首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of aqueous dispersions of unsaturated phosphatidylcholines by products released during the decomposition of potassium peroxychromate has been investigated. The rate and extent of oxidation have been measured by loss of unsaturated fatty acids and related to the rate of decomposition of peroxychromate as monitored by pH titrimetry and chromate analysis. The loss of oleic and linoleic acid from egg lecithin dispersions was similar in systems containing between 0.062 and 2 g peroxychromate and was limited to less than 50% of the total unsaturated residues of the substrate. Studies of the rate of oxidation suggested that the mechanism of reaction involved the progressive oxidation of the substrate dependent on the continuous supply of relatively short-lived oxidising species. The use of azide as a singlet oxygen quencher and 2,5-dimethyl- and 2,5-diphenylfurans as singlet oxygen traps did not prevent oxidation of the phospholipid.  相似文献   

2.
J M Gutteridge 《FEBS letters》1984,172(2):245-249
Iron salts stimulate lipid peroxidation by decomposing lipid peroxides to produce alkoxyl and peroxyl radicals which initiate further oxidation. In aqueous solution ferrous salts produce OH. radicals, a reactive species able to abstract hydrogen atoms from unsaturated fatty acids, and so can initiate lipid peroxidation. When iron salts are added to lipids, containing variable amounts of lipid peroxide, the former reaction is favoured and OH. radicals contribute little to the observed rate of peroxidation. When iron is complexed with EDTA, however, lipid peroxide decomposition is prevented, but the complex reacts with hydrogen peroxide to form OH. radicals which are seen to initiate lipid peroxidation. Superoxide radicals appear to play an important part in reducing the iron complex.  相似文献   

3.
The developmentally regulated carbohydrate binding protein discoidin (from Dictyostelium discoideum) has been purified in a nonagglutinating form. While substantial agglutination activity is present in cell lysates, this activity is consistently lost upon affinity purification of discoidin. The lack of agglutination activity is not due to a mutational event or a nutritional deficiency. The carbohydrate binding site of the protein is functional, and dissociation of the oligomeric protein into subunits has not occurred. The addition of aqueous dispersions of a CHCl3/CH3OH extract of a slime-mold particulate fraction to the purified discoidin reconstitutes agglutination activity in a concentration-dependent manner. The reconstituted agglutination activity has the specificity of discoidin's carbohydrate binding sites. The reconstitutive ability of the CHCl3/CH3OH extract is due to a lipid component. Treatments of the lipid extract and fractionation of the active species suggest that it may be unsaturated fatty acid. Of many purified lipids tested, only high concentrations of cisvaccenic acid (C18:1 delta11) or oleic acid (C18:1 delta9) significantly reconstituted agglutination activity.  相似文献   

4.
Activation of rat brain protein kinase C by lipid oxidation products   总被引:3,自引:0,他引:3  
The unsaturated fatty acid components of membrane lipids are susceptible to oxidation in vitro and in vivo. The initial oxidation products are hydroperoxy fatty acids that are converted spontaneously or enzymatically to a variety of products. Hydroperoxy derivatives of oleic, linoleic, or arachidonic acids stimulate the activity of protein kinase C (PKC) purified from rat brain. The hydroperoxy acids satisfy the requirement of PKC for phospholipid (e.g., phosphatidylserine). Activation is observed in the presence or absence of 1 mM Ca2+. Reduction of the hydroperoxides to alcohols or dehydration of the hydroperoxides to ketones increases the Ka for activation three- to fourfold but does not significantly reduce the maximal extent of PKC activation. The Ka's for activation by hydroperoxy acids are approximately half the values exhibited by the unoxidized fatty acids. Since oxidation of unsaturated fatty acids to hydroperoxides is the first event in lipid peroxidation, activation of PKC by hydroperoxy fatty acids may be an early cellular response to oxidative stress.  相似文献   

5.
The effect of fatty acids on Mycobacterium smegmatis was examined in vitro at pH 5.0 to 7.0 to determine the role of fatty acids in the intracellular killing of mycobacteria. Unsaturated fatty acids showed strong bactericidal activity in low concentrations (0.005 to 0.02 mM), whereas saturated fatty acids, except for lauric and myristic acids, were not very effective even at a concentration of 0.2 mM. Addition of a saturated fatty acid (palmitic or stearic acid) to an unsaturated fatty acid (oleic or linoleic acid) did not strongly interfere with the bactericidal effect of the unsaturated fatty acid at pH 5.0 and 6.0. Ca2+ (3.0 mM), Mg2+ (1.0 mM), and gamma-globulin (0.4%) showed weak reversal effects on the bactericidal activity of unsaturated fatty acids at pH 5.0 and 6.0. Serum albumin and serum showed strong reversal effects. The concentrations of each fatty acid in a mixture (molar ratio, 1:1:1:1) of oleic, linoleic, palmitic, and stearic acids required for the killing of M. smegmatis in the presence of 2% serum (bovine, rabbit, or human) were 0.05 to 0.10 mM at pH 5.0 and 6.0 and 0.05 to 0.20 mM at pH 7.0, depending on the serum used. The susceptibilities of M. kansasii, M. bovis strain BCG, and M. tuberculosis to the mixture of the four fatty acids in the presence of 2% bovine serum were similar to that of M. smegmatis, although M. fortuitum was more resistant.  相似文献   

6.
An isolated bacterium that converted unsaturated fatty acids to hydroxy fatty acids was identified as Stenotrophomonas nitritireducens by API analysis, cellular fatty acids compositions, sequencing the full 16S ribosomal ribonucleic acid, and evaluating its nitrite reduction ability. S. nitritireducens has unique regio-specificity for C16 and C18 cis-9 unsaturated fatty acids. These fatty acids are converted to their 10-hydroxy fatty acids without detectable byproducts. Among the cis-9-unsaturated fatty acids, S. nitritireducens showed the highest specificity for linoleic acid. The cells converted 20 mM linoleic acid to 13.5 mM 10-hydroxy-12(Z)-octadecenoic acid at 30°C and pH 7.5 with a yield of 67.5% (mol/mol).  相似文献   

7.
Oxygen-dependent antagonism of lipid peroxidation   总被引:4,自引:0,他引:4  
Measurements of the rates for formation of conjugated dienes, malonylaldehyde, and lipid hydroperoxides show that increasing the concentration of O2 from 0.11 mM to 0.35 mM or 0.69 mM can slow the rate of linoleic acid peroxidation in a xanthine oxidase/hypoxanthine system. This effect is seen at pH 7.0 but not 7.4 and depends on the presence of monounsaturated fatty acids (oleic, cis, or trans vaccenic acid). Oxygen antagonism of ascorbic acid-iron-EDTA mediated lipid peroxidation is similarly dependent on fatty acid mixtures and occurs at pH 5.0 and 6.0 but not 7.0. The efficiency of initiation of peroxidation in the xanthine oxidase system is unaffected by monounsaturated fatty acids and O2 concentration. Increasing the O2 concentration increases the rate of superoxide radical production, but there is no change in salicylate hydroxylation (e.g., OH. production) or ferrous ion concentration. Oxygen-mediated slower rates of lipid peroxidation are associated with either increased H2O2 production or, based on an indirect assay, singlet O2 production. Increased O2 concentrations increase the rate of azobisisobutyronitrile-initiated lipid peroxidation as expected but addition of exogenous superoxide radicals slows the rate. Under similar conditions superoxide reacts with fatty acids to produce singlet O2. Overall, the data suggest that O2-mediated antagonism occurs because of termination reactions between hydroperoxyl (HO2.) and organic radicals, and singlet O2 or H2O2 are products of these reactions.  相似文献   

8.
The radiation-induced oxidation of saturated and unsaturated fatty acids in aqueous solutions has been estimated by measurement of the continuous uptake of oxygen using an oxygen electrode. Chain reactions, initiated by HO radicals, are easily identified to be occurring in the case of unsaturated fatty acids. Other mild oxidation agents, namely (SCN)-.2, Br-.2 and N.3, are also found to be capable of oxidizing the polyunsaturated fatty acids. Evidence is presented that O-.2 may also initiate peroxidation. The oxidation of the polyunsaturated fatty acids is dependent on dose rate, fatty acid concentration, temperature and the presence of antioxidant and other protective agents. Kinetic studies of the reaction of (SCN)-.2 and Br-.2 with linoleic and linolenic acids have been carried out using pulse radiolysis. The bimolecular rate constants for both radical species with the lipids are approx 10(7) mol-1 dm3 s-1, below their critical micelle concentrations, and decrease at higher concentrations due to micelle formation.  相似文献   

9.
Previously we demonstrated that in vivo exposure of humans to NO2 resulted in significant inactivation of alpha 1-protease inhibitor (alpha 1-PI) in the bronchoalveolar lavage fluid. However, alpha 1-PI retains its elastase inhibitory activity in vitro when exposed to 10 times the concentration of NO2 used in vivo. We suggested exogenous oxidants such as O2 and NO2 exert their effect in vivo in part through lipid peroxidation. We investigated the mechanism of inactivation of alpha 1-PI in the presence or absence of lipids under oxidant atmosphere. alpha 1-PI in solutions containing phosphate buffer (control), 0.1 mM stearic acid (saturated fatty acid, 18:0), or 0.1 mM linoleic acid (polyunsaturated fatty acid, 18:2) was exposed to either N2 or NO2 (50 ppm for 4 h). Elastase inhibitory capacity of alpha 1-PI was significantly diminished in the presence of 0.1 mM linoleic acid and under NO2 atmosphere (75 +/- 8% of control, P less than 0.01), whereas there was no change in elastase inhibitory capacity of alpha 1-PI in the presence or absence (buffer only) of 0.1 mM stearic acid under a similar condition (109 +/- 11 and 94 +/- 6%, respectively). The inactivated alpha 1-PI as the result of peroxidized lipid could be reactivated by dithiothreitol and methionine sulfoxide peptide reductase, suggesting oxidation of methionine residue at the elastase inhibitory site. Furthermore the inhibitory effect of peroxidized lipid on alpha 1-PI could be prevented by glutathione and glutathione peroxidase and to some extent by alpha-tocopherol.  相似文献   

10.
The relationship between structures of fatty acid derivatives, long-chain fatty alcohols, phospholipids and their calcium-transporting activity was investigated using the two-phase model system in which 45Ca is transported from an aqueous to an immiscible organic phase. Calcium translocation by all saturated and unsaturated fatty acids was significant only at 10 mM concentrations, but minimal or negligible below 1 mM; the corresponding methyl esters and alcohols were inactive at 10 mM. Polyunsaturated fatty acid derivatives, prepared by incubation with lipoxygenase (linoleate: oxygen oxidoreductase; EC 1.13.11.12) or by autoxidation in air, showed a markedly increased potency over the parent compounds. The oxidation products of linoleic and arachidonic acids were most potent. For example, the equieffective concentrations were 10 mM for linoleic acid, 0.4 mM for its lipoxygenase metabolites and 0.094 mM for its autoxidation products. Similarly, for arachidonic acid and its derivatives, equieffective concentrations were 10, 0.104 and 0.112 mM, respectively. The potency of the autoxidized fatty acid derivatives varied with both duration of autoxidation and the specific structure. Methyloleate and oleyl alcohol remained inactive even after a prolonged oxidation, whereas methyllinoleate and linoleyl alcohol were very potent only after 4 weeks but not after 1 week autoxidation. The potency of esters and alcohols with three or more double bonds increased significantly even after a short-term autoxidation, reflecting the differences in both the rate of formation and the contribution to calcium-transporting properties of the primary and secondary oxidation products. All phospholipids tested, with the exception of phosphatidylcholine and lysophosphatidylcholine, showed considerable calcium-transporting activities at 0.01 mM or greater concentrations; some members were of similar or greater potencies than the classical calcium ionophores, X537A and A23187.  相似文献   

11.
1. The lipid composition of serum and liver and some properties of serum lecithin: cholesterol acyltransferase of the horse were investigated. 2. Phospholipids and cholesterol were the major components of serum lipids and the concentration of triglyceride was considerably low. The concentration of liver lipids was comparable with that of other mammals. 3. Fatty acid composition of serum cholesterol ester resembled that of the 2-position of lecithin, except palmitic acid. 4. The activity of serum cholesterol esterifying enzyme was found to be 0.03-0.09 mumol/hr per ml. There was an equimolar decrease in free cholesterol and lecithin during incubation, and changes in unsaturated fatty acids in these two components were in good agreement. 5. Cholesterol esterification was reversibly inhibited by 5,5'-dithiobis-(2-nitrobenzoic acid). The acyl-transferase had a specificity for linoleic acid.  相似文献   

12.
This study examines certain membrane-related aspects of oxygen poisoning in Escherichia coli K1060 (fabB fadE lacI) and its parent strain, K-12 Ymel. Cells were grown to exponential or stationary phase in a minimal medium and exposed to air plus 300 lb/in2 of O2 as a suspension in minimal salts. After an initial lag, both strains lost viability with apparent first-order kinetics. Hypebaric oxygen was more toxic to cells harvested during the exponential phase of growth than to cells harvested from the stationary phase of growth for both strains K-12 Ymel and K1060. Control suspensions exposed to air plus 300 lb/in2 of N2 did not lose viability during a 96-h exposure. The sensitivity of the unsaturated fatty acid auxotroph, strain K1060, to hyperbaric oxygen increased as the degree of unsaturation of the fatty acid supplement increased. Cells grown with a cyclopropane fatty acid (9,10=methylenoctadecanoate) were the most resistant; cells grown with a monounsaturated fatty acid (oleate) were intermediate; and those grown with polyunsaturated fatty acids (linoleate and linolenate) were most sensitive to hyperbaric oxygen. The parent strain, K-12 Ymel, lost viability in hyperbaric oxygen most similarly to strain K1060 supplemented with oleate. To determine the relative effect of hyperbaric oxygen on the survival of E. coli with saturated membranes, substrains of K1060 were selected for growth on 12-methyltetrade-canoate or on 9 or 10-monobromostearate. Substrains grown with a saturated fatty acid supplement were equally or more sensitive to hyperbaric oxygen than when the same substrains were grown with a cyclopropane fatty acid supplement. The lipid acyl chain composition was determined in E. coli K1060 before and after exposure to hyperbaric oxygen or hyperbaric nitrogen. The proportion of nonsaturated acyl chain lipid of either the oleate- or the 9,10-methyleneoctade-canoate-supplemented K1060 remained unchanged after hyperbaric gas exposure. In strain K1060 supplemented with linoleate and grown to stationary phase, however, the relative unsaturated acyl chain content after hyperbaric exposure decreased in both gases. This finding prompted an investigation of the role of lipid oxidation in hyperbaric oxygen toxicity. Assays of potential lipid oxidation products were performed with linoleate-grown cells. The lipid hydroperoxide and peroxide content of the lipid extract increased by 6.9 times after 48 h of air plus 300 lb/in2 of O2; malondialdehyde and fluorescent complex lipid oxidation products showed much smaller or no changes. Lipid extracts from hyperbaric oxygen-exposed cells were not toxic to viable E. coli K1060, nor did they increase the rate of loss of viability in cells simultaneously exposed to hyperbaric oxygen. Linoleic acid hydroperoxide at 1.0 mM had no effect on the viability of E. coli K-12 Ymel and only marginally decreased the viability of E. coli K1060 supplemented with linoleate. We conclude that the kinetics of oxygen toxicity in E...  相似文献   

13.
1. A major component of the lipids in aqueous (pH7.5) homogenates of tuber tissue from Solanum tuberosum was isolated and characterized as 9-(nona-1',3'-dienoxy)non-8-enoic acid. 2. This novel unsaturated ether fatty acid derivative, which contains a butadienylvinyl ether function, has the structure: [Formula: see text] and is formed from linoleic acid by a sequence of enzymic reactions. 3. A precursor of the unsaturated ether derivative is 9-d-hydroperoxyoctadeca-10,12-dienoic acid, formed by the action of S. tuberosum lipoxygenase on linoleic acid. 4. An enzyme that converts the fatty acid hydroperoxide into the unsaturated ether derivative was isolated from S. tuberosum. The pH optimum of this enzyme is approx. 9, although the overall conversion of linoleic acid into the ether derivative is maximal at pH7.5. 5. An unusual feature of this pathway is the insertion of an oxygen atom into the alkyl chain of a fatty acid. 6. This novel mechanism may play a role in the breakdown of polyunsaturated fatty acids to volatile products in plants.  相似文献   

14.
Zhu LY  Zong MH  Wu H 《Bioresource technology》2008,99(16):7881-7885
Effects of medium components and culture conditions on biomass and lipid production of Trichosporon fermentans were studied. The optimal nitrogen source, carbon source and C/N molar ratio were peptone, glucose and 163, respectively. The favorable initial pH of the medium and temperature were 6.5 and 25 degrees C. Under the optimized conditions, a biomass of 28.1 g/l and a lipid content of 62.4% could be achieved after culture for 7 days, which were much higher than the original values (19.4 g/l and 50.8%) and the results reported by other groups. T. fermentans could grow well in pretreated waste molasses and a lipid yield of 12.8 g/l could be achieved with waste molasses of 15% total sugar concentration (w/v) at pH 6.0, representing the best result with oleaginous microorganisms on agro-industrial residues. Addition of various sugars to the pretreated molasses could efficiently enhance the accumulation of lipid and the lipid content reached as high as above 50%. Similar to vegetable oils, the lipid mainly contains palmitic acid, stearic acid, oleic acid and linoleic acid and the unsaturated fatty acids amount to about 64% of the total fatty acids. The microbial oil with an acid value of 5.6 mg KOH/g was transesterified to biodiesel by base catalysis after removal of free fatty acids and a high methyl ester yield of 92% was obtained.  相似文献   

15.
The aim of this study was to investigate the effect of altering the fatty acid profile of the lipid membrane on storage survival of freeze‐dried probiotic, Lactobacillus acidophilus La‐5, as well as study the membrane integrity and lipid oxidation. The fatty acid composition of the lipid membrane of L. acidophilus La‐5 was significantly different upon growth in MRS (containing Tween 80, an oleic acid source), or in MRS with Tween 20 (containing C12:0 and C14:0), linoleic, or linolenic acid supplemented. Bacteria grown in MRS showed the highest storage survival rates. No indications of loss of membrane integrity could be found, and membrane integrity could therefore not be connected with loss of viability. Survival of bacteria grown with linoleic or linolenic acid was more negatively affected by the presence of oxygen, than bacteria grown in MRS or with Tween 20 supplemented. A small, but significant, loss of linolenic acid during storage could be identified, and an increase of volatile secondary oxidation products during storage was found for bacteria grown in MRS, or with linoleic, or linolenic acid supplemented, but not for bacteria grown with Tween 20. Overall, the results indicate that lipid oxidation and loss of membrane integrity are not the only or most important detrimental reactions which can occur during storage. By altering the fatty acid composition, it was also found that properties of oleic acid gave rise to more robust bacteria than more saturated or unsaturated fatty acids did. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:799–807, 2015  相似文献   

16.
The effect of altering cell membrane lipids on ion transport across isolated corneas was studied. Corneas mounted in Ussing-type chambers showed a rapid increase in short-circuit current following treatment with a variety of unsaturated fatty acids of varying chain length and unsaturation. Measurements of membrane fluidity which utilize immunofluorescence labelling of membrane proteins showed corneal epithelial cell membranes to be significantly more fluid following linoleic acid treatment. Uptake studies indicate rapid incorporation of [14C]linoleic acid into corneal cell membranes. Highly unsaturated fatty acids were found to have the greatest ability to stimulate chloride transport. Saturated fatty acids were tested and were found to have no effect on chloride transport at any concentration. It is proposed that unsaturated fatty acids activate chloride transport by increasing membrane lipid fluidity. The relationship of these parameters is discussed in terms of a mobile receptor model. We speculate that an increase in membrane lipid fluidity promotes lateral diffusion of membrane receptor proteins and enzymes, increasing protein-protein interactions within the membrane, ultimately resulting in the enhancement of cyclic AMP synthesis.  相似文献   

17.
Fatty acids, cholesterol and glucose present in axenic medium are utilized by growingEntamoeba histolytica but the amoeba is unable to synthesize cholesterol from [U-14 C- ] glucose although the label is incorporated into the fatty acids and non-saponifiable fractions of the organism. Exogenously-added sonicated dispersions of cholesterol, Β-sitosterol, lanosterol, lecithin and lauric, palmitic, linoleic and stearic acids are ingested by the amoebae with subsequent loss in amoeboid movement. After a few hours the movement is regained. Cholesterol, lecithin and the fatty acids stimulate amoebic multiplication but are unable to replace serum in the medium either singly or in combination. CDRI Communication No. 2516.  相似文献   

18.
Linoleic acid absorption was studied using everted rat jejunal sacs. At low concentrations (42-1260 microM), the relationship between linoleic acid concentration and its absorption rate fitted best to a rectangular hyperbola. At high concentrations (2.5-4.2 mM) the relationship between the two parameters was linear. The separate additions of 2,4-dinitrophenol, cyanide, or azide, or decrease in the incubation temperature from 37 to 20 degrees C did not change the absorption rate of linoleic acid. Absorption rate of linoleic acid at low concentrations increased as the hydrogen ion and taurocholate concentrations were increased or as the unstirred water layer thickness was decreased. Linoleic acid absorption rate was decreased after the additions of lecithin, oleic, linolenic, and arachidonic acids or the substitution of taurocholate with the nonionic surfactant Pluronic F 68. These observations indicate that a concentration-dependent, dual mechanism of transport is operative in linoleic acid absorption. Facilitated diffusion is the predominant mechanism of absorption at low concentrations, while at high concentrations, simple diffusion is predominant. At low concentrations, the absorption rate of linoleic acid is influenced by the pH, surfactant type and concentration, the simultaneous presence of other polyunsaturated fatty acids, and the thickness of the unstirred water layer.  相似文献   

19.
The effects of unsaturated fatty acid deprivation on lipid synthesis in Saccharomyces cerevisiae strain GL7 were determined by following the incorporation of [14C]acetate. Compared to yeast cells grown with oleic acid, unsaturated fatty acid-deprived cells contained 200 times as much 14C label in squalene, with correspondingly less label in 2,3-oxidosqualene and 2,3;22,23-dioxidosqualene. Cells deprived of either methionine or cholesterol did not accumulate squalene, demonstrating that the effect of unsaturated fatty acid starvation on squalene oxidation was not due to an inhibition of cell growth. Cells deprived of olefinic supplements displayed additional changes in lipid metabolism: (i) an increase in 14C-labeled diacylglycerides, (ii) a decrease in 14C-labeled triacylglycerides, and (iii) increased levels of 14C-labeled decanoic and dodecanoic fatty acids. The changes in squalene oxidation and acylglyceride metabolism in unsaturated fatty acid-deprived cells were readily reversed by adding oleic acid. Pulse-chase studies demonstrated that the [14C]squalene and 14C-labeled diacylglycerides which accumulated during starvation were further metabolized when cells were resupplemented with oleic acid. These results demonstrate that unsaturated fatty acids are essential for normal lipid metabolism in yeasts.  相似文献   

20.
Site-specific induction of lipid peroxidation by iron in charged micelles   总被引:1,自引:0,他引:1  
Generation of hydroxyl radicals by the Fenton reaction resulted in lipid peroxidation of linoleic acid (LA) (H2O2-Fe2+-induced lipid peroxidation) in positively charged tetradecyltrimethylammonium bromide (TTAB) micelles, but not in negatively charged sodium dodecyl sulfate (SDS) micelles. However, more OH radicals formed via the Fenton reaction were trapped by N-t-butyl-alpha-phenylnitrone (PBN) in SDS micelles than in TTAB micelles. When detergent-dispersed LA was contaminated with linoleic acid hydroperoxide (LOOH), lipid peroxidation was catalyzed by Fe2+ via reductive cleavage of LOOH (LOOH-Fe2+-induced lipid peroxidation), and Fe2+ was oxidized simultaneously in SDS micelles, even when H2O2 was not present. In contrast, LOOH-Fe2+-induced lipid peroxidation and simultaneous oxidation of Fe2+ were not observed in TTAB micelles. An ESR spectrum presumed to be due to an alkoxy radical trapped by PBN was also detected in SDS micelles, but not in TTAB micelles in the LOOH-Fe2+-induced lipid peroxidation system. The results are discussed in the light of the localization of iron, the unsaturated bonding moiety of LA, the OOH-group of LOOH, and the trapping site of PBN in different charged micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号