首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of acute and chronic administration of a subconvulsive dose of picrotoxin on t-[35S]butylbicyclophosphorothionate ([3S]TBPS), [3H]muscimol, and [3H]flunitrazepam binding characteristics in various regions and on the convulsant potency of picrotoxin in Sprague-Dawley rats were examined. Acute administration of a subconvulsive dose of picrotoxin (3 mg/kg, i.p.) significantly increased [35S]TBPS and [3H]muscimol binding in cerebellum (CB) with no change in frontal cortex (FC). In rats treated chronically with picrotoxin (3 mg/kg, i.p., daily for 10 days), the Bmax of [35S]TBPS binding site was significantly decreased in the FC, striatum (ST), and CB with no change in KD values. Neither [3H]muscimol binding in the FC and CB nor [3H]flunitrazepam binding in the FC was affected in these rats. In addition, the potency of pentobarbital to inhibit [35S]TBPS binding in vitro was not altered following acute or chronic treatment of picrotoxin. Chronic administration of picrotoxin did not affect convulsive ED50 or LD50 of picrotoxin; however, it delayed the onset of convulsions and increased the time to death. These results suggest that treatment with picrotoxin at a subconvulsive dose for 10 days causes down-regulation of [35S]TBPS binding sites and that this down-regulation might be related, at least in part, to the decreased extent of convulsant potency of picrotoxin. In addition, the results indicate possible interaction between convulsant binding sites and GABAA receptor sites in the CB following picrotoxin treatment.  相似文献   

2.
A series of tetrazole convulsants were examined for their potencies in displacing [35S]-t-butylbicyclophosphorothionate (TBPS) from the picrotoxin site on the benzodiazepine-GABA-chloride ionophore receptor complex. All of the tetrazole derivatives tested inhibited [35S]-TBPS binding from rat forebrain membranes, and except for one (undecamethylenetetrazole), had Hill coefficients near unity. Similar to other chemically unrelated convulsants the inhibition of [35S]-TBPS binding by the various tetrazole derivatives was unaffected by the addition of the bicucculine-like GABA antagonist, R 5135. To ascertain whether the inhibition of specific [35S]-TBPS binding by the tetrazole derivatives was related to their convulsant properties, we compared their in vitro potencies in displacing [35S]-TBPS binding with their minimum convulsant potencies in mice. A very good correlation was observed (r = 0.96, p less than 0.001) between their relative affinities for the [35S]-TBPS binding site and their convulsant potencies, indicating that pentamethylenetetrazol and related tetrazoles may produce their convulsant and anxiogenic actions via the GABA-benzodiazepine-chloride ionophore receptor complex.  相似文献   

3.
Bicuculline Up-Regulation of GABAA Receptors in Rat Brain   总被引:2,自引:2,他引:0  
Effects of acute and subacute administration of bicuculline on [3H]muscimol, [3H]flunitrazepam, and t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to various brain regions were studied in Sprague-Dawley rats. Acute administration of bicuculline affected neither the KD nor the Bmax of the three receptor sites. In rats treated subacutely with bicuculline (2 mg/kg, i.p., daily for 10 days), [3H]muscimol binding was increased in the frontal cortex, cerebellum, striatum, and substantia nigra. Scatchard analysis revealed that subacute treatment of rats with bicuculline resulted in a significantly lower KD of high-affinity sites in the striatum and in a significantly lower KD of high- and low-affinity sites in the frontal cortex. In the cerebellum, two binding sites were apparent in controls and acutely treated animals; however, only the high-affinity site was defined in subacutely treated animals, with an increase in the Bmax value. Triton X-100 treatment of frontal cortical membranes eliminated the difference in [3H]muscimol binding between control and subacute bicuculline treatments. On the other hand, [3H]muscimol binding was significantly increased in the cerebellum from bicuculline-treated animals even after Triton X-100 treatment. The apparent Ki of bicuculline for the GABAA receptor was also decreased in the frontal cortex and the striatum following the treatment. However, subacute administration of bicuculline affected neither the KD nor the Bmax of [3H]flunitrazepam and [35S]TBPS binding in the frontal cortex and the cerebellum. These results suggest that GABAA receptors are up-regulated after subacute administration of bicuculline, with no change in benzodiazepine and picrotoxin binding sites.  相似文献   

4.
t-[35S]Butylbicyclophosphorothionate Binding Sites in Invertebrate Tissues   总被引:1,自引:0,他引:1  
Specific high affinity binding of the cage convulsant t-[35S]butylbicyclophosphorothionate (TBPS) was observed in membrane homogenates of housefly heads and crayfish abdominal muscles. [35S]TBPS binding in these two invertebrate tissues was inhibited by biologically active cage convulsants, picrotoxin analogs, and barbiturates. The housefly binding sites were inhibited most potently by several insecticides. Approximately 50% of total binding was displaceable by excess (0.1 mM) nonradioactive TBPS, picrotoxinin, ethyl bicyclophosphate, or dieldrin. Optimal binding assay conditions for housefly homogenates included pH 7.5, 22 degrees C temperature, 0.3 M chloride concentration, and incubation for 60 min; for crayfish homogenates, 4 degrees C temperature and 150-min incubations were optimal. Scatchard plots of equilibrium binding indicated one site in both tissues (KD = 50 nM, Bmax = 250 fmol/mg protein in housefly; KD = 25 nM, Bmax = 100 fmol/mg protein in crayfish). Association kinetics in housefly were consistent with one rate constant (k+1 = 8 X 10(6) M-1 min-1), but dissociation was described better by two rate constants (k-1 = 0.28 min-1 and 0.042 min-1; calculated KD values of 80 nM and 12 nM). Displacement by cage convulsants showed Hill numbers near 0.5, also consistent with two populations of affinity, while displacement by other drugs showed Hill numbers near 1.0. [35S]TBPS binding in insects was most potently inhibited by the insecticides dieldrin (IC50 = 50 nM), aldrin, and lindane (200 nM), in a stereospecific manner, consistent with this binding site being the receptor for biological toxicity. [35S]TBPS binding was also inhibited by relatively high concentrations of some pyrethroid insecticides, such as deltamethrin and cypermethrin (1-2 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
[35S]TBPS binding to the GABAA receptor ionophore binding site is anion dependent. Using autoradiography on rat brain sections, we show that permeabilities of anions through the receptor channel correlate with their efficiencies to promote basal [35S]TBPS binding. Phosphate made an exception as it induced more binding than expected from its permeability. Well-permeable anions (chloride, nitrate, formate) allowed [35S]TBPS binding to be effectively displaced by 1 mM GABA, whereas low-permeable anions (acetate, phosphate, propionate) markedly prevented this GABA effect, especially in the thalamus, the transition from the high to the low GABA effect being between formate and acetate. In the presence of phosphate, GABA enhanced [3H]flunitrazepam binding to benzodiazepine site of recombinant α1β2γ2 receptors with the same efficacy but lower potency as compared to the presence of chloride, whereas [35S]TBPS binding was abnormally modulated by GABA. These results suggest that inorganic phosphate affects coupling between agonist and ionophore sites in GABAA receptors. Special issue dedicated to Simo S. Oja  相似文献   

6.
In the present study, we characterized the distribution and the pharmacological properties of the different components of the GABAA receptor complex in the brain of the eel (Anguilla anguilla). Benzodiazepine recognition sites labeled "in vitro" with [3H]flunitrazepam ([3H]FNT) were present in highest concentration in the optic lobe and in lowest concentration in the medulla oblongata and spinal cord. A similar distribution was observed in the density of gamma-[3H]aminobutyric acid ([3H]GABA) binding sites. GABA increased the binding of [3H]FNT in a concentration-dependent manner, with a maximal enhancement of 45% above the control value, and, vice versa, diazepam stimulated the binding of [3H]GABA to eel brain membrane preparations. The density of benzodiazepine and GABA recognition sites and their reciprocal regulation were similar to those observed in the rat brain. In contrast, the binding of the specific ligand for the Cl- ionophore, t-[35S]butylbicyclophosphorothionate ([35S]TBPS), to eel brain membranes was lower than that found in the rat brain. In addition, [35S]TBPS binding in eel brain was less sensitive to the inhibitory effects of GABA and muscimol and much more sensitive to the stimulatory effect of bicuculline, when compared with [35S]TBPS binding in the rat brain. Moreover, the uptake of 36Cl- into eel brain membrane vesicles was only marginally stimulated by concentrations of GABA or muscimol that significantly enhanced the 36Cl- uptake into rat brain membrane vesicles. Finally, intravenous administration of the beta-carboline inverse agonist 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylic acid methyl ester (20 mg/kg) and of the chloride channel blocker pentylenetetrazole (80 mg/kg) produced convulsions in eels that were antagonized by diazepam at doses five to 20 times higher than those required to produce similar effects in rats. The results may indicate a different functional activity of the GABA-coupled chloride ionophore in the fish brain as compared with the mammalian brain.  相似文献   

7.
No significant differences are evident in the specific binding characteristics of [35S]t-butylbicyclophosphorothionate ([35S]TBPS) to EDTA/water-dialyzed P2 membranes of human, cow, rat, chicken and fish brain. This species similarity includes dissociation constants of 61-77 nM at 37 degrees C, maximum receptor densities of 3-7 pmol/mg protein, and sensitivity to inhibition or displacement by gamma-aminobutyric acid (GABA), two cage convulsants (picrotoxinin and t-butylbicycloorthobenzoate) and the insecticide [1R,cis, alpha S]-cypermethrin, indicating a constancy during vertebrate evolution of the [35S]TBPS binding site and its coupling with other components of the GABA receptor-ionophore complex. As a possible exception, chicken and fish brain membranes appear to be less sensitive than the others to the insecticide alpha-endosulfan. Human and rat preparations are also essentially identical relative to the inhibition of radioligand binding by two GABA mimetics (muscimol and 3-amino-propanesulfonic acid), six other cage convulsants (including examples of three classes of polychlorocycloalkane insecticides), a potent anthelmintic agent (Ivermectin), dimethylbutylbarbiturate, the convulsant benzodiazepine Ro 5-3663, and ethanol. The findings to date with [35S]TBPS and the GABA receptor-ionophore complex in rat brain membranes are therefore generally applicable to human preparations. Cow brain is an appropriate source for large scale preparations in receptor purification studies since it is essentially identical to human and rat preparations in all parameters examined. Species differences in sensitivity to the toxic effects of the convulsants and polychlorocycloalkane insecticides considered are apparently not attributable to receptor site specificity.  相似文献   

8.
The characteristics of [3H]strychnine and t-[35S]-butylbicyclophosphorothionate ([35S]TBPS) binding to sites associated with glycine- and gamma-aminobutyric acid (GABA)-gated chloride channels were compared in the presence of a series of anions with known permeabilities through these channels. Good correlations were found between (a) the potencies (EC50) of these anions to stimulate radioligand binding and their permeabilities relative to chloride; (b) the affinities (KD) of these radioligands in the presence of fixed concentrations of these anions and their relative permeabilities; (c) the potencies (EC50) of these anions to stimulate [35S]TBPS and [3H]strychnine binding; and (d) the affinities (KD) of [3H]strychnine and [35S]TBPS measured at a fixed concentration of these anions. These studies support electrophysiological and biochemical observations demonstrating similarities between glycine- and GABA-gated chloride channels, and suggest that anions enhance [3H]strychnine and [35S]TBPS binding through specific anion binding sites located at the channels.  相似文献   

9.
L M Cole  J E Casida 《Life sciences》1986,39(20):1855-1862
The toxicity to mice of intraperitoneally-administered polychlorocycloalkane (PCCA) insecticides is generally correlated with their potency as in vitro inhibitors of the brain specific [35S]t-butylbicyclophosphorothionate [( 35S]TBPS) binding site with correction for metabolic activation and detoxification. These findings from our earlier studies are extended here to in vivo investigations relating convulsant action to inhibition of the TBPS binding site in poisoned mice. Radioligand binding assays involved brain P2 membranes washed three times with 1 mM EDTA to remove endogenous gamma-aminobutyric acid (GABA) or other modulator(s) which otherwise serves as a noncompetitive inhibitor of [35S]TBPS binding at the GABA-regulated chloride ionophore. Examination of lindane, technical toxaphene, toxaphene toxicant A, and 10 polychlorocyclodiene insecticides revealed 62 +/- 4% binding site inhibition 30 min after their LD50 doses with 32 +/- 3% inhibition at one-half and 6 +/- 3% inhibition at one-quarter of their LD50 doses. This correlation between binding site inhibition and convulsant action is also evident in dose- and time-dependency studies with endosulfan sulfate. The brain P2 membranes of treated mice contain the parent compound with each of the PCCAs plus activation products of some of the cyclodienes, i.e. endosulfan sulfate from alpha- and beta-endosulfan and 12-ketoendrin from isodrin and endrin. The finding that the brains of treated mice contain sufficient PCCA or its activation products to achieve a magnitude of [35S]TBPS binding site inhibition correlated with the severity of the poisoning signs supports the hypothesis that the acute toxicity of PCCA insecticides to mammals is due to disruption of the GABA-regulated chloride ionophore.  相似文献   

10.
The aim of this study was to better understand the mechanisms that underlie adaptive changes in GABAA receptors following their prolonged exposure to drugs. Exposure (48 h) of human embryonic kidney (HEK) 293 cells stably expressing recombinant alpha1beta2gamma2S GABAA receptors to flumazenil (1 or 5 microM) in the presence of GABA (1 microM) enhanced the maximum number (Bmax) of [3H]flunitrazepam binding sites without affecting their affinity (Kd). The flumazenil-induced enhancement in Bmax was not counteracted by diazepam (1 microM). GABA (1 nM-1 mM) enhanced [3H]flunitrazepam binding to membranes obtained from control and flumazenil-pretreated cells in a concentration-dependent manner. No significant differences were observed in either the potency (EC50) or efficacy (Emax) of GABA to potentiate [3H]flunitrazepam binding. However, in flumazenil pretreated cells the basal [3H]flunitrazepam and [3H]TBOB binding were markedly enhanced. GABA produced almost complete inhibition of [3H]TBOB binding to membranes obtained from control and flumazenil treated cells. The potencies of GABA to inhibit this binding, as shown by a lack of significant changes in the IC50 values, were not different between vehicle and drug treated cells. The results suggest that chronic exposure of HEK 293 cells stably expressing recombinant alpha1beta2gamma2S GABAA receptors to flumazenil (in the presence of GABA) up-regulates benzodiazepine and convulsant binding sites, but it does not affect the allosteric interactions between these sites and the GABA binding site. Further studies are needed to elucidate these phenomena.  相似文献   

11.
The effect of the general anesthetic propofol on t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to unwashed membrane preparations from rat cerebral cortex was studied and compared to that of other general anesthetics (pentobarbital, alphaxalone) which are known to enhance GABAergic transmission. Propofol produced a concentration-dependent complete inhibition of [35S]TBPS binding, an effect similar to that induced by pentobarbital and alphaxalone, although these agents differ markedly in potency (alphaxalone greater than propofol greater than pentobarbital). The concomitant addition of propofol either with alphaxalone or pentobarbital produced an additive inhibition of [35S]TBPS binding, suggesting separate sites of action or different mechanisms of these drugs. Moreover, although bicuculline (0.1 microM) completely antagonized the propofol-induced inhibition of [35S]TBPS binding, the effect of this anesthetic was not due to a direct interaction with the gamma-aminobutyric acidA (GABAA) recognition site. In fact, propofol, like alphaxalone and pentobarbital, markedly enhanced [3H]GABA binding in the rat cerebral cortex. Finally, propofol was able to enhance [3H]GABA binding in membranes previously incubated with the specific chloride channel blocker picrotoxin. Taken together these data strongly suggest that propofol, like other anesthetics and positive modulators of GABAergic transmission, might exert its pharmacological effects by enhancing the function of the GABA-activated chloride channel.  相似文献   

12.
Abstract: The effects of GABA on the kinetics of tert -[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to the convulsant site of GABAA receptors were studied in membrane suspensions from the cerebral cortex of newborn (1-day-old) and adult (90-day-old) rats. TBPS dissociation was biphasic in neonates and adults, indicating that more than one interconvertible state of [35S]TBPS binding sites may be present in the cerebral cortex. In the absence of GABA, the fast ( t 1/2, 11 min) and slow ( t 1/2, 77 min) components of TBPS dissociation in newborn rats were approximately fourfold slower than in adults. The acceleration of the dissociation rates caused by 2 µ M GABA, however, was more robust in neonates than in adults (six- to ninefold vs. twofold increase, respectively). Moreover, the dissociation rates of TBPS in membranes preincubated with 2 µ M GABA (dissociation started by adding 40 µ M picrotoxin) were two- to fourfold slower than in membranes preincubated without GABA (dissociation started by adding 40 µ M picrotoxin plus 2 µ M GABA). Taken together, these results suggest that (1) the closed state of GABAA receptors is associated with a more effective steric barrier for the binding of TBPS in neonates compared with adults, (2) GABA produces a larger acceleration of the binding kinetics of TBPS in neonates than in adults, and (3) long incubations with GABA may cause receptor desensitization, which in turn slows down the dissociation rates of TBPS.  相似文献   

13.
Polyclonal antibodies have been raised against the GABA/benzodiazepine receptor purified to homogeneity from bovine cerebral cortex in deoxycholate and Triton X-100 media. Radioimmunoassay was applied to measure specific antibody production using the 125I-labelled gamma-aminobutyric acid (GABA)/benzodiazepine receptor as antigen. The antibodies specifically immunoprecipitated the binding sites for [3H]muscimol and for [3H]flunitrazepam from purified preparations. In addition, when a 3-[(3-cholamidopropyl)dimethylammonio] 1-propanesulphonate (CHAPS) extract of bovine brain membranes was treated with the antibodies, those sites as well as the [3H]propyl-beta-carboline-3-carboxylate binding, the [35S]t-butylbicyclophosphorothionate binding (TBPS), the barbiturate-enhanced [3H]flunitrazepam binding, and the GABA-enhanced [3H]flunitrazepam binding were all removed together into the immunoprecipitate. Western blot experiments showed that these antibodies recognise the alpha-subunit of the purified GABA/benzodiazepine receptor. These results further support the existence in the brain of a single protein, the GABAA receptor, containing a set of regulatory binding sites for benzodiazepines and chloride channel modulators.  相似文献   

14.
Significant differences were demonstrated between the long-sleep (LS) and short-sleep (SS) selected mouse lines in the abilities of barbiturates and gamma-aminobutyric acid (GABA) to inhibit t-[35S]butylbicyclophosphorothionate [( 35S]TBPS) binding to well-washed cerebral cortical membranes. Thus, using phenobarbital to initiate the dissociation of [35S]TBPS, the extent of inhibition was significantly greater in LS mice (but not SS mice) than would be predicted using equilibrium conditions. Pentobarbital had the opposite effect, causing [35S]TBPS to dissociate to a greater extent in SS than LS membranes. [35S]TBPS binding was dissociated from LS and SS membranes by GABA to a greater and lesser extent, respectively, than would be predicted from equilibrium studies. Because no line differences in the potencies of these drugs to inhibit [35S]TBPS binding were found using equilibrium conditions, these results indicate that the association rates of barbiturates and GABA may be different between these lines. These findings are consistent with neurochemical studies indicating differences in the benzodiazepine/GABA receptor-chloride channel complex in these selected lines and may explain their differential sensitivities to certain agents acting through this supramolecular complex.  相似文献   

15.
The CNS of the cockroach Periplaneta americana contains saturable, specific binding sites for [3H]GABA, [3H]flunitrazepam and [35S]TBPS. The [3H]GABA binding site exhibits a pharmacological profile distinct from that reported for mammalian GABAA and GABAB receptors. The most potent inhibitors of [3H]GABA binding were GABA and muscimol, whereas isoguvacine, thiomuscimol and 3-aminopropane sulphonic acid were less effective. Bicuculline methiodide and baclofen were ineffective. Binding of [35S]TBPS was partially inhibited by 1.0 × 10−6 M GABA, whilst binding of [3H]flunitrazepam was enhanced by 1.0 × 10−7 M GABA. The pharmacological profile of the [3H]flunitrazepam binding site showed some similarities with the peripheral benzodiazepine binding sites of vertebrates, with Ro-5-4864 being a far more effective inhibitor of binding than clonazepam. Thus a class of GABA receptors with pharmacological properties distinct from mammalian GABA receptor subtypes is present in insect CNS.  相似文献   

16.
The effects of preincubating cerebral cortical membranes with phospholipase A2 (PLA2) were examined on radioligand binding to benzodiazepine receptors of the "central" and "peripheral" types. PLA2 (0.005-0.1 U/ml) increased [3H]flunitrazepam and [3H]3-carboethoxy-beta-carboline binding by increasing the apparent affinities of these ligands with no concomitant change in the maximum number of binding sites. In contrast, neither gamma-aminobutyric acid (GABA)-enhanced [3H]flunitrazepam binding nor [3H]Ro 15-1788 binding was altered by preincubation with PLA2 at concentrations as high as 2 U/ml. Both pyrazolopyridine (SQ 65,396)- and barbiturate (pentobarbital)-enhanced [3H]flunitrazepam binding and [35S]t-butylbicyclophosphorothionate (TBPS) binding were markedly reduced by as little as 0.0025-0.005 U/ml of PLA2. These findings suggest that PLA2 inactivates the TBPS binding site on the benzodiazepine-GABA receptor chloride ionophore complex, which results in a selective loss of allosteric "regulation" between the components of this complex. PLA2 also reduced the apparent affinity of [3H]Ro 5-4864 to peripheral-type benzodiazepine receptors in cerebral cortical, heart, and kidney membranes, but increased the number of [3H]PK 11195 binding sites with no change in apparent affinity. These data demonstrate that PLA2 can differentially affect the lipid microenvironment of "central" and "peripheral" types of benzodiazepine receptors.  相似文献   

17.
The specific bindings of [3H]flunitrazepam [( 3H]FLU), [3H]CGS 8216, and t-[35S]butylbicyclophosphorothionate [( 35S]TBPS) to sites on rat cerebellar granule cells all increase from 4 to 15 days in culture, although their time courses differ. Specific [3H]FLU binding doubles, [3H]CGS 8216 binding triples, and [35S]TBPS binding increases about fourfold from 4 to 15 days in culture. Displacement studies, using the type I-selective ligand CL 218,872, indicate that at 4 days the [3H]FLU binding sites are almost entirely "type II," judging from an IC50 value near 300 nM and a pseudo-Hill number near 1. By 10 days, approximately equal numbers of type I and type II binding sites are present in the cultured cells, and this ratio remains constant thereafter (12 and 15 days). At days 10-15, both the IC50 value for CL 218,872 (near 100 nM) and the pseudo-Hill number (near 0.7) remain constant and are significantly different from the values at culture day 4. The development of specific [35S]TBPS binding parallels that of [3H]CGS 8216 binding more closely than the development of [3H]FLU binding. The [3H]CGS 8216/[3H]FLU ratio increased by a factor of 1.6 from day 4 to day 15 (p less than 0.001). Taken together, our data suggest the existence of several gamma-aminobutyric acidA (GABAA) receptor subunits, the relative proportions of which change during development. The presence of the GABA-mimetic 4,5,6,7-tetrahydroisoxazolo[5,4c]pyridine-3-ol (THIP) in the culture medium had no apparent effect on any of the binding sites studied, although THIP was shown previously to induce low-affinity GABA binding sites.  相似文献   

18.
The binding of t-[35S]butylbicyclophosphorothionate [( 35S]TBPS) to a site on the GABAA receptor complex is ion dependent. This study was conducted to determine the effects of ion species and concentration on the time course, affinity, and number of sites of [35S]TBPS binding. At a concentration of 200 mM ion, the time to equilibrium for [35S]TBPS binding was shortest for I-, followed by Br- less than Cl- less than F-. A similar rank order was observed for the concentration of ion required to produce half-maximal [35S]TBPS binding. Saturation binding experiments were conducted to evaluate the effect of increasing ion concentration on the KD and Bmax of [35S]TBPS binding. The Bmax was independent of both ion species and concentration. The receptor affinity, however, increased with increasing concentration for each ion. Calculated maximal affinity values were not different between ions; however, the EC50 to produce those values was different among ions and ranked in the same order as that for time course and maximal binding data. Association and dissociation rates for [35S]TBPS binding were greater in I- than in Cl-. These data emphasize the importance of ion selection and incubation times on [35S]TBPS binding.  相似文献   

19.
The effects of acute convulsive doses of pentylentetrazol (PTZ) on [35S]t-butyl-bicyclophosphorothionate (TBPS), [3H]flunitrazepam (FNP), [3H]muscimol, and [3H]-aminobutyric acid (GABA) binding sites were examined in well-washed homogenates of various brain regions of rat. Except for a significant increase in the number of striatal [35S]TBPS binding sites, no significant change in [35S]TBPS, [3H]FNP, [3H]muscimol, and [3H]GABA binding was found in various brain regions 30 min after subcutaneous injection of PTZ at 90 or 100 mg/kg. Similarly there were no significant changes in [35S]TBPS and [3H]FNP binding to unwashed P2 membranes of cerebral cortices 30 min following administration of convulsive doses of PTZ. These experiments failed to demonstrate acute modulation of GABA-A/benzodiazepine/picrotoxinin receptor complex by PTZ in the various brain regions examined except striatum. The significance of the increased [35S]TBPS binding in striatum caused by PTZ remains unclear.  相似文献   

20.
The anthelminthic natural product avermectin B1a (AVM) modulates the binding of gamma-aminobutyric acid (GABA) and benzodiazepine (BZ) receptor ligands to membrane homogenates of mammalian brain. The potent (EC50 = 40 nM) enhancement by AVM of [3H]diazepam binding to rat or bovine brain membranes resembled that of barbiturates and pyrazolopyridines in being inhibited (partially) by the convulsants picrotoxin, bicuculline, and strychnine, and by the anticonvulsants phenobarbital and chlormethiazole. The maximal effect of AVM was not increased by pentobarbital or etazolate. However, AVM affected BZ receptor subpopulations or conformational states in a manner different from pentobarbital. Further, unlike pentobarbital and etazolate, AVM did not inhibit allosterically the binding of the BZ receptor inverse agonist [3H]beta-carboline-3-carboxylate methyl ester, nor did it inhibit, but rather enhanced, the binding of the cage convulsant [35S]t-butyl bicyclophosphorothionate to picrotoxin receptor sites. AVM at submicromolar concentrations had the opposite effect of pentobarbital and etazolate on GABA receptor binding, decreasing by half the high-affinity binding of [3H]GABA and related agonist ligands, and increasing by over twofold the binding of the antagonist [3H]bicuculline methochloride, an effect that was potentiated by picrotoxin. AVM also reversed the enhancement of GABA agonists and inhibition of GABA antagonist binding by barbiturates and pyrazolopyridines. These overall effects of AVM are unique and require the presence of another separate drug receptor site on the GABA/BZ receptor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号