首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas oleovorans contains an isomerase which catalyzes the cis-trans conversion of the abundant unsaturated membrane fatty acids 9-cis-hexadecenoic acid (palmitoleic acid) and 11-cis-octadecenoic acid (vaccenic acid). We purified the isomerase from the periplasmic fraction of Pseudomonas oleovorans. The molecular mass of the enzyme was estimated to be 80 kDa under denaturing conditions and 70 kDa under native conditions, suggesting a monomeric structure of the active enzyme. N-terminal sequencing showed that the isomerase derives from a precursor with a signal sequence which is cleaved from the primary translation product in accord with the periplasmic localization of the enzyme. The purified isomerase acted only on free unsaturated fatty acids and not on esterified fatty acids. In contrast to the in vivo cis-trans conversion of lipids, this in vitro isomerization of free fatty acids did not require the addition of organic solvents. Pure phospholipids, even in the presence of organic solvents, could not serve as substrate for the isomerase. However, when crude membranes from Pseudomonas or Escherichia coli cells were used as phospholipid sources, a cis-trans isomerization was detectable which occurred only in the presence of organic solvents. These results indicate that isolated membranes from Pseudomonas or E. coli cells must contain factors which, activated by the addition of organic solvents, enable and control the cis-trans conversion of unsaturated acyl chains of membrane phospholipids by the periplasmic isomerase.  相似文献   

2.
Peptidyl-prolyl cis-trans isomerase was extracted from pig kidney cortex and partially purified. Enzyme activity was monitored against the cis-trans isomerization of succinyl-Ala-Ala-Pro-Phe-methylcoumaryl amide by means of a two-step process using chymotrypsin as the trans cleaving activity. The in vitro refolding of denatured type III collagen, which is rate-limited by the cis-trans isomerization of peptide bonds, was studied in the presence of peptidyl-prolyl cis-trans isomerase by optical rotatory dispersion and by resistance to tryptic digestion. A 3-fold increase in the initial rate of folding was observed compared to the uncatalyzed refolding. This rate increase is comparable to the rate increase found for the CT-phase in the refolding of urea-denatured ribonuclease A, but it is smaller than the increase in the rate of isomerization of succinyl-Ala-Ala-Pro-Phe-methylcoumarylamide.  相似文献   

3.
Proline is unique in the realm of amino acids in its ability to adopt completely distinct cis and trans conformations, which allows it to act as a backbone switch that is controlled by prolyl cis-trans isomerization. This intrinsically slow interconversion can be catalyzed by the evolutionarily conserved group of peptidyl prolyl cis-trans isomerase enzymes. These enzymes include cyclophilins and FK506-binding proteins, which are well known for their isomerization-independent role as cellular targets for immunosuppressive drugs. The significance of enzyme-catalyzed prolyl cis-trans isomerization as an important regulatory mechanism in human physiology and pathology was not recognized until the discovery of the phosphorylation-specific prolyl isomerase Pin1. Recent studies indicate that both phosphorylation-dependent and phosphorylation-independent prolyl cis-trans isomerization can act as a novel molecular timer to help control the amplitude and duration of a cellular process, and prolyl cis-trans isomerization might be a new target for therapeutic interventions.  相似文献   

4.
One of the rate-limiting steps in protein folding has been shown to be the cis-trans isomerization of proline residues, which is catalyzed by a range of peptidylprolyl cis-trans isomerases. To characterize the interaction between model peptides and the periplasmic peptidylprolyl cis-trans isomerase SurA from E. coli, we employed a chemical cross-linking strategy that has been used previously to elucidate the interaction of substrates with other folding catalysts. The interaction between purified SurA and model peptides was significant in that it showed saturation and was abolished by denaturation of SurA; however the interaction was independent of the presence of proline residues in the model peptides. From results obtained by limited proteolysis we conclude that an N-terminal fragment of SurA, comprising 150 amino acids that do not contain the active sites involved in the peptidylprolyl cis-trans isomerization, is essential for the binding of peptides by SurA. This was confirmed by probing the interaction of the model peptide with the recombinant N-terminal fragment, expressed in Escherichia coli. Hence we propose that, similar to protein disulfide isomerase and other folding catalysts, SurA exhibits a modular architecture composed of a substrate binding domain and distinct catalytically active domains.  相似文献   

5.
The carotene cis-trans isomerase CRTISO is a constituent of the carotene desaturation pathway as evolved in cyanobacteria and prevailing in plants, in which a tetra-cis-lycopene species, termed prolycopene, is formed. CRTISO, an evolutionary descendant of the bacterial carotene desaturase CRTI, catalyzes the cis-to-trans isomerization reactions leading to all-trans-lycopene, the substrate for the subsequent lycopene cyclization to form all-trans-α/β-carotene. CRTISO and CRTI share a dinucleotide binding motif at the N terminus. Here we report that this site is occupied by FAD in CRTISO. The reduced form of this cofactor catalyzes a reaction not involving net redox changes. Results obtained with C(1)- and C(5)-deaza-FAD suggest mechanistic similarities with type II isopentenyl diphosphate: dimethylallyl diphosphate isomerase (IDI-2). CRTISO, together with lycopene cyclase CRTY and IDI-2, thus represents the third enzyme in isoprenoid metabolism belonging to the class of non-redox enzymes depending on reduced flavin for activity. The regional specificity and the kinetics of the isomerization reaction were investigated in vitro using purified enzyme and biphasic liposome-based systems carrying specific cis-configured lycopene species as substrates. The reaction proceeded from cis to trans, recognizing half-sides of the symmetrical prolycopene and was accompanied by one trans-to-cis isomerization step specific for the C(5)-C(6) double bond. Rice lycopene β-cyclase (OsLCY-b), when additionally introduced into the biphasic in vitro system used, was found to be stereospecific for all-trans-lycopene and allowed the CRTISO reaction to proceed toward completion by modifying the thermodynamics of the overall reaction.  相似文献   

6.
Escherichia coli L-arabinose isomerase (ECAI; EC 5.3.1.4) catalyzes the isomerization of L-arabinose to L-ribulose in vivo. This enzyme is also of commercial interest as it catalyzes the conversion of D-galactose to D-tagatose in vitro. The crystal structure of ECAI was solved and refined at 2.6 A resolution. The subunit structure of ECAI is organised into three domains: an N-terminal, a central and a C-terminal domain. It forms a crystallographic trimeric architecture in the asymmetric unit. Packing within the crystal suggests the idea that ECAI can form a hexameric assembly. Previous electron microscopic and biochemical studies supports that ECAI is hexameric in solution. A comparison with other known structures reveals that ECAI adopts a protein fold most similar to E. coli fucose isomerase (ECFI) despite very low sequence identity 9.7%. The structural similarity between ECAI and ECFI with regard to number of domains, overall fold, biological assembly, and active site architecture strongly suggests that the enzymes have functional similarities. Further, the crystal structure of ECAI forms a basis for identifying molecular determinants responsible for isomerization of arabinose to ribulose in vivo and galactose to tagatose in vitro.  相似文献   

7.
The prolyl isomerase Pin1 is a conserved enzyme that is intimately involved in diverse biological processes and pathological conditions such as cancer and Alzheimer's disease. By catalysing cis-trans interconversion of certain motifs containing phosphorylated serine or threonine residues followed by a proline residue (pSer/Thr-Pro), Pin1 can have profound effects on phosphorylation signalling. The structural and functional differences that result from cis-trans isomerization of specific pSer/Thr-Pro motifs probably underlie most, if not all, Pin1-dependent actions. Phosphorylation-dependent prolyl isomerization by Pin1 remains a unique mode for the modulation of signal transduction. Here, we provide an overview of the plethora of regulatory events that involve this unique enzyme, with a particular focus on oncogenic signalling and neurodegeneration.  相似文献   

8.
Tetrachlorohydroquinone dehalogenase catalyzes the replacement of chlorine atoms on tetrachlorohydroquinone and trichlorohydroquinone with hydrogen atoms during the biodegradation of pentachlorophenol by Sphingomonas chlorophenolica. The sequence of the active site region of tetrachlorohydroquinone dehalogenase is very similar to those of the corresponding regions of maleylacetoacetate isomerases, enzymes that catalyze the glutathione-dependent isomerization of a cis double bond in maleylacetoacetate to the trans configuration during the catabolism of phenylalanine and tyrosine. Furthermore, tetrachlorohydroquinone dehalogenase catalyzes the isomerization of maleylacetone (an analogue of maleylacetoacetate) at a rate nearly comparable to that of a bona fide bacterial maleylacetoacetate isomerase. Since maleylacetoacetate isomerase is involved in a common and presumably ancient pathway for catabolism of tyrosine, while tetrachlorohydroquinone dehalogenase catalyzes a more specialized reaction, it is likely that tetrachlorohydroquinone dehalogenase arose from a maleylacetoacetate isomerase. The substrates and overall transformations involved in the dehalogenation and isomerization reactions are strikingly different. This enzyme provides a remarkable example of Nature's ability to recruit an enzyme with a useful structural scaffold and elaborate upon its basic catalytic capabilities to generate a catalyst for a newly needed reaction.  相似文献   

9.
From a pool of 600 temperature-sensitive transposon mutants of Pseudomonas putida P8, 1 strain was isolated that carries a mini-Tn5 insertion within the cytochrome c operon. As a result, genes involved in the attachment of heme to cytochrome c-type proteins are turned off. Accordingly, cytochrome c could not be detected spectrophotometrically. The mutant also exhibited a remarkable reduction of cis-trans isomerization capability for unsaturated fatty acids. Consistent with the genetic and physiological data is the detection of a cytochrome c-type heme-binding motif close to the N terminus of the predicted polypeptide of the cis/trans isomerase (cti) gene (CVACH; conserved amino acids in italics). The functional significance of this motif was proven by site-directed mutagenesis. A possible mechanism of heme-catalyzed cis-trans isomerization of unsaturated fatty acids is discussed.  相似文献   

10.
M Mücke  F X Schmid 《Biochemistry》1992,31(34):7848-7854
Prolyl isomerases are able to accelerate slow steps in protein refolding that are limited in rate by cis/trans isomerizations of Xaa-Pro peptide bonds. We show here that prolyl isomerizations in the course of protein unfolding are also well catalyzed. To demonstrate catalysis we use cytoplasmic prolyl isomerase from Escherichia coli as the enzyme and reduced and carboxymethylated ribonuclease T1 as the substrate. This form of ribonuclease T1 without disulfide bonds is nativelike folded only in the presence of moderate concentrations of NaCl. Unfolding can be induced by reducing the NaCl concentration at ambient temperature and in the absence of denaturants. Under these conditions prolyl isomerase retains its activity and it catalyzes prolyl cis/trans isomerization in the unfolding protein. Under identical conditions within the NaCl-induced transition unfolding and refolding are catalyzed with equal efficiency. The stability of the protein and thus the final distribution of unfolded and folded molecules attained at equilibrium is unchanged in the presence of prolyl isomerase. These results demonstrate that prolyl isomerase functions in protein folding as an enzyme and catalyzes prolyl isomerization in either direction.  相似文献   

11.
Daly NL  Hoffmann R  Otvos L  Craik DJ 《Biochemistry》2000,39(30):9039-9046
A series of peptides corresponding to isolated regions of Tau (tau) protein have been synthesized and their conformations determined by (1)H NMR spectroscopy. Immunodominant peptides corresponding to tau(224-240) and a bisphosphorylated derivative in which a single Thr and a single Ser are phosphorylated at positions 231 and 235 respectively, and which are recognized by an Alzheimer's disease-specific monoclonal antibody, were the main focus of the study. The nonphosphorylated peptide adopts essentially a random coil conformation in aqueous solution, but becomes slightly more ordered into beta-type structure as the hydrophobicity of the solvent is increased by adding up to 50% trifluoroethanol (TFE). Similar trends are observed for the bisphosphorylated peptide, with a somewhat stronger tendency to form an extended structure. There is tentative NMR evidence for a small population of species containing a turn at residues 229-231 in the phosphorylated peptide, and this is strongly supported by CD spectroscopy. A proposal that the selection of a bioactive conformation from a disordered solution ensemble may be an important step (in either tubulin binding or in the formation of PHF) is supported by kinetic data on Pro isomerization. A recent study showed that Thr231 phosphorylation affected the rate of prolyl isomerization and abolished tubulin binding. This binding was restored by the action of the prolyl isomerase Pin1. In the current study, we find evidence for the existence of both trans and cis forms of tau peptides in solution but no difference in the equilibrium distribution of cis-trans isomers upon phosphorylation. Increasing hydrophobicity decreases the prevalence of cis forms and increases the major trans conformation of each of the prolines present in these molecules. We also synthesized mutant peptides containing Tyr substitutions preceding the Pro residues and found that phosphorylation of Tyr appears to have an effect on the equilibrium ratio of cis-trans isomerization and decreases the cis content.  相似文献   

12.
Protein disulfide isomerase (PDI) is a protein-thiol oxidoreductase that catalyzes the oxidation, reduction and isomerization of protein disulfides. In the endoplasmic reticulum PDI catalyzes both the oxidation and isomerization of disulfides on nascent polypeptides. Under the reducing condition of the cytoplasm, endosomes and cell surface. PDI catalyzes the reduction of protein disulfides. At those locations, PDI has been demonstrated to participate in the regulation of reception function, cell-cell interaction, gene expression, and actin filament polymerization. These activities of PDI will be discussed, as well as its activity as a chaperone and subunit of prolyl 4-hydroxylase and microsomal triglyceride transfer protein.  相似文献   

13.
R K Harrison  R L Stein 《Biochemistry》1990,29(7):1684-1689
Cyclophilin, the cytosolic binding protein for the immunosuppressive drug cyclosporin A, has recently been shown to be identical with peptidyl prolyl cis-trans isomerase [Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T., & Schmid, F.X. (1989) Nature 337, 476; Takahashi, N., Hayano, T., & Suzuki, M. (1989) Nature 337, 473]. To provide a mechanistic framework for studies of the interaction of cyclophilin with cyclosporin, we investigated the mechanism of the PPI-catalyzed cis to trans isomerization of Suc-Ala-Xaa-cis-Pro-Phe-pNA (Xaa = Ala, Gly). Our mechanistic studies of peptidyl prolyl cis-trans isomerase include the determination of steady-state kinetic parameters, pH and temperature dependencies, and solvent and secondary deuterium isotope effects. The results of these experiments support a mechanism involving catalysis by distortion in which the enzyme uses free energy released from favorable, noncovalent interactions with the substrate to stabilize a transition state that is characterized by partial rotation about the C-N amide bond.  相似文献   

14.
Phosphoglucose isomerase catalyzes the reversible isomerization of glucose 6-phosphate to fructose 6-phosphate. In addition, phosphoglucose isomerase has been shown to have functions equivalent to neuroleukin, autocrine motility factor, and maturation factor. Here we present the crystal structures of phosphoglucose isomerase complexed with 5-phospho-D-arabinonate and N-bromoacetylethanolamine phosphate at 2.5- and 2.3-A resolution, respectively. The inhibitors bind to a region within the domains' interface and interact with a histidine residue (His(306)) from the other subunit. We also demonstrated that the inhibitors not only affect the enzymatic activity of phosphoglucose isomerase, but can also inhibit the autocrine motility factor-induced cell motility of CT-26 mouse colon tumor cells. These results indicate that the substrate and the receptor binding sites of phosphoglucose isomerase and autocrine motility factor are located within close proximity to each other. Based on these two complex structures, together with biological and biochemical results, we propose a possible isomerization mechanism for phosphoglucose isomerase.  相似文献   

15.
A hog liver enzyme that catalyzes the reversible conversion of 3-acetylenic fatty acyl thioester to (+)-2,3-dienoyl fatty acyl thioester has been purified to homogeneity. The enzyme is not inhibited by the allenic product that it generates. The same homogenous enzyme catalyzes the conversions of 3-cis- or 3-trans-acyl Coenzyme A derivatives to 2-trans-acyl-CoA derivatives. Four forms of the isomerase differing in charge (pI = 6.57, 6.83, 7.01, and 7.27) have been separated by isoelectric focusing. Ultracentrifugation and sodium dodecyl sulfate-gel electrophoresis indicate that each of these enzyme forms is dimeric and composed of two 45,000-dalton subunits. With 3-acetylenic substrates, all enzyme forms exhibit broad specificity for chain length (C6 to C12) and for the thioester moiety (N-acetylcysteamine (NAC), pantetheine, or CoA). The 3-cis and 3-trans olefinic substrates are active only in the form of their coenzyme A derivatives; their NAC thioesters inhibit competitively. Mechanistic studies favor an isomerization pathway by way of carbanion intermediates. The acetylene-allene isomerase described here and the reported crotonase-catalyzed hydration of allenic thioesters (Branchini, B.R., Miesowicz, F.M., and Bloch, K. (1977) Bioorg. Chem. 6, 49-52) may be responsible for the degradation of naturally occurring acetylenic and allenic acids.  相似文献   

16.
The calcium-binding protein calbindin D9k has previously been shown to exist in two folded forms only differing in the proline cis-trans isomerism of the Gly-42-Pro-43 amide bond. This bond is located in a flexible loop connecting the two EF-hand Ca2+ sites. Calbindin D9k therefore constitutes a unique test case for investigating if the recently discovered enzyme peptidyl-prolyl cis-trans isomerase (PPIase) can affect the cis-trans exchange rate in a folded protein. The 1H NMR saturation transfer technique has been used to measure the rate of interconversion between the cis and trans forms of calbindin in the presence of PPIase (PPIase:calbindin concentration ratio 1:10) at 35 degrees C. No rate enhancement could be detected.  相似文献   

17.
Protein-disulfide isomerase (PDI) catalyzes the formation and isomerization of disulfides during oxidative protein folding. This process can be error-prone in its early stages, and any incorrect disulfides that form must be rearranged to their native configuration. When the second cysteine (CGHC) in the PDI active site is mutated to Ser, the isomerase activity drops by 7-8-fold, and a covalent intermediate with the substrate accumulates. This led to the proposal that the second active site cysteine provides an escape mechanism, preventing PDI from becoming trapped with substrates that isomerize slowly (Walker, K. W., and Gilbert, H. F. (1997) J. Biol. Chem. 272, 8845-8848). Escape also reduces the substrate, and if it is invoked frequently, disulfide isomerization will involve cycles of reduction and reoxidation in preference to intramolecular isomerization of the PDI-bound substrate. Using a gel-shift assay that adds a polyethylene glycol-conjugated maleimide of 5 kDa for each sulfhydryl group, we find that PDI reduction and oxidation are kinetically competent and essential for isomerization. Oxidants inhibit isomerization and oxidize PDI when a redox buffer is not present to maintain the PDI redox state. Reductants also inhibit isomerization as they deplete oxidized PDI. These rapid cycles of PDI oxidation and reduction suggest that PDI catalyzes isomerization by trial and error, reducing disulfides and oxidizing them in a different configuration. Disulfide reduction-reoxidation may set up critical folding intermediates for intramolecular isomerization, or it may serve as the only isomerization mechanism. In the absence of a redox buffer, these steady-state reduction-oxidation cycles can balance the redox state of PDI and support effective catalysis of disulfide isomerization.  相似文献   

18.
Ketol-acid reductoisomerase (EC 1.1.1.86) is involved in the biosynthesis of the branched-chain amino acids. It is a bifunctional enzyme that catalyzes two quite different reactions at a common active site; an isomerization consisting of an alkyl migration, followed by an NADPH-dependent reduction of a 2-ketoacid. The 2-ketoacid formed by the alkyl migration is not released. Using the pure recombinant Escherichia coli enzyme, we show that the isomerization reaction has a highly unfavourable equilibrium constant. The reductase activity is shown to be relatively nonspecific and is capable of utilizing a variety of 2-ketoacids. The active site of the enzyme contains eight conserved polar amino acids and we have mutated each of these in order to dissect their contributions to the isomerase and reductase activities. Several mutations result in loss of the isomerase activity with retention of reductase activity. However, none of the 17 mutants examined have the isomerase activity only. We suggest a reason for this, involving direct reduction of a transition state formed during the isomerization, which is necessitated by the unfavourable equilibrium position of the isomerization. Our mechanism explains why the two activities must occur in a single active site without release of a 2-ketoacid and provides a rationale for the requirement for NADPH by the isomerase.  相似文献   

19.
The barrier imposed by lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria presents a significant challenge in treatment of these organisms with otherwise effective hydrophobic antibiotics. The absence of L-glycero-D-manno-heptose in the LPS molecule is associated with a dramatically increased bacterial susceptibility to hydrophobic antibiotics and thus enzymes in the ADP-heptose biosynthesis pathway are of significant interest. GmhA catalyzes the isomerization of D-sedoheptulose 7-phosphate into D-glycero-D-manno-heptose 7-phosphate, the first committed step in the formation of ADP-heptose. Here we report structures of GmhA from Escherichia coli and Pseudomonas aeruginosa in apo, substrate, and product-bound forms, which together suggest that GmhA adopts two distinct conformations during isomerization through reorganization of quaternary structure. Biochemical characterization of GmhA mutants, combined with in vivo analysis of LPS biosynthesis and novobiocin susceptibility, identifies key catalytic residues. We postulate GmhA acts through an enediol-intermediate isomerase mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号