首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Swimming respirometry was employed to compare inactive metabolic rate ( R r), maximum metabolic rate ( R max), resultant aerobic scope and maximum sustainable (critical) swimming speed ( U crit), in growth hormone transgenic (GHT) and wild-type (W) tilapia Oreochromis sp. hybrids. Although the R r of GHT tilapia was significantly (58%) higher than their W conspecifics, there were no significant differences in their net aerobic scope because GHT tilapia exhibited a compensatory increase in R max that was equal to their net increase in R r. As a consequence, the two groups had the same U crit. The GHT and W tilapia also exhibited the same capacity to regulate oxygen uptake during progressive hypoxia, despite the fact that the GHT fish were defending a higher demand for O2. The results indicate that ectopic expression of GH raises metabolic rate in tilapia, but the fish compensate for this metabolic load and preserve such physiological determinants of fitness as aerobic scope, swimming performance and tolerance of hypoxia.  相似文献   

2.
Standard metabolic rate (SMR), active metabolic rate (AMR) and critical oxygen saturation ( Scrit ) were measured in Atlantic cod Gadus morhua at 5, 10 and 15° C. The SMR was 35.5, 57.0 and 78.2 mg O2 kg−1 h−1 and Scrit was 16.5, 23.2 and 30.3%, at 5, 10 and 15° C, respectively. Previously reported SMR for Atlantic cod from arctic waters at 4° C was twice that measured at 5° C in the present study. A possible intraspecific latitudinal difference in the SMR is discussed. The AMR was 146.6, 197.9 and 200.4 mg O2 kg−1 h−1 and the critical swimming speed ( Ucrit ) was 1 6, 1.7 and 1.9 at 5, 10 and 15° C, respectively. The maximum oxygen consumption was found to be associated with exercise, rather than recovery from exercise as previously reported in another Study of Cod metabolism.  相似文献   

3.
For pike in the laboratory, the relationship between heart rate (fH) and oxygen consumption ( VO2 , mg h−1 standardized to a 500-g fish weight) can be described by a significant linear regression valid for heart rates below 55 beats min−1. Heart rate increases during activity and feeding, accurately reflecting fluctuations in metabolic rate; so it can be used as a measure of metabolic rate in the field, using heart beat telemetry techniques. Post-prandial heart rates are elevated, and closely correlated with the calorific value of the food taken in the preceding meal. Meal size can be estimated from the heart rate record with an error of less than 10%.  相似文献   

4.
Effect of body size on the standard metabolism of horse mackerel   总被引:11,自引:0,他引:11  
The routine metabolic rate R R and standard metabolic rate R S were measured in horse mackerel Trachurus trachurus at 13°C over weight range of 1·4–390 g. A data extraction method rather than the more commonly used method of extrapolating the swimming speed-metabolic rate curves back to zero swimming speed was developed to measure the R S. The relation between R R and R S and weight was expressed as a linear regression with the log transformed data. The mean slope of the regression was 0·752 for R S and 0·725 for R S.  相似文献   

5.
The mean rate of oxygen consumption (routine respiration rate, R R, mg O2 fish−1 h−1), measured for individual or small groups of haddock Melanogrammus aeglefinus (3–12 cm standard length, L S) maintained for 5 days within flow‐through respiratory chambers at four different temperatures, increased with increasing dry mass ( M D). The relationship between R R and M D was allometric ( R R = α  M b ) with b values of 0·631, 0·606, 0·655 and 0·650 at 5·0, 8·0, 12·0 and 15·0° C, respectively. The effect of temperature ( T ) and M D on mean R R was described by     indicating a Q 10 of 2·27 between 5 and 15° C. Juvenile haddock routine metabolic scope, calculated as the ratio of the mean of highest and lowest deciles of R R measured in each chamber, significantly decreased with temperature such that the routine scope at 15° C was half that at 5° C. The cost of feeding ( R SDA) was c . 3% of consumed food energy, a value half that found for larger gadoid juveniles and adults.  相似文献   

6.
Abstract: The present study was undertaken to explore how transient ischemia in rats alters cerebral metabolic capacity and how postischemic metabolism and blood flow are coupled during intense activation. After 6 h of recovery following transient forebrain ischemia 15 min in duration, bicuculline seizures were induced, and brains were frozen in situ after 0.5 or 5 min of seizure discharge. At these times, levels of labile tissue metabolites were measured, whereas the cerebral metabolic rate for oxygen (CMRO2) and cerebral blood flow (CBF) were measured after 5 min of seizure activity. After 6 h of recovery, and before seizures, animals had a 40–50% reduction in CMRO2, and CBF. However, because CMRO2 rose threefold and CBF fivefold during seizures, CMRO2 and CBF during seizures were similar in control and postischemic rats. Changes in labile metabolites due to the preceding ischemia encompassed an increased phosphocreatine/ creatine ratio, as well as raised glucose and glycogen concentrations. Seizures gave rise to minimal metabolic perturbation, essentially comprising reduced glucose and glycogen contents and raised lactate concentrations. It is concluded that although transient ischemia leads to metabolic depression and a fall in CBF, the metabolic capacity of the tissue is retained, and drug-induced seizures lead to a coupled rise in metabolic rate and blood flow.  相似文献   

7.
The relationship between metabolic rate of pike (Y, mgO2) and body weight (X, g) over the range 40–1291 gat 15° C is of the form: Y=aXb. For resting metabolic rate (Vo2, rest), the scaling coefficient, b , is 0.80 and for maximum metabolic rate measured after exhaustive swimming (V02, max), b is 0.99. Factorial metabolic scope (V02, max/ V02, rest) increases with body weight. Peak postprandial oxygen consumption (V02, ASDA) is a constant multiple of V02 rest for any discrete meal (expressed as % of body weight) up to 10% body weight. V02ASDA after a single meal can utilize the entire metabolic scope (V02, max—V02, rest) of juvenile but not adult pike.  相似文献   

8.
D. P. COSTA  P. A. PRINCE† 《Ibis》1987,129(S1):149-158
At-sea metabolism (CO2 production) and water turnover of six breeding Grey-headed Albatrosses Diomedea chrysostoma were measured, using the doubly labelled water method, at Bird Island, South Georgia, Mean food consumption (estimated from a water influx rate of 1.01 1 d-1 and data on dietary composition) was 1200gd-1 or 50.4 W. At-sea metabolism (derived from a rate of CO2 production of 3.98 1 h-1) was 27.7 W, 2.5 times the estimated basal metabolic rate (BMR). On average the birds ingested nearly twice as much food energy as they expended to obtain it. The metabolic rate during flight (estimated from at-sea metabolism and activity budget data) was 36.3 W (range 34.7–39.0 W) or 3.2 (range 3.0–3.4) times the predicted BMR. This is the lowest cost of flight yet measured, but consistent with the highly developed adaptations for economic flight shown by albatrosses. These results are briefly compared with data for other polar vertebrates (penguins, fur seals) exploiting similar prey.  相似文献   

9.
Apparent specific dynamic action (SDA) amplitude in young juvenile Atlantic cod Gadus morhua (1 to 8 g wet mass), fed a standardized meal and then exercised in a circular swimming respirometer at a constant swimming speed of 0·5 ± 0·3 body lengths s-1, occurred within l h after feeding in all juveniles. SDA amplitude were 1·4 to 1·8 times higher in fed fish compared to unfed fish, and rates of oxygen consumption decreased as body mass increased. SDA duration had a tendency to decrease with increasing body mass and was shortest, at 6 h, in the smallest fish (1–1·5 g), but increased to 10–11 h in the largest fish. Apparent SDA in fed fish ( R r) scaled with a mass exponent of 0·89, while maximum metabolic rate ( R max) determined by chasing fish to exhaustion and then measuring oxygen consumption for 12 h, and unfed routine metabolic rate (Rr) scaled with a mass exponent of 0·79 and 0·76 respectively. Relative aerobic scope ( R max– unfed R r) did not appear to vary over the 1 to 8 g increase in wet mass. These results show that as body mass increased in young juvenile Atlantic cod: (1) apparent SDA ( R f) increased more rapidly than R max, and (2) apparent SDA took up >98% of the relative aerobic scope and that young Atlantic cod allocated most of the energy to growth, and left little for other metabolic activities.  相似文献   

10.
Since little information is available on torpor in bats of the suborder Megachiroptera, we investigated whether the small (18 g) blossom-bat Syconycteris australis displays torpor in the laboratory. Bats entered daily torpor when food and water were withheld for one night and the air temperature (Ta) was below about 26°. Torpor began shortly after lights went on in the morning and lasted for a maximum of 12 hours. During torpor at Ta18°, metabolic rates fell to a minimum of about 15% of that in resting individuals at the same Ta, and to about 40% of the basal metabolic rate. The body temperature (Tb) during torpor was metabolically defended at or above about Tb 18°. Individuals that did not enter torpor in the morning reduced their Tb from about 34.5°, observed in resting individuals that had been fed during the previous night, to values between 30.2 and 32.8°, and the resting metabolic rate fell by about 25%. The ability to undergo short periods of torpor may explain why the distribution range of S. australis extends much further south than that of other small Australian megachiropteran bats.  相似文献   

11.
The diel rhythms in metabolic rate ( MR ) and activity level ( AL ) were measured for single post-hatching dogfish (weight range, 2.76–10.61 g) at 15° C by the indirect calorimetric method of rate of oxygen consumption ( V O2) and by video-observation respectively, over a period of 72 b. The mean VO 2 increased from 62.0 (s.e. 2.9) mg O2 kg−1 h−1 in the daylight hours to 85.5 (s.e. 3.1) mg O2 kg−1 h−1 during the dark (light regíme, 12 h L: 12 h D). The simultaneous measurement of A L also showed mean night elevation from 0.6 (s.e. 0.2) min h−1 in the light phase to 14.5 (s.e. 1.6) min h−1 during the darkness. Bimodal nocturnal activity (BNA) was exhibited by the post-hatching dogfish within the 12 h dark period, with V O2 increasing from 71.4 (s.e. 2.8) mg O2 kg−1 h−1 before 01.00 hours to 99.5 (s.e. 4.2) mg O2 kg−1 h−1 after 01.00 hours. Similarly, A L also increased from 8.9 (s.e. I.7)min h−1 before 01.00 hours to 21.1 (s.e. 2.8) min h−1 after 01.00 hours. The importance of the results presented to the natural behavioural ecology of the hatching dogfish are discussed.  相似文献   

12.
Abstract. The metabolic rates, as expressed by oxygen (O2) consumption, carbon dioxide (CO2) production, and losses in wet and dry weights, were examined for adults of three strains of the red flour beetle Tribolium castaneum (Herbst), during exposure to two modified atmospheres (MAs). Exposure of a strain selected for resistance over twenty-one generations to an atmosphere of 65% CO2, 20% O2 and the balance nitrogen (N2), termed a high carbon dioxide concentration atmosphere (HCC) and exposure of an unselected strain to HCC, showed considerable levels of aerobic metabolism during exposure. For the unselected strain water loss and mobilization of energy reserves were rapid and mortality was followed by rapid desiccation. For the HCC-resistant strain water balance was maintained and energy reserves were utilized more slowly over a prolonged period. Exposure of a strain selected for resistance over twenty-one generations to a low oxygen concentration atmosphere (LOC) of 0.5% O2 in N2, and an unselected strain to LOC, revealed that even at 0.5% O2, metabolism was largely aerobic in both strains. Maintenance of water balance was not a major factor causing mortality of either strain during exposure to LOC. In air, metabolic rates of both the resistant strains were lower than that of the unselected strain.  相似文献   

13.
Standard metabolic rate ( R s) at 2°C of eight East Siberian cod Arctogadus borisovi , caught in West Greenland, body mass of 601.5 ± 147.6 g (mean ± s.D.), was 40.9 ± 5.9 mg O2 kg-1 h-1 and 59.0 ± 6.6mg O2 kg-1 h-1 when extrapolated to a standardized 100 g fish. R s was compared with three other Gadidae, to test the theory of metabolic cold adaptation (MCA). There was no evidence of MCA in the family.  相似文献   

14.
Standard metabolic rate ( R S), specific growth rate ( G ) and aggressiveness were investigated in three Finnish populations of Atlantic salmon Salmo salar (Neva, Saimaa and Teno), which were reared in identical hatchery conditions. The populations differed in their geographical origin and native habitat. There was a significant difference between populations in R S: the southernmost Neva population had higher values in R S than the northernmost Teno population. No difference was found in G or aggressiveness between the populations. G was found to have a significant positive association with aggressiveness and R S among the three populations, however, these results were not statistically significant after correction for multiple tests. There was no significant association between R S and aggressiveness. Higher metabolic rate of the most southern population Neva is suggested to be an adaptation to the more abundant food sources of the southern stream.  相似文献   

15.
Caroline J.  Jones  Fritz  Geiser 《Journal of Zoology》1992,227(1):101-108
Deep and prolonged torpor in marsupials is only known from the pygmy possums, family Burramyidae. We investigated the pattern of torpor in the feathertail glider Acrobates pygmaeus (Acrobatidae) to determine whether members of other marsupial families also possess the ability of remaining torpid for several days with body temperatures (Tb) approaching 0°C. At high air temperatures (Ta) of 15 and 20°C, A. pygmaeus usually exhibited daily torpor. Torpor bouts at Ta 12°C usually lasted for about 2˙5 days and at Ta 8°C up to 5˙5 days. The metabolic rate during torpor was reduced to about 1% of that in normothermic, resting individuals. The Tb during torpor was regulated at about 2°C when Ta fell below about 0˙8 °C. Arousal from torpor was rapid and the mean fastest rewarming rate was 0˙88°C/min. While A. pygmaeus exhibited deep and prolonged torpor, its pattern differed somewhat from deep hibernation. Acrobates pygmaeus did not show prehibernation fattening and a subsequent prolonged hibernation period and it appears that prolonged torpor is used only in emergency situations.  相似文献   

16.
Distribution, growth and mortality of larval and juvenile rough scad Trachurus lathami Nichols, 1920, were studied, based on samples collected during December 1991 in the south-eastern Brazilian Bight. Young rough scad were widespread throughout the region surveyed, but spawning was more intensive in the northern area and tended to be greater in areas of low temperature and high salinity. The length class distribution of the rough scad larvae and juveniles ranged from 2.25 to 32.25 mm body length (BL), and the preflexion larvae of size categories from 2.25 to 3.25 mm BL were the most abundant. Net avoidance was detected for early larvae (2.25 mm length class) and for juveniles larger than 12.25 mm BL length class. Two models were applied to estimate growth and daily growth rate: a linear regression and a Gompertz curve. Both curves showed similar results and a good fit to the data. The mean growth rate estimated by linear regression was 0.44 mm per day (SD=0.008 mm). In small larvae up to 25 mm BL the linear and Gompertz curves showed similar estimated lengths. The hypothetical length at age zero ( L 0) was estimated as 1.5 mm. The instantaneous daily mortality coefficient estimated from the slope of the regression of log-transformed values of relative production rates ( P t/ d t) against age ( ti ) was Z=0.1888 for larval and juvenile rough scad. This corresponds to a daily mortality rate of 17.2%.  相似文献   

17.
1. The metabolic or respiratory cost of growth ( R G) is the increase in metabolic rate of a growing animal, and it represents chemical potential energy expended in support of net biosynthesis but not deposited as new tissue.
2. Two statistical methods (multiple non-linear regression and analysis of regression residuals) were used to calculate R G from data ( n = 68) from a doubly labelled water study of free-ranging Garter Snakes ( Thamnophis sirtalis fitchi ) in northern California.
3. The sample-wise ('ecological') cost of growth was 2·07 kJ per gram of net growth (equivalent to 8·63 kJ g–1 dry tissue); reanalysis of a subset of efficient growers yielded a more conservative 'physiological' estimate of 1·67 kJ g–1.
4. Our empirical estimate of R G, among the first reported for squamate reptiles and free-living animals of any kind, compares closely with published, laboratory-derived values for ectotherms.
5. The metabolic costs of growth accounted for an average of 30% of total field metabolic rates for these snakes, which were growing at a mean rate of 3% of body mass per day. However, our method probably underestimated the total ecological cost of growth for large animals, because potential growth costs that covary with body size were not included.
6. Distinction between conceptual and empirical energy budgets clarifies relationships among body size, metabolic rates, and the physiological and ecological costs of growth.  相似文献   

18.
The relationship between specific dynamic action and otolith growth in pike   总被引:3,自引:0,他引:3  
The hypothesis was tested that the daily increment width (IW) of the otolith comprises two components, one that correlates with basal metabolic rate (as has been demonstrated previously) and the other that correlates with apparent specific dynamic action ( R sda)(the post‐prandial elevation in metabolism). Simultaneous measurements of IW and metabolic rate before and after a meal were collected from individual pike Esox lucius . After feeding, IW and metabolic rate increased above basal levels for 5–6 days. There was no correlation between daily IW and R sda, reflecting within‐individual difference in the shapes of the post‐prandial responses of the two variables. There was a significant relationship between the total changes of IW and metabolic rate integrated following meals. The magnitude of the post‐prandial response as a proportion of the basal level was larger for metabolic rate than IW, mirroring the previously reported responses of these variables to acute temperature change. This study suggests that analysis of IW has the potential to provide a historic record of energy intake but only when integrated over a period equivalent to the digestion time. Consideration of energy budget theory indicates that IW is unlikely to provide a robust record of short‐term somatic growth if activity metabolism is significant and variable.  相似文献   

19.
The standard oxygen consumption of flounders, PLatichthys flesus , adapted for two months to 5 and 15° C was measured during single step and fluctuating temperature changes, A considerable recovery period from handling was required before standard levels were recorded, although no locomotor activity was evident. The Q 10(adapt) value between 5 and 15° C was 2.0. Q 10 (acute) values were higher. The responses of oxygen consumption to temperature rise conform to Type I11 metabolic compensation (Precht, 1958). No compensatory response was evident at lower temperatures. An alternative explanation of the results in terms ofexcitement metabolism is suggested.  相似文献   

20.
Metabolic rate of age 0 muskellunge Esox masquinongy ranged from 0·10 at 5° C to 0·24 mg O2 g-1 h-1 at 25° C and was significantly higher in spring and autumn than during winter months at comparable water temperatures. Reduced metabolic rate in winter was consistent with the metabolic compensation hypothesis, implying that metabolism of muskellunge varies independently of acclimation temperature and gonadogenesis. Moreover, seasonal variation in metabolic rate has important implications for energy budget studies. Single-season estimates of esocid metabolism may be inadequate to describe annual energy requirements; the magnitude of errors will depend on the time of year metabolic rate was measured. As a result, it is suggested that seasonal variation in metabolic rate be incorporated into energy budget determinations for fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号