首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stem water content, ice fraction, and losses in xylem conductivity were monitored from November 1996 to October 1997 in an even-aged stand of Pinus contorta (lodgepole pine) near Potlatch, Idaho, USA. A time domain reflectometry (TDR) probe was used to continuously monitor stem water contents and ice fractions. Stem sapwood water contents measured with TDR were not different from water contents measured gravimetrically. The liquid water content of stems ranged from 0.70 m3 m-3 to 0.20 m3 m-3 associated with freezing and thawing of the wood tissue. Ice fraction of the stem varied from 0-75% during the winter suggesting liquid water was always present even at ambient temperatures below -20°C. Shoot xylem tensions decreased through the winter to a minimum of ca. -1.4 MPa in February then increased to -0.4 MPa in May. Shoot xylem tensions decreased during the growing season reaching -1.7 MPa by September. Annually, low shoot water potentials were not correlated to decreases in stem hydraulic conductivity. Xylem conductivity decreased due to cavitation through the winter and was 70% of summer values by March. Decreases in xylem conductivity were correlated to low shoot water potentials and cumulative freezing and thawing events within the xylem. Xylem conductivity increased to pre-winter values by May and no reductions in xylem conductivity were observed during the growing season.  相似文献   

2.
Freezing in Conifer Xylem: II. PIT ASPIRATION AND BUBBLE FORMATION   总被引:3,自引:0,他引:3  
A scanning electron microscope equipped with a freezing stagewas used to examine the effects of slow freezing on pit aspirationand bubble formation in living tree stems. The size (approximately 2.0 µm diameter) and the sphericalor ellipsoidal shape of the bubbles found in the centre of frozenlumens indicated freezing rates greater than 25 µm s–1.Both unaspirated and aspirated bordered pits were found in thefrozen xylem. The technique used did not reveal enough pitsto determine whether unaspirated pits were more prevalent thanaspirated pits. These results are compared with hypotheses and results fromprevious work on freezing in conifer xylem. Key words: Freezing, conifer xylem, bordered pits, bubbles  相似文献   

3.
Freezing of xylem sap without cavitation   总被引:9,自引:2,他引:7       下载免费PDF全文
Freezing of stem sections and entire twigs of hemlock (Tsuga canadensis) has been demonstrated to occur without increasing the resistance to the movement of water through the frozen part after rewarming. This was interpreted to mean that freezing did not produce cavitation in the xylem sap even though A) the sap was unquestionably frozen; B) it contained dissolved gases; and C) it was under tension before freezing and after. Freezing stem sections of some other evergreen gymnosperms during the summer again produced no evidence for cavitation of the xylem sap. On the other hand, freezing stem sections of some angiosperms invariably increased the resistance to sap flow leading to wilting and death in a few hours when the sap tension was at normal daytime values at the time of freezing. These results were interpreted to mean that the bordered pits on the tracheids of gymnosperms function to isolate the freezing sap in each tracheid so that the expansion of water upon freezing not only eliminates any existing tension but also develops positive pressure in the sap. Dissolved gases frozen out of solution may then be redissolved under this positive pressure as melting occurs. As the bubbles are reduced in size by this ice pressure developed in an isolated tracheid, further pressure is applied by the surface tension of the water against air. If the bubbles are redissolved or are reduced to sufficient small size by the time the tension returns to the sap as the last ice crystals melt, then the internal pressure from surface tension in any existing small bubbles may exceed the hydrostatic tension of the melted sap and the bubbles cannot expand and will continue to dissolve.  相似文献   

4.
Biophysical Model of Xylem Conductance in Tracheids of the Fern Pteris vittata   总被引:13,自引:0,他引:13  
Calkin, H. W., Gibson, A. C. and Nobel, P. S. 1986. Biophysicalmodel of xylem conductance in tracheids of the fern Pteris vittata.—J.exp. Bot. 37: 1054–1064. Water movement in the xylem is often analysed with the Hagen-Poiseuilleequation, which applies to capillaries of specific diameters.However, the predicted hydraulic conductances per unit length(Kh) are generally much higher than measured values and importantanatomical details, such as the pits of tracheids, are ignored.Here, a previous model based on the Hagen-Poiseuille analysisfor water flow in the stipes of Pteris vittata is improved byincorporating the actual lumen transectional shape (usuallyelliptical or ovate) and the tapering that occurs at the endsof its tracheids, as well as using a better method for analysingthe electrical circuit analogues for the pits (pit cavitiesplus pit membranes). The measured Kh was similar to that predictedby the Hagen-Poiseuille equation for narrow stipes with theirsmall tracheids, but was only about half the measured Kh forlarge stipes. Correcting for the actual shape changed Kh 2-to 3-fold for tracheids with elliptic and ovate transections.For the smaller diameter tracheids, most of the flow resistancewas from the lumens but for the larger tracheids most was fromthe pit membranes. For all stipes the pit cavities accountedfor 12–22% of the total resistance. When the pit membraneswere partially digested away with cellulase, Kh increased about66%, consistent with the deduced resistance of this part ofthe pathway. The present model incorporating realistic anatomicaldetails allowed reasonable predictions of the hydraulic conductanceper unit length over a wide size range of stipes for this fern. Key words: Hydraulic conductance, pit, tracheid, xylem  相似文献   

5.
The changes in morphology of the unicellular algae Cylindrocystisbrebissonii and two species of Micrasterias during freezingand thawing were observed on a light microscope fitted witha temperature controlled stage. At slow rates of cooling extensiveshrinkage of the protoplast was observed. The response of thecell wall varied with cell-type. In C. brebissonii plasmolysiswas not observed and the cell wall and protoplast shrank together.In Micrasterias the cell wall did not contract and a distinctplasmolysis was observed. Following freezing to and thawingfrom –25?C cells of C. brebissonii were non-viable butremained osmotically responsive. Cooling at faster rates inducedintracellular ice formation in all cell-types. The criticalrate of cooling varied with cell-type and was determined bycell volume and suface area. Intracellular gas bubbles wereobserved during thawing following both rapid and slow cooling. Following cooling in dimethylsulphoxide cells of C. brebissoniiwere protected against freezing injury. The recovery on thawingfrom –196?C being determined by the rate of cooling, anoptimum rate of 1?C min–1 was observed. During slow ratesof cooling (<2?C min–1) cells remained unshrunken,at faster rates (10?C min–1) the loss of cell viabilitywas related to osmotic shrinkage during cooling rather thanto nucleation of intracellular ice. Intracellular ice formationwas observed only following significantly faster rates of cooling(>20?C min–1). Key words: Cylindrocystis, Micrasterias, cryomicroscopy, freezing injury  相似文献   

6.
Primary production, and bacterial production as measured byincorporation of [3H-methyl]thymidineinto ice cold TCA insolublematerial were investigated during 1984 in Lake Kvernavatnet,west Norway. Primary production averaged 222 mg C m–2day–1 and bacterial production averaged 163 mg C m–2day–1. The bacterial production in the euphotic pelagiczonecontributed -60% of the total pelagic bacterial production.The zooplankton was dominated byDaphnia longispina. From growthexperiments with animals fed only natural food in coarse filteredlake water, the population daily growth increments were calculated.The average production of D.longispina was 151 mg C m–2day–1 during the period investigated. The estimated primaryproduction was too low to sustain both the bacterial productionand the zooplankton food requirements. These results imply thatthe carbon cycle of the lake is dependent on the supply of allochtonousmaterial, or that the current methods for measuring productionrates in aquatic environments are systematical erratic.  相似文献   

7.
Two contrasting cultivars of Lolium perenne were exposed toa range of daily radiation integrals during hardening at 2°Cfor 15 d. The maximum induced freezing tolerance measured asLT50 (temperature for 50 % kill) differed markedly between thecultivars. The observed LT50 values were unaffected by changesin the radiation integral above 10 mol m–2 d–1,whereas accumulation of water-soluble carbohydrate showed astrong positive correlation with the radiation integral overthe entire range of the experiment. The correlation betweenLT50 and soluble carbohydrate content at the end of the hardeningperiod was poor and showed no obvious connection with genotype.Fructan polymers and sucrose were the major components of thesoluble carbohydrates in both cultivars. The depression of freezingpoint attributable to the accumulation of soluble, osmoticallyactive carbohydrate was not sufficient to account for the observedchanges in LT50 in the hardy genotype. These results are discussedin relation to the interactions between growth, photosynthesisand assimilate partitioning during hardening. Lolium perenne, hardening, freezing tolerance, irradiance, carbohydrate, fructan  相似文献   

8.
The abscisic acid (ABA)-deficient mutant of barley, Az34, exhibiteda much reduced rate of leaf expansion at a bulk density of 1.6g cm–3 as compared to the isogenic wild-type variety,Steptoe. Az34 had a consistently lower xylem sap ABA concentrationat 7 d and 14 d after emergence (DAE). The xylem sap data suggestthat ABA present at Steptoe concentrations may have a directrole in maintaining leaf expansion at the sub-critical bulkdensity (1.6 g cm–3 To test this hypothesis, additionof synthetic ABA either to the rooting environment (100 nM)or directly to the xylem sap (5 pg µl–1 to reproducethe xylem sap ABA concentrations found in Steptoe, increasedleaf expansion in Az34 to the wild-type level. Furthermore,feeding Steptoe xylem sap to Az34 produced similar effects.These experiments provide direct evidence of a positive rolefor ABA as a root-to-shoot signal which assists in maintainingleaf growth in plants experiencing subcritical levels of compactionstress. Key words: ABA-deficient mutant, leaf expansion, xylem sap, ABA  相似文献   

9.
Plant Freezing and Damage   总被引:15,自引:1,他引:15  
Pearce  Roger S. 《Annals of botany》2001,87(4):417-424
Imaging methods are giving new insights into plant freezingand the consequent damage that affects survival and distributionof both wild and crop plants. Ice can enter plants through stomataand hydathodes. Intrinsic nucleation of freezing can also occur.The initial growth of ice through the plant can be as rapidas 40 mm s-1, although barriers can limit this growth. Onlya small fraction of plant water is changed to ice in this firstfreezing event. Nevertheless, this first rapid growth of iceis of key importance because it can initiate further, potentiallylethal, freezing at any site that it reaches. Some organs andtissues avoid freezing by supercooling. However, supercooledparts of buds can dehydrate progressively, indicating that avoidanceof freezing-induced dehydration by deep supercooling is onlypartial. Extracellular ice forms in freezing-intolerant as wellas freezing-tolerant species and causes cellular dehydration.The single most important cause of freezing-damage is when thisdehydration exceeds what cells can tolerate. In freezing-adaptedspecies, lethal freezing-induced dehydration causes damage tocell membranes. In specific cases, other factors may also causedamage, examples being cell death when limits to deep supercoolingare exceeded, and death of shoots when freezing-induced embolismsin xylem vessels persist. Extracellular masses of ice can damagethe structure of organs but this may be tolerated, as in extra-organfreezing of buds. Experiments to genetically engineer expressionof fish antifreeze proteins have not improved freezing toleranceof sensitive species. A better strategy may be to confer toleranceof cellular dehydration.Copyright 2001 Annals of Botany Company Freezing, dehydration, infrared video thermography, low temperature scanning electron microscopy, NMR micro-imaging  相似文献   

10.
The main stems of three young Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirbel) Franco) trees were dissected to obtain samples of secondary xylem from internodes axially along the trunk and radially within each internode. From these samples, measurements were obtained of tracheid diameter, length, the number of inter-tracheid pits per tracheid, and the diameter of the pit membranes. In addition, samples were obtained along the trunks of three old growth trees and also a small sample of roots for measurement of tracheid diameter. A gradient was apparent in all measured anatomical characters vertically along a sequence among the outer growth rings. These gradients arose not because of a gradient vertically along the internodes, but because of the strong gradients present at each internode among growth rings out from the pith. Tracheid characteristics were correlated: wider and longer tracheids had more numerous pits and wider pits, such that total pit area was about 6% of tracheid wall area independent of tracheid size. A stem model combining growth rings in parallel and internodes in series allowed for estimates of whole trunk conductance as a function of tree age. Conductance of the stem (xylem area specific conductivity) declined during the early growth of the trees, but appeared to approach a stable value as the trees aged.  相似文献   

11.
The present study investigates whether previously acquired boron(B) in mature leaves in white lupin can be retranslocated intothe rapidly growing young reproductive organs, in response toshort-term (3 d) interrupted B supply. In a preliminary experimentwith white lupin in soil culture, B concentrations in phloemexudates remained at 300–500 µM, which were substantiallyhigher than those in the xylem sap (10–30 µM). Thehigh ratios of B concentrations in phloem exudates to thosein the xylem sap were close to values published for potassiumin lupin plants. To differentiate ‘old’ B in theshoot from ‘new’ B in the root, an experiment wascarried out in which the plants were first supplied with 20µM 11B (99.34% by weight) in nutrient solution for 48d after germination (DAG) until early flowering and then transferredinto either 0.2 µM or 20 µM 10B (99.47% by weight)for 3 d. Regardless of the 10B treatments, significant levelsof 11B were found in the phloem exudates (200–300 µMin 20 µM 10B and 430 µM in 0.2 µM 10B treatment)and xylem sap over the three days even without 11B supply tothe root. In response to the 0.2 µM 10B treatment, thetranslocation of previously acquired 11B in the young (the uppermostthree leaves), matured, and old leaves was enhanced, coincidingwith the rise of 11B in the xylem sap (to >15 µM) andphloem exudates (430 µM). The evidence supports the hypothesisthat previously acquired B in the shoot was recirculated tothe root via the phloem, transferred into the xylem in the root,and transported in the xylem to the shoot. In addition, somepreviously acquired 11B in the leaves may have been translocatedinto the rapidly growing inflorescence. Phloem B transport resultedin the continued net increment of 11B in the flowers over 3d without 11B supply. However, it is still uncertain whetherthe amount of B available for recirculation is adequate to supportreproductive growth until seed maturation. Key words: 10B, 11B, B recirculation, Lupinus albus L., phloem exudate, xylem sap Received 9 October 2007; Revised 28 November 2007 Accepted 30 November 2007  相似文献   

12.
Nodulated 1-1.5-year-old plants of Acacia littorea grown inminus nitrogen culture were each partnered with a single seedlingof the root hemiparasite Olax phyllanthi. Partitioning of fixedN between plant organs of the host and parasite was studiedfor the period 4–8 months after introducing the parasite.N fluxes through nodules of Acacia and xylem-tapping haustoriaof Olax were compared using measured xylem flows of fixed Nand anatomical information for the two organs. N2 fixation duringthe study interval (635 µg N g FW nodules–1 d–1)corresponded to a xylem loading flux of 0.20 µg N mm–2d–1 across the secretory membranes of the pencycle parenchymaof the nodule vascular strands. A much higher flux of N (4891µg mm–2 d–1) exited through xylem at the junctionof nodule and root. The corresponding flux of N from host xylemacross absorptive membranes of the endophyte parenchyma of Olaxhaustorium was 1.15 µg N mm–1 d–1, six timesthe loading flux in nodules. The exit flux from haustorium toparasite rootlet was 20.0 pg N mm–1 d–1, 200-foldless than that passing through xylem elements of the nodule.Fluxes of individual amino compounds in xylem of nodule andhaustorium were assessed on a molar and N basis. N flux valuesare related to data for transpiration and partitioning of Cand N of the association recorded in a companion paper. Key words: Olax phyllanthi, host-parasite relationships, N flux, Acacia, N2 fixation  相似文献   

13.
We studied the effects of artificial soil frost on cambial activity and xylem formation on 47-year-old Norway spruce [Picea abies (L.) Karst.] trees grown on medium fertile site type (with moraine soil) in eastern Finland (62°42′N; 29°45′E). Different soil frost treatments applied were: (1) natural snow accumulation and melting (control, CTRL); (2) artificial removal of snow from soil surface during two consecutive winters (OPEN); and (3) snow clearing and insulation (FROST), which was in other ways similar to OPEN, but the ground was insulated in early spring to delay soil thawing. Each treatment was replicated in three blocks, and two sample trees in each plot were repeatedly microcored during growing seasons of 2006–2007 for the analysis of the onset, cessation and the duration of xylem formation. The phases of tracheid differentiation (tracheids in radial enlargement, secondary cell wall formation, and mature tracheids) were measured from the microcores of 2007. The intra-ring growth and wood density variables were analysed based on X-ray densitometry. In FROST in 2006, xylem formation started a week later than in the other treatments. In 2007, no difference was found between the treatments. The discrepancy in results between the two study years may be explained by between-years variation in weather, i.e., the winter was colder in 2005/2006 than in 2006/2007. No effects of soil frost treatments on tracheid differentiation and on most of the intra-ring growth and density variables were discovered. Our results suggest that the delayed thawing of moraine soil may slightly affect the onset, timing and duration of xylem formation in Norway spruce. However, the effects of delayed soil frost may depend also on the soil type and become more evident with increasing water holding capacity of the soil.  相似文献   

14.
The extent by which salinity affects plant growth depends partlyon the ability of the plant to exclude NaCl. To study the uptakeof NaCl into excised roots of Zea mays L. cv. ‘Tanker’,two different techniques were applied. A root pressure probewas used to record steady state as well as transient valuesof root (xylem) pressure upon exposure of the root to mediacontaining NaCl and KCl as osmotic solutes. In treatments withNaCl, pressure/time responses of the root indicated a significantuptake of NaCl into the xylem. NaCl induced kinetics were completelyreversible when the NaCl solution was replaced by an isosmoticKCl solution. This indicated a passive movement of Na+-saltsacross the root cylinder. Root samples were taken at differenttimes of exposure to NaCl and prepared for X-ray microanalysis(EDX analysis). Radial profiles of ion concentrations (Na+,K+, Cl) were measured in cell vacuoles and xylem vesselsalong the root axis. Na+ appeared rapidly in mature xylem (earlymetaxylem) and living xylem (late metaxylem) before it was detectablein vacuoles of the root cortex. EDX results confirmed that thekinetics observed by the pressure probe technique correspondedmainly to an influx of Na+-salts into early metaxylem. In latemetaxylem, the uptake of Na+ was associated with a decline ofK+. The Na+/K+ exchange indicated a mechanism to reduce sodiumfrom the transpiration stream. Ion localization, ion transport, maize, root pressure, salinity, water relations, X-ray microanalysis, Zea mays  相似文献   

15.
Proton Fluxes and the Activity of a Stelar Proton Pump in Onion Roots   总被引:6,自引:2,他引:4  
The xylem vessels of excised adventitious roots of onion, Alliumcepa, were perfused with unbuffered nutrient solution adjustedinitially to either pH 9·3 or 3·9; the pH of thesolution after passage through the xylem, at rates not lessthan 2 xylem volume changes min–1, was close to pH 6·5in both instances. The flux of H+ across the xylem/symplastboundary into mildly alkaline, phosphate-buffered solutionsperfusing the vessels could be increased greatly with increasingbuffer strength, up to a maximum value between 0·5–1·0pmol H+ mm–2 s–1. The apparent neutralization ofacidic malic acid buffers had a slightly lower maximum capacity,equivalent to –0·3 to –0·5 pmol H+mm–2 s–1. The addition of 5·0 pmol m–3fusicoccin (FC) to the xylem perfusion solution stimulated theentry of H+ into the xylem; in unbuffered perfusion solutionsthe pH fell to pH 3·6 after a lag of 25–35 min.FC additions to phosphate-buffered solutions also stimulatedthe H+ flux to an extent similar to that in unbuffered solution,viz. 0·2–0·4 pmol mm–2 s–1. The release of K+ (36Rb-labelled) into xylem sap transientlyincreased as the [K+] in weakly buffered perfusion solutionswas raised stepwise; a very marked increase being seen whenthe concentration was raised to 100 mol m–3 from 40 molm–3. The addition of 5·0 mmol m–3 FC to theperfusing solution containing 100 mol m–3 K+ rapidly decreasedthe K+ flux to the xylem as the H+ flux increased. Fusicoccinalso inhibited the flux of K+ into unbuffered perfusion solutionsbut the effect appeared reversible. Addition of 10 mmol m–3abscisic acid (ABA) to the perfusion solution quickly producedtransient increases in both K+ and H+ fluxes into the xylem.In this and other experiments using weakly phosphate-bufferedperfusing solutions, H+ fluxes were comparable in size to thoseof K+ The results are consistent with the idea that the stele of onionroots contains a proton trarislocating ATPase whose activityresponds to the pH of the xylem sap. It is evident that theactivity of the proton secreting and proton neutralizing mechanismsin the xylem parenchyma control the movement of other ions acrossthe xylem/symplast boundary. Key words: Xylem perfusion, fusicoccin, abscisic acid, pH gradient  相似文献   

16.
 Effects of temperature and precipitation on xylem cell production by the cambium, radial cell expansion and secondary wall thickening in larch stems have been studied. The observations were carried out over two seasons on ten 50- to 60-year-old trees, growing in central Siberia and chosen according to growth rate (the number of cells in radial rows of each of two of the preceding seasons was equal). The data on the number of cells in differentiation zones and mature xylem along radial rows of tracheids, radial and tangential sizes of tracheids and their lumina were used for calculating cambial activity, the rates and durations of cell development in the zones, and both the thickness and cross-sectional areas of tracheid walls. The mean day air temperature, mean maximum diurnal and mean minimum nocturnal temperatures as well as precipitation have been shown by correlation and regression analyses to affect differentially separate stages of tracheid differentiation. Throughout all the seasons it was temperature that had the main influence on the initial divisions in the xylem, radial cell expansion and biomass accumulation. However, the levels of such an effect on separate stages of cytogenesis were different, especially the influence of nocturnal temperature on xylem cell production by cambium and primary wall growth. The optimum values of temperature and precipitation for cell production by cambium, for radial cell expansion and secondary wall thickening have been calculated. These optimum values of the first and second processes proved to be practically equal, while the last differs considerably in response to temperature. The data are discussed in connection with formation of early and late tracheids. Received: 3 July 1996 / Accepted: 7 February 1997  相似文献   

17.
Hordeum vulgare cv. California Mariout was established in sandculture at two different NaCl concentrations (0.5 mol m–3‘control’ and 100 mol m–3) in the presenceof 6.5 mol m–3 K +. Between 16 and 31 d after germination,before stem elongation started, xylem sap was collected by useof a pressure chamber. Collections were made at three differentsites on leaves 1 and 3: at the base of the sheath, at the baseof the blade, i.e. above the ligule, and at the tip of the blade.Phloem sap was collected from leaf 3 at similar sites throughaphid stylets. The concentrations of K +, Na+, Mg2+ and Ca2+were measured. Ion concentrations in xylem sap collected at the base of leaves1 and 3 were identical, indicating there was no preferentialdelivery of specific ions to older leaves. All ion concentrationsin the xylem decreased from the base of the leaf towards thetip; these gradients were remarkably steep for young leaves,indicating high rates of ion uptake from the xylem. The gradientsdecreased with leaf age, but did not disappear completely. In phloem sap, concentrations of K+ and total osmolality declinedslightly from the tip to the base of leaves of both controland salt-treated plants. By contrast, Na+ concentrations inphloem sap collected from salt-treated plants decreased drasticallyfrom 21 mol m–3 at the tip to 7.5 mol m–3 at thebase. Data of K/Na ratios in xylem and phloem sap were used to constructan empirical model of Na+ and K+ flows within xylem and phloemduring the life cycle of a leaf, indicating recirculation ofNa+ within the leaf. Key words: Hordeum vulgare, xylem transport, phloem transport, NaCl-stress  相似文献   

18.
Kouchi, H. and Higuchi, T. 1988. Carbon flow from nodulatedroots to the shoots of soybean {Glycine max L. Merr.) plants:An estimation of the contribution of current photosynthate toureides in the xylem stream.–J. exp. Bot. 39: 1015–1023. Well-nodulated, water-cultured soybean plants were allowed toassimilate 13CO2 at a constant specific activity for 10 h andthe 13C-labelling of total carbon and ureides in xylem sap wasinvestigated. Labelled carbon appeared very rapidly in the xylem stream. Percentageof labelled carbon (relative specific activity, RSA) in xylemsap was 18% at 2 h after the start of 13CO2 assimilation andreached 53% at the end of the 10 h assimilation. The amountof labelled carbon exported from nodulated roots to the shootsvia the xylem during the 10 h labelling period accounted for33% of total labelled carbon imported into the nodulated roots.Ureides (allantoin and allantoic acid) in xylem sap were stronglydependent on currently assimilated carbon. The RSA of ureidesin xylem sap had reached 83% at the end of the assimilationperiod. Labelled carbon in ureides accounted for 51% of totallabelled carbon returned from nodulated roots to the shootsvia the xylem during the 10 h assimilation period. A treatmentwith 20 mol m–3 nitrate in the culture medium for 2 ddecreased the ureide concentration in the xylem sap slightly,but greatly decreased the RSA of ureides. By comparing the data with the results of analysis of the xylemsap of nodule-detached plants, it was concluded that the majorityof labelled carbon exported to the xylem stream from noduleswas in ureide form. A considerable amount of carbon was alsoreturned from roots to shoots via the xylem stream but it wasmore dependent on (non-labelled) carbon reserved in the roottissues. Key words: Soybean(Glycine max L.), root nodule, carbon partitoning, 13CO2 assimilation, xylem  相似文献   

19.
An experimentally-based modelling technique was developed todescribe quantitatively the uptake, flow, storage and utilizationof NO3-N over a 9 d period in mid-vegetative growth of sandcultured castor bean (Ricinus communis L.) fed 12 mol m–3nitrate and exposed to a mean salinity stress of 128 mol m–3NaCl. Model construction used information on increments or lossesof NO3-N or total reduced N in plant parts over the study periodand concentration data for NO3-N and reduced (amino acid) Nin phloem sap and pressure-induced xylem exudates obtained fromstem, petiole and leaf lamina tissue at various levels up ashoot. The resulting models indicated that the bulk (87%) of incomingnitrate was reduced, 51% of this in the root, the remainderprincipally in the laminae of leaves. The shoot was 60% autotrophicfor N through its own nitrate assimilation, but was oversuppliedwith surplus reduced N generated by the root and fed to theshoot through the xylem. The equivalent of over half (53%) ofthis N returned to the root as phloem translocate and, mostly,then cycled back to the shoot via xylem. Nitrate comprised almosthalf of the N of most xylem samples, but less than 1% of phloemsap N. Laminae of leaves of different age varied greatly inN balance. The fully grown lower three leaves generated a surplusof reduced N by nitrate assimilation and this, accompanied byreduced N cycling by xylem to phloem exchange, was exportedfrom the leaf. Leaf 4 was gauged to be just self-sufficientin terms of nitrate reduction, while also cycling reduced N.The three upper leaves (5–7) met their N balance to varyingextents by xylem import, phloem import (leaves 6 and 7 only)and assimilation of nitrate. Petioles and stem tissue generallyshowed low reductase activities, but obtained most of theirN by abstraction from xylem and phloem streams. The models predictedthat nodal tissue of lower parts of the stem abstracted reducedN from the departing leaf traces and transferred this, but notnitrate, to xylem streams passing further up the shoot. As aresult, xylem sap was predicted to become more concentratedin N as it passed up the shoot, and to decrease the ratio ofNO3-N to reduced N from 0·45 to 0·21 from thebase to the top of the shoot. These changes were reflected inthe measured N values for pressure-induced xylem exudates fromdifferent sites on the shoot. Transfer cells, observed in thexylem of leaf traces exiting from nodal tissue, were suggestedto be involved in the abstraction process. Key words: Ricinus communis, nitrogen, nitrate, nitrate reduction, partitioning, phloem, xylem, flow models  相似文献   

20.
Freeze-thaw events can cause embolism in plant xylem. According to classical theory, gas bubbles are formed during freezing and expand during thawing. Conifers have proved to be very resistant to freeze-thaw induced embolism, because bubbles in tracheids are small and redissolve during thawing. In contrast, increasing embolism rates upon consecutive freeze-thaw events were observed that cannot be explained by the classical mechanism. In this study, embolism formation during freeze-thaw events was analyzed via ultrasonic and Cryo-scanning electron microscope techniques. Twigs of Picea abies L. Karst. were subjected to up to 120 freeze-thaw cycles during which ultrasonic acoustic emissions, xylem temperature, and diameter variations were registered. In addition, the extent and cross-sectional pattern of embolism were analyzed with staining experiments and Cryo-scanning electron microscope observations. Embolism increased with the number of freeze-thaw events in twigs previously dehydrated to a water potential of -2.8 MPa. In these twigs, acoustic emissions were registered, while saturated twigs showed low, and totally dehydrated twigs showed no, acoustic activity. Acoustic emissions were detected only during the freezing process. This means that embolism was formed during freezing, which is in contradiction to the classical theory of freeze-thaw induced embolism. The clustered pattern of embolized tracheids in cross sections indicates that air spread from a dysfunctional tracheid to adjacent functional ones. We hypothesize that the low water potential of the growing ice front led to a decrease of the potential in nearby tracheids. This may result in freezing-induced air seeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号