeria. Friable embryogenic callus (FEC) proved to be the best source for protoplast isolation and culture when compared with leaf tissue and compact embryogenic callus. Protoplast isolation was most efficient when FEC was cultured under vacuum for 5 min in an enzyme solution consisting of 4% cellulase, 0.5% Driselase and 0.2% Macerozyme, followed by culture for 12–16h in the dark at 24°C. Cell wall formation and colony formation were better in a liquid medium than on a semi-solid agarose medium. Micro-calluses were formed after 4 wk of culture. Ninety percent of the micro-calluses developed into FEC after 12wk of culture on proliferation medium. FEC cultures produced somatic embryos on a regeneration medium and half of these somatic embryos developed shoots. Protoplast-derived plants showed more somaclonal variation than vegetatively propagated control plants.  相似文献   

17.
This paper discusses a number of experiments performed, involving the fusion by an electric field of mesophyll protoplasts from Solanum tuberosum cv. Bintje, S. tuberosum dihaploid clones 243, 299 and the wild tuberous disease-resistant species S. bulbocastanum and S. pinnatisectum. Three fusion experiments (S. bulbocastanum + S. tuberosum dihaploid 243, S. pinnatisectum + S. tuberosum cv. Bintje and S. pinnatisectum + S. tuberosum dihaploid 299) yielded 542 calli, the 52 ones of which produced shoots. Obtained regenerants were estimated by the flow-cytometry (FC) and RAPD analysis to determine hybrid plants.The utilisation of the FC as a useful method for detecting somatic hybrids is also discussed in this paper. The combination S. bulbocastanum + S. tuberosum dihaploid 243 led to the creation of eight somatic hybrids, the combination S. pinnatisectum + S. tuberosum cv. Bintje yielded four somatic hybrids and the combination S. pinnatisectum + S. tuberosum dihaploid 299 resulted in no hybrid regenerants. Morphology in vitro, growth vigour and production of tuber-like structures were evaluated in hybrid plants. Plants were transferred in vivo for further estimation (acclimatization, habitus evaluation and tuberization ability).  相似文献   

18.
Using an Agrobacterium-mediated transformation method based on wounding cultured immature seeds with carborundum (600 mesh) in liquid, auxin-regulated tobacco glutathione S -transferase (GST) (NT107) constructs were used to transform Dianthus superbusL. A 663 bp DNA band was found in the transgenic plant genome by PCR analysis using NT107-1 and NT107-2 primers, and a Southern blot analysis showed that the DIG-labelled GST gene was hybridized to the expected amplified genomic DNA fragment from transgenic D. superbus. An overexpression of NT107 led to a twofold increase in GST-specific activity compared to the non-transgenic control plants, and the GST overexpression plants showed an enhanced acclimatization in the soil. To investigate whether an increased expression of GST could affect the resistance of photosynthesis to environmental stress, these plants were subjected to drought and various light intensities from 100 to 3000 mol m–2s–1. Copper accumulation and the translocation rate were also analysed in the transgenic lines, and the GST overexpression plants were found to synthesize phytochelatin (PC), which functions by sequestering and detoxifying excess copper ions.These two authors contributed equally to this work  相似文献   

19.
In this work we show how three types of cucumber in vitro cultures – leaf callus culture, cytokinin dependent cell suspension and liquid culture of meristematic clumps – influence the metabolite profiles of plants in the first generative progeny. Based on this study we conclude that there exists a specific and inheritable metabolic fingerprint reflecting the history of previous generations, probably related to specific stress factors accompanying the passage through different types of culture. The leaf callus culture generated the highest heritable differences in metabolite content and was the most distinctly separated cluster in PCA analysis. The smallest number of variable metabolites characterizes the plants regenerated from cytokinin dependent cell suspension whereas the liquid culture of meristematic clumps induced slightly more changes. Changes induced by these two culture types were not as pronounced as in the case of leaf callus culture. However the plants after these types of culture were well separated from the control on PCA diagram. The highest changes were over 2-fold increases in cystin and galactose-6-P and over 2-fold decreases in aspartate, myo-inositol, hydroxylamine, phosphate and putrescine. These changes concerned the plants, which were one generation after the leaf callus culture. The possible nature of observed heritable changes is discussed.  相似文献   

20.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号