首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
During development, secreted morphogens such as Wnt, Hedgehog (Hh), and BMP emit from their producing cells in a morphogenetic field, and specify different cell fates in a direct concentration-dependent manner. Understanding how morphogens form their concentration gradients to pattern tissues has been a central issue in developmental biology. Various experimental studies from Drosophila have led to several models to explain the formation of morphogen gradients. Over the past decade, one of the main findings in this field is the characterization of heparan sulfate proteoglycan (HSPG) as an essential regulator for morphogen gradient formation. Genetic and cell biological studies have showed that HSPGs can regulate morphogen activities at various steps including control of morphogen movement, signaling, and intracellular trafficking. Here, we review these data, highlighting recent findings that reveal mechanistic roles of HSPGs in controlling morphogen gradient formation.Embryonic development involves many spatial and temporal patterns of cell and tissue organization. These patterning processes are controlled by gradients of morphogens, the “form-generating substances” (Tabata and Takei 2004; Lander 2007). Secreted morphogen molecules, including members of Wnt, Hedgehog (Hh), and transforming growth factor-β (TGF-β) families, are generated from organizing centers and form concentration gradients to specify distinct cell fates in a concentration-dependent manner. Understanding how morphogen gradients are established during development has been a central question in developmental biology. Over the past decade, studies in both Drosophila and vertebrates have yielded important insights in this field. One of the important findings is the characterization of heparan sulfate proteoglycan (HSPG) as an essential regulator for morphogen gradient formation. In this review, we first discuss various models for morphogen movement. Then, we focus on the functions of HSPGs in morphogen movement, signaling, and trafficking.  相似文献   

2.
The importance of morphogens is a central concept in developmental biology. Multiple-fate patterning and the robustness of the morphogen gradient are essential for embryo development. The ways by which morphogens diffuse from a local source to form long distance gradients can differ from one morphogen to the other, and for the same morphogen in different organs. This paper will study the mechanism by which morphogens diffuse through the aid of membrane-associated non-receptors and will investigate how the membrane-associated non-receptors help the morphogen to form long distance gradients and to achieve good robustness. Such a mechanism has been reported for some morphogens that are rapidly turned over. We will establish a set of reaction-diffusion equations to model the dynamical process of morphogen gradient formation. Under the assumption of rapid morphogen degradation, we discuss the existence, uniqueness, local stability, approximation solution, and the robustness of the steady-state gradient. The results in this paper show that when the morphogen is rapidly turned over, diffusion of the morphogen through membrane-associated non-receptors is a possible strategy to form a long distance multiple-fate gradient that is locally stable and is robust against the changes in morphogen synthesis rate.  相似文献   

3.
Erickson JL 《Fly》2011,5(3):266-271
As early as 1964 it was suggested that simple diffusion of morphogens away from their secretion source did not provide an adequate explanation for the formation and maintenance of morphogen gradients. Involvement of the endosome in morphogen distribution models provides an explanation for the slow, directional movement of morphogens, as well as their ability to form intracellular and extracellular gradients independent of morphogen production rates. Drosophila melanogaster morphogens Wg and Dpp form stable, steep, long-range gradients that specify the polarity of the wing disc. The process of endocytosis is imperative to the two central themes in gradient formation: active transport facilitating long-range signaling and degradation of morphogen to sustain gradient shape. This review investigates the endomembrane-mediated processes of re-secretion, degradation and argosome transport of Wg and Dpp in the hope that a better understanding of the endomembrane system will contribute to a more accurate and comprehensive model for morphogen gradient formation and maintenance.  相似文献   

4.
《Fly》2013,7(3):266-271
As early as 1964 it was suggested that simple diffusion of morphogens away from their secretion source did not provide an adequate explanation for the formation and maintenance of morphogen gradients. Involvement of the endosome in morphogen distribution models provides an explanation for the slow, directional movement of morphogens, as well as their abilty to form intracellular and extracellular gradients independent of morphogen production rates. Drosophila melanogaster morphogens Wg and Dpp form stable, steep, long-range gradients that specify the polarity of the wing disc. The process of endocytosis is imparative to the two central themes in gradient formation; active transport facilitating long-range signalling, and degradation of morphogen to sustain gradient shape. This review investigates the endomembrane mediated processes of re-secretion, degradation, and argosome transport of Wg and Dpp in the hope that a better understanding of the endomembrane system will contribute to a more accurate and comprehensive model for morphogen gradient formation and maintenance.  相似文献   

5.
Bone morphogenetic proteins (BMPs) act as morphogens to control patterning and growth in a variety of developing tissues in different species. How BMP morphogen gradients are established and interpreted in the target tissues has been extensively studied in Drosophila melanogaster. In Drosophila, Decapentaplegic (Dpp), a homologue of vertebrate BMP2/4, acts as a morphogen to control dorsal–ventral patterning of the early embryo and anterior–posterior patterning and growth of the wing imaginal disc. Despite intensive efforts over the last twenty years, how the Dpp morphogen gradient in the wing imaginal disc forms remains controversial, while gradient formation in the early embryo is well understood. In this review, we first focus on the current models of Dpp morphogen gradient formation in these two tissues, and then discuss new strategies using genome engineering and nanobodies to tackle open questions.  相似文献   

6.
Morphogens are signaling molecules that are secreted by a localized source and spread in a target tissue where they are involved in the regulation of growth and patterning. Both the activity of morphogenetic signaling and the kinetics of ligand spreading in a tissue depend on endocytosis and intracellular trafficking. Here, we review quantitative approaches to study how large-scale morphogen profiles and signals emerge in a tissue from cellular trafficking processes and endocytic pathways. Starting from the kinetics of endosomal networks, we discuss the role of cellular trafficking and receptor dynamics in the formation of morphogen gradients. These morphogen gradients scale during growth, which implies that overall tissue size influences cellular trafficking kinetics. Finally, we discuss how such morphogen profiles can be used to control tissue growth. We emphasize the role of theory in efforts to bridge between scales.A fundamental challenge in biology is to understand how morphologies and complex patterns form in multicellular systems by the collective organization of many cells. Cells divide and undergo apoptosis, and they communicate via signaling pathways that use molecules as information carriers. In tissues, large-scale patterns of gene expression emerge from the coordinated signaling activity and response of many cells. The establishment of such patterns is often guided by long-range concentration profiles of morphogens. Cell divisions and cell rearrangements must be coordinated over large distances to achieve specific tissue sizes and shapes. To unravel how molecular processes and interactions can eventually be responsible for the formation of structures and patterns in tissues during development, it is important to study processes at different scales and understand how different levels of organization are connected. Such an approach becomes strongest if it involves a combination of quantitative experimental studies with theory.In the present article, we discuss several such approaches on different scales with a particular emphasis on theory. Starting from the kinetic and dynamic properties of endosomal networks inside a cell, we discuss transport processes in a tissue that can be related to kinetic trafficking parameters. Such transport processes are then responsible for the formation of graded morphogen concentration profiles. To permit scalable patterns in tissues of different sizes, it has been suggested that morphogen gradients scale during growth. This can be achieved on the tissue level by feedback systems that are sensitive to tissue size and regulate, for example, morphogen degradation. Finally, morphogen gradients that scale with tissue size can provide a system to robustly organize cell division in a large tissue and generate homogeneous growth. Theory can play an important role to bridge scales and understand how molecular and cellular processes can control pattern formation and tissue growth on larger scales.Morphogens are signaling molecules that are secreted in specific regions of developing tissues and can induce signaling activity far from their source. They typically form graded concentration profiles and therefore endow cells with positional information (cells can obtain information about their position in a tissue). Thus, they can guide cells to differentiate into complex morphological patterns. Morphogens also control cell growth and cell division. Because they control both patterning and growth, they may play a key role to coordinate these two processes. Such coordination is important because the size of morphological patterns must adjust during growth, whereas growth influences such patterns. A well-studied morphogen is Decapentaplegic (Dpp), which controls morphogenesis in the imaginal wing disc of developing Drosophila. Consequently, mutations in Dpp or defects in the trafficking pathways that control its graded concentration profiles and signaling affect the formation and structure of the adult wing.The study of morphogens was traditionally approached from a genetic perspective: Which gene products behave like morphogens? Which mutants affect patterning and growth? The realization that morphogens typically operate by a gradient of concentration raised the question of how morphogen gradients are generated. It became clear that the cellular trafficking of morphogens is a key issue for the generation of morphogen profiles. Morphogens are secreted ligands that bind receptors in the plasma membrane. The secretion of the ligands and the concentrations of receptor, ligand, and receptor/ligand complex at the plasma membrane are governed by their trafficking in the cell by vesicular transport. In particular, it was shown that trafficking through the endocytic pathway has an important impact on the formation of morphogen gradients (reviewed in Gonzalez-Gaitan 2003; see Bökel and Brand 2014). This is, to a large extent, how the cells respond to morphogens and contribute to set their local concentrations. To understand functions of morphogens in a tissue, we need to study how the gradient is formed. This, in turn, requires insights into morphogen trafficking through the endocytic pathway. The problem of morphogen behavior, therefore, becomes a problem spanning several levels of complexity: the organ level, the tissue level, the cell level, the organelle level, and the molecular level. Theoretical approaches motivated by physics combined with quantitative experimental approaches provide an ideal framework to understand how these different levels of complexity are intertwined.Two recent discoveries highlighted such integration. (1) The observation that profiles of the morphogen Dpp scale during growth, which implies that the rate of Dpp degradation mediated by the endocytic pathway of each of the cells in the tissue depends on the size of the overall tissue. This suggests that two levels of complexity are linked because cellular trafficking receives cues about the global tissue size. (2) As a result of the changes of the degradation rate that leads to gradient scaling, cells receive an increasing level of signaling. This, in turn, can be used by the cells to decide when to divide. This regulation again involves two levels of complexity because regulation at the endocytic pathway determines the growth properties of the tissue and, ultimately, its final size.In the following, we discuss quantitative approaches to study cellular signaling processes on different scales. Here, the aim is to understand how patterns on large scales can emerge during development from molecular processes and signaling pathways that involve endocytosis and cellular trafficking. We begin by describing trafficking of ligands in the endocytic pathway. We then consider the situation of a morphogen ligand and its impact in gradient formation. Subsequently, we discuss how gradient scaling might be realized. Finally, we discuss how such scaling processes play an important role in the regulation of morphogenetic growth.  相似文献   

7.
Morphogen gradients provide long-range positional information by extending across a developing field. To ensure reproducible patterning, their profile is invariable despite genetic or environmental fluctuations. Common models assume a morphogen profile that decays exponentially. Here, we show that exponential profiles cannot, at the same time, buffer fluctuations in morphogen production rate and define long-range gradients. To comply with both requirements, morphogens should decay rapidly close to their source but at a significantly slower rate over most of the field. Numerical search revealed two network designs that support robustness to fluctuations in morphogen production rate. In both cases, morphogens enhance their own degradation, leading to a higher degradation rate close to their source. This is achieved through reciprocal interactions between the morphogen and its receptor. The two robust networks are consistent with properties of the Wg and Hh morphogens in the Drosophila wing disc and provide novel insights into their function.  相似文献   

8.
Morphogen gradient formation and vesicular trafficking   总被引:3,自引:1,他引:2  
Morphogens are secreted signaling molecules which form spatial concentration gradients while moving away from a restricted source of production. A simple model of gradient formation postulates that the morphogens dilute as they diffuse between cells. In this review we discuss recent data supporting the idea that movement of the morphogen could also occur via vesicular trafficking through the cells. We explore the implications of these results for the control of gradient formation and the determination of the gradient slope which ultimately encodes the coordinates of positional information.  相似文献   

9.
Dekanty A  Milán M 《EMBO reports》2011,12(10):1003-1010
Morphogens are conserved, secreted signalling molecules that regulate the size, shape and patterning of animal tissues and organs. Recent experimental evidence has emphasized the fundamental role of tissue growth in expanding the expression domains of morphogens and their target genes, in generating morphogen gradients and in modulating the response of cells to morphogens. Moreover, the classic view of how morphogens, particularly through their concentration gradient, regulate tissue size during development has been revisited recently. In this review, we discuss how morphogens and tissue growth affect each other, and we attempt to integrate genetic and molecular evidence from vertebrate and invertebrate model systems to put forward the idea that the interaction between growth and morphogens is a general feature of highly proliferative tissues.  相似文献   

10.
Morphogen gradients are crucial for the development of organisms. The biochemical properties of many morphogens prevent their extracellular free diffusion, indicating the need of an active mechanism for transport. The involvement of filopodial structures (cytonemes) has been proposed for morphogen signaling. Here, we describe an in silico model based on the main general features of cytoneme-meditated gradient formation and its implementation into Cytomorph, an open software tool. We have tested the spatial and temporal adaptability of our model quantifying Hedgehog (Hh) gradient formation in two Drosophila tissues. Cytomorph is able to reproduce the gradient and explain the different scaling between the two epithelia. After experimental validation, we studied the predicted impact of a range of features such as length, size, density, dynamics and contact behavior of cytonemes on Hh morphogen distribution. Our results illustrate Cytomorph as an adaptive tool to test different morphogen gradients and to generate hypotheses that are difficult to study experimentally.  相似文献   

11.
Morphogens, their identification and regulation   总被引:17,自引:0,他引:17  
During the course of development, cells of many tissues differentiate according to the positional information that is set by the concentration gradients of morphogens. Morphogens are signaling molecules that emanate from a restricted region of a tissue and spread away from their source to form a concentration gradient. As the fate of each cell in the field depends on the concentration of the morphogen signal, the gradient prefigures the pattern of development. In this article, we describe how morphogens and their functions have been identified and analyzed, focusing on model systems that have been extensively studied.  相似文献   

12.
A previously investigated basic model (System B) for the study of signaling morphogen gradient formation that allows for reversible binding of morphogens (aka ligands) with signaling receptors, degradation of bound morphogens and diffusion of unbound morphogens is extended to include the effects of membrane-bound non-signaling molecules (or non-receptors for short) such as proteoglycans that bind reversibly with the same morphogens and degrade them. Our main goal is to delineate the effects of the presence of non-receptors on the existence and properties of the steady-state concentration gradient of signaling ligand–receptor complexes. Stability of the steady-state morphogen gradients is established and the time to reach steady-state behavior after the onset of morphogen production will be analyzed. The theoretical findings offer explanations for observations reported in several previous experiments on Drosophila wing imaginal discs.  相似文献   

13.
The organization of cells and tissues is controlled by the action of 'form-giving' signalling molecules, or morphogens, which pattern a developmental field in a concentration-dependent manner. As the fate of each cell in the field depends on the level of the morphogen signal, the concentration gradient of the morphogen prefigures the pattern of development. In recent years, molecular genetic studies in Drosophila melanogaster have allowed tremendous progress in understanding how morphogen gradients are formed and maintained, and the mechanism by which receiving cells respond to the gradient.  相似文献   

14.
The signaling molecules Hedgehog (Hh), Decapentaplegic (Dpp) and Wingless (Wg) function as morphogens and organize wing patterning in Drosophila. In the screen for mutations that alter the morphogen activity, we identified novel mutants of two Drosophila genes, sister of tout-velu (sotv) and brother of tout-velu (botv), and new alleles of tout-velu (ttv). The encoded proteins of these genes belong to an EXT family of proteins that have or are closely related to glycosyltransferase activities required for biosynthesis of heparan sulfate proteoglycans (HSPGs). Mutation in any of these genes impaired biosynthesis of HSPGs in vivo, indicating that, despite their structural similarity, they are not redundant in the HSPG biosynthesis. Protein levels and signaling activities of Hh, Dpp and Wg were reduced in the cells mutant for any of these EXT genes to a various degree, Wg signaling being the least sensitive. Moreover, all three morphogens were accumulated in the front of EXT mutant cells, suggesting that these morphogens require HSPGs to move efficiently. In contrast to previous reports that ttv is involved exclusively in Hh signaling, we found that ttv mutations also affected Dpp and Wg. These data led us to conclude that each of three EXT genes studied contribute to Hh, Dpp and Wg morphogen signaling. We propose that HSPGs facilitate the spreading of morphogens and therefore, function to generate morphogen concentration gradients.  相似文献   

15.
The lipid-modified morphogens Wnt and Hedgehog diffuse poorly in isolation yet can spread over long distances in vivo, predicting existence of two distinct forms of these morphogens. The first is poorly mobile and activates short-range target genes. The second is specifically packed for efficient spreading to induce long-range targets. Subcellular mechanisms involved in the discriminative secretion of these two forms remain elusive. Wnt and Hedgehog can associate with membrane microdomains, but the function of this association was unknown. Here we show that a major protein component of membrane microdomains, reggie-1/flotillin-2, plays important roles in secretion and spreading of Wnt and Hedgehog in Drosophila. Reggie-1 loss-of-function results in reduced spreading of the morphogens, while its overexpression stimulates secretion of Wnt and Hedgehog and expands their diffusion. The resulting changes in the morphogen gradients differently affect the short- and long-range targets. In its action reggie-1 appears specific for Wnt and Hedgehog. These data suggest that reggie-1 is an important component of the Wnt and Hedgehog secretion pathway dedicated to formation of the mobile pool of these morphogens.  相似文献   

16.
Morphogen gradients play a key role in multiple differentiation processes. Both the formation of the gradient and its interpretation by the receiving cells need to occur at high precision to ensure reproducible patterning. This need for quantitative precision is challenged by fluctuations in the environmental conditions and by variations in the genetic makeup of the developing embryos. We discuss mechanisms that buffer morphogen profiles against variations in gene dosage. Self-enhanced morphogen degradation and pre-steady-state decoding provide general means for buffering the morphogen profile against fluctuations in morphogen production rate. A more specific “shuttling” mechanism, which establishes a sharp and robust activation profile of a widely expressed morphogen, and enables the adjustment of morphogen profile with embryo size, is also described. Finally, we consider the transformation of the smooth gradient profile into sharp borders of gene expression in the signal-receiving cells. The integration theory and experiments are increasingly used, providing key insights into the system-level functioning of the developmental system.In order for a uniform field of cells to differentiate into a reproducible pattern of organs and tissues, cells need to receive information about their position within the field. During development, positional information is often conveyed by spatial gradients of morphogens (Wolpert 1989). In the presence of such gradients, cells are subject to different levels of morphogen, depending on their positions within the field, and activate, accordingly, one of several gene expression cassettes. The quantitative shape of the morphogen gradient is critical for patterning, with cell-fate boundaries established at specific concentration thresholds. Although these general features of morphogen-based patterning are universal, the range and form of the morphogen profile, and the pattern of induced target genes, vary significantly depending on the tissue setting and the signaling pathways used.The formation of a morphogen gradient is a dynamic process, influenced by the kinetics of morphogen production, diffusion, and degradation. These processes are tightly controlled through intricate networks of positive and negative feedback loops, which shape the gradient and enhance its reproducibility between individual embryos and developmental contexts. In the past three decades, many of the components comprising the morphogen signaling cascades have been identified and sorted into pathways, enabling one to start addressing seminal questions regarding their functionality: How is it that morphogen signaling is reproducible from one embryo to the next, despite fluctuations in the levels of signaling components, temperature differences, variations in size, or unequal distribution of components between daughter cells? Are there underlying mechanisms that assure a reproducible response? Are these mechanisms conserved across species, similar to the signaling pathways they control?In this review, we outline insights we gained by quantitatively analyzing the process of morphogen gradient formation. We focus on mechanisms that buffer morphogen profiles against fluctuations in gene dosage, and describe general means by which such buffering is enhanced. These mechanisms include self-enhanced morphogen degradation and pre-steady-state decoding. In addition, we describe a more specific “shuttling” mechanism that is used to generate a sharp and robust profile of a morphogen activity from a source that is broadly produced. We discuss the implication of the shuttling mechanism for the ability of embryos to adjust their pattern with size. Finally, we consider the transformation of the smooth gradient profile into sharp borders of gene expression in the signal-receiving cells.  相似文献   

17.
During embryonic development, morphogens act as graded positional cues to dictate cell fate specification and tissue patterning. Recent findings indicate that morphogen gradients also serve to guide axonal pathfinding during development of the nervous system. These findings challenge our previous notions about morphogens and axon guidance molecules, and suggest that these proteins, rather than having sharply divergent functions, act more globally to provide graded positional information that can be interpreted by responding cells either to specify cell fate or to direct axonal pathfinding. This review presents the roles identified for members of three prominent morphogen families--the Hedgehog, Wnt and TGFbeta/BMP families--in axon guidance, and discusses potential implications for the molecular mechanisms underlying their guidance functions.  相似文献   

18.
The stereotyped pattern of Drosophila wing veins is determined by the action of two morphogens, Hedgehog (Hh) and Decapentaplegic (Dpp), which act sequentially to organize growth and patterning along the anterior-posterior axis of the wing primordium. An important unresolved question is how positional information established by these morphogen gradients is translated into localized development of morphological structures such as wing veins in precise locations. In the current study, we examine the mechanism by which two broadly expressed Dpp signaling target genes, optomotor-blind (omb) and brinker (brk), collaborate to initiate formation of the fifth longitudinal (L5) wing vein. omb is broadly expressed at the center of the wing disc in a pattern complementary to that of brk, which is expressed in the lateral regions of the disc and represses omb expression. We show that a border between omb and brk expression domains is necessary and sufficient for inducing L5 development in the posterior regions. Mosaic analysis indicates that brk-expressing cells produce a short-range signal that can induce vein formation in adjacent omb-expressing cells. This induction of the L5 primordium is mediated by abrupt, which is expressed in a narrow stripe of cells along the brk/omb border and plays a key role in organizing gene expression in the L5 primordium. Similarly, in the anterior region of the wing, brk helps define the position of the L2 vein in combination with another Dpp target gene, spalt. The similar mechanisms responsible for the induction of L5 and L2 development reveal how boundaries set by dosage-sensitive responses to a long-range morphogen specify distinct vein fates at precise locations.  相似文献   

19.
《Fly》2013,7(3):210-214
Orchestration of spatial organization by signaling gradients - morphogen gradients - is a fundamental principle in animal development. Despite their importance in tissue patterning and growth, the exact mechanisms underlying the establishment and maintenance of morphogen gradients are poorly understood. Our recent work on BMP (bone morphogenetic protein) morphogen signaling during wing development identified a novel protein, Pentagone (Pent), as a critical regulator of morphogen activity. In the following, we discuss the properties of Pent and its role as a feed-back loop in morphogen gradient formation.  相似文献   

20.
The amphibian embryo provides a powerful model system to study morphogen gradients because of the ease with which it is possible to manipulate the early embryo. In particular, it is possible to introduce exogenous sources of morphogen, to follow the progression of the signal, to monitor the cellular response to induction, and to up- or down-regulate molecules that are involved in all aspects of long-range signaling. In this article, I discuss the evidence that gradients exist in the early amphibian embryo, the way in which morphogens might traverse a field of cells, and the way in which different concentrations of morphogens might be interpreted to activate the expression of different genes.The idea that a morphogen gradient activates the expression of different genes at different concentrations was perhaps stated most clearly by Wolpert''s French flag model, in which a graded signal activates the expression of “blue,” “white,” and “red” genes at high, intermediate, and low concentrations (Wolpert 1969). Since that original work, great progress has been made in identifying morphogens and their target genes and it is now clear that the spatial pattern of gene expression in the developing embryo is frequently established by graded signals of this sort. But many questions remain, and in particular little is known about how gradients are established in the embryo with the necessary precision and how cells interpret different concentrations of morphogen to activate different genes. I discuss these issues with respect to mesoderm induction in the developing amphibian embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号