共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Chloroplast and nuclear DNA sequence variation among populations and species was used to examine the phylogenetic history and hybridization of the North American Houstonia lineage. The ancestral species in the lineage do not show evidence of hybridization; however, the more recently derived species in eastern North America contain a wide degree of morphological and genetic variation both within and among species. Furthermore, there is a clear association between hybridization and polyploidy in the Houstonia lineage, with all potential hybrids occurring among species that contain polyploid populations. This suggests that polyploidy may break down species barriers and allow hybridization among lineages. These results indirectly support speciation models that involve genetic incompatibilities among species arising from gene silencing or genomic reorganization. 相似文献
3.
Members of tribe Vandeae (Orchidaceae) form a large, pantropical clade of horticulturally important epiphytes. Monopodial leafless members of Vandeae have undergone extreme reduction in habit and represent a novel adaptation to the canopy environment in tropical Africa, Asia, and America. To study the evolution of monopodial leaflessness, molecular and structural evidence was used to generate phylogenetic hypotheses for Vandeae. Molecular analyses used sequence data from ITS nrDNA, trnL-F plastid DNA, and matK plastid DNA. Maximum parsimony analyses of these three DNA regions each supported two subtribes within monopodial Vandeae: Aeridinae and a combined Angraecinae + Aerangidinae. Adding structural characters to sequence data resulted in trees with more homoplasy, but gave fewer trees each with more well-supported clades than either data set alone. Two techniques for examining character evolution were compared: (1) mapping vegetative characters onto a molecular topology and (2) tracing vegetative characters onto a combined structural and molecular topology. In both cases, structural synapomorphies supporting monopodial Vandeae were nearly identical. A change in leaf morphology (usually reduced to a nonphotosynthetic scale), monopodial growth habit, and aeration complexes for gas exchange in photosynthetic roots seem to be the most important characters in making the evolutionary transition to leaflessness. 相似文献
4.
? Premise of the study: The Condamineeae have in previous molecular studies been shown to be part of an early-divergent clade within the subfamily Ixoroideae, together with the tribes Calycophylleae, and Hippotideae, and genera of the former Cinchoneae and Rondeletieae. Generic relationships within this clade have, however, remained largely unresolved. ? Methods: In this study, the systematics of the Condamineeae was further examined by phylogenetic reconstruction of six cpDNA regions and one nrDNA region using parsimony and Bayesian Markov chain Monte Carlo inference. Morphological character evolution within the tribe was assessed by ancestral state reconstruction using likelihood optimization of characters onto Bayesian trees. ? Key results: Calycophylleae appears polyphyletic. "Hippotideae" is monophyletic but nested within the Condamineeae. The phylogenetic hypotheses presented support a resurrection of the genera Holtonia, Schizocalyx, and Semaphyllanthe. Furthermore, Bathysa is found to be polyphyletic, Tresanthera is found nested within Rustia, and the taxonomically disputed genus Dialypetalanthus is here shown to be sister to a Bothriospora-Wittmackanthus clade. Morphological ancestral state reconstructions indicate that protogyny have evolved at least two times within the tribe and that indehiscent fruits, loculicidal fruit dehiscence, and intrapetiolar stipules have evolved independently several times. The occurrence of calycophylls (leaf-like calyx lobes), poricidal anthers, and winged seeds also appear homoplastic within the tribe. ? Conclusions: A diagnosis and delimitation of the tribe Condamineeae is presented, with taxonomic proposals to synonymize Tresanthera and to transfer several species of Bathysa as well as Phitopis to a resurrected Schizocalyx. 相似文献
5.
‘Ecogeographic isolation’ describes the combined role of ecology and geography as a reproductive barrier, and an important component in speciation. Evidence increasingly shows that this form of isolation is important for maintaining the genetic integrity of populations and species. Further, ecogeographic isolation can be a reproductive barrier between polyploid individuals and their diploid progenitors. New ecoinformatic methods, which includes niche modeling and associated statistical assessments of these models with spatially explicit environmental data, allow us to test if ecogeographic isolation is a contributing isolating barrier between species and between cytotypes within a species. We tested the hypothesis that ecogeographic isolation contributes to isolation of species and cytotypes within species of the plant genus Houstonia. We found that species in this group occupied significantly different niches, which suggests ecogeographic isolation is a contributing reproductive barrier. We also found that diploid and tetraploid forms of H. longifolia show some level of ecogeographic isolation, but H. purpurea diploids and tetraploids did not. Our results suggest that ecogeographic isolation plays a role in reproductive isolation between Houstonia species and between cytotypes of H. longifolia. 相似文献
6.
Molecular phylogenetics and evolution of the endemic Hawaiian genus Adenophorus (Grammitidaceae) 总被引:2,自引:0,他引:2
Ranker TA Geiger JM Kennedy SC Smith AR Haufler CH Parris BS 《Molecular phylogenetics and evolution》2003,26(3):337-347
Recent studies of the phylogeny of several groups of native Hawaiian vascular plants have led to significant insights into the origin and evolution of important elements of the Hawaiian flora. No groups of Hawaiian pteridophytes have been subjected previously to rigorous phylogenetic analysis. We conducted a molecular phylogenetic analysis of the endemic Hawaiian fern genus Adenophorus employing DNA sequence variation from three cpDNA fragments: rbcL, atpbeta, and the trnL-trnF intergenic spacer (IGS). In the phylogenetic analyses we employed maximum parsimony and Bayesian inference. Bayesian phylogenetic inference often provided stronger support for hypothetical relationships than did nonparametric bootstrap analyses. Although phylogenetic analyses of individual DNA fragments resulted in different patterns of relationships among species and varying levels of support for various clades, a combined analysis of all three sets of sequences produced one, strongly supported phylogenetic hypothesis. The primary features of that hypothesis are: (1) Adenophorus is monophyletic; (2) subgenus Oligadenus is paraphyletic; (3) the enigmatic endemic Hawaiian species Grammitis tenella is strongly supported as the sister taxon to Adenophorus; (4) highly divided leaf blades are evolutionarily derived in the group and simple leaves are ancestral; and, (5) the biogeographical origin of the common ancestor of the Adenophorus-G. tenella clade remains unresolved, although a neotropical origin seems most likely. 相似文献
7.
Molecular phylogenetics and mitochondrial genomic evolution in the chamaeleonidae (Reptilia,Squamata) 总被引:4,自引:0,他引:4
A phylogenetic hypothesis for the lizard family Chamaeleonidae is generated from 1503 aligned base positions (883 parsimony-informative) of mitochondrial DNA for specimens representing 59 species (57 ingroup and two outgroup). Sequences are reported for a genomic segment encoding eight transfer RNAs, NADH dehydrogenase component 2 (ND2), and portions of NADH dehydrogenase component 1 (ND1) and cytochrome c oxidase subunit 1 (COI). Newly reported genomic rearrangements and duplications support the hypothesis that mitochondrial gene order and content are destabilized by phylogenetic loss of a functional origin for light-strand replication between the genes encoding tRNA(Asn) and tRNA(Cys). A novel gene order characterizes all sampled Brookesia except B. nasus. Brookesia nasus, the apparent sister taxon of a clade formed by all other Brookesia, has the ancestral gene order but contains a large tandem duplication. An apparently noncoding 220 base pair insertion between the genes encoding ND2 and tRNA(Trp) is reported for Bradypodion tavetanum. Phylogenetic analysis identifies nine clades whose ancestral lineages diverged early in chamaeleonid evolutionary history: (1) Brookesia (possibly excluding B. nasus), (2) Chamaeleo subgenus Chamaeleo (excluding C. namaquensis), (3) Chamaeleo subgenus Trioceros, (4) viviparous Bradypodion, (5) oviparous Bradypodion, (6) genus Furcifer (except F. balteatus), and (7-9) three distinct clades of Calumma. Chamaeleo namaquensis, Brookesia nasus, Furcifer balteatus, Rhampholeon brevicaudatus, and R. spectrum represent ancient lineages dating to approximately the same time. Multiple independent losses and a possible secondary gain of horns are inferred for Trioceros. Viviparity has at least two separate origins in chameleons, one in Bradypodion and 相似文献
8.
Kurt M. Neubig Norris H. Williams W. Mark Whitten Franco Pupulin 《Annals of botany》2009,104(3):457-467
Background and Aims
The orchid genus Dichaea, with over 100 species found throughout the neotropics, is easily recognized by distichous leaves on long stems without pseudobulbs and flowers with infrastigmatic ligules. The genus has previously been divided into four sections based primarily on presence of ovary bristles and a foliar abscission layer. The aim of this work is to use DNA sequence data to estimate phylogenetic relationships within Dichaea and map the distribution of major morphological characters that have been used to delimit subgenera/sections.Methods
Sequence data for the nuclear ribosomal internal transcribed spacers and plastid matK, trnL intron, trnL-F spacer and ycf1 for 67 ingroup and seven outgroup operational taxonomic units were used to estimate phylogenetic relationships within Dichaea. Taxa from each of the four sections were sampled, with the greatest representation from section Dichaea, the most diverse and taxonomically puzzling group.Key Results
Molecular data and morphology support monophyly of Dichaea. Results indicate that section Dichaeopsis is polyphyletic and based on symplesiomorphies, including deciduous leaves and smooth ovaries that are widespread in Zygopetalinae. There are at least three well-supported clades within section Dichaeopsis. Section Pseudodichaea is monophyletic and defined by setose ovaries and leaves with an abscission layer. Sections Dichaea and Dichaeastrum are monophyletic and defined by pendent habit and persistent leaves. Section Dichaeastrum, distinguished from section Dichaea primarily by a glabrous ovary, is potentially polyphyletic.Conclusions
The leaf abscission layer was lost once, occurring only in the derived sections Dichaea and Dichaeastrum. The setose fruit is a more homoplasious character with several losses and gains within the genus. We propose an informal division of the genus based upon five well-supported clades.Key words: Dichaea, matK, nrITS, Orchidaceae, trnL intron, trnL-F spacer, ycf1, Zygopetalinae 相似文献9.
The classification of the Catesbaeeae and Chiococceae tribes, along with that of the entire Rubiaceae, has long been debated. The Catesbaeeae-Chiococceae complex (CCC) includes approximately 28 genera and 190 species primarily concentrated in the Greater Antilles (nearly 70% of the species), Central and South America, and in the western Pacific (three genera). Previous molecular studies, with broad sampling of the Rubiaceae, have shown the CCC to be a monophyletic group. The present study is a more detailed examination of the generic relationships within the CCC using two data sets, the nuclear ribosomal ITS regions and the trnL-F chloroplast intron and spacer. Maximum parsimony analyses lend further support to the previous hypotheses that the CCC is monophyletic and sister to Strumpfia maritima. However, within the complex several genera do not form monophyletic groups. Previous studies of the Rubiaceae suggest that the ancestral fruit type in the CCC is a multiseeded capsule. Indehiscent, fleshy fruits appear to have evolved three to four times within this lineage. Changes in floral morphologies within the complex tend to correspond to cladogenesis among and within genera. Finally, molecular analyses suggest one or possibly two long-distance dispersals from the Americas to the western Pacific. 相似文献
10.
? Premise of the study: The American bulb-bearing Oxalis (Oxalidaceae) have diverse heterostylous breeding systems and are distributed in mountainous areas from Patagonia to the northeastern United States. To study the evolutionary processes leading to this diversity, we constructed the first molecular phylogeny for the American bulb-bearing Oxalis and used it to infer biogeographic history and breeding system evolution. ? Methods: We used DNA sequence data (nuclear ribosomal internal transcribed spacer, trnL-trnL-trnF, trnT-trnL, and psbJ-petA) to infer phylogenetic history via parsimony, likelihood, and Bayesian analyses. We used Bayes Multistate to infer ancestral geographic distributions at well-supported nodes of the phylogeny. The Shimodaira-Hasegawa (SH) test distinguished among hypotheses of single or multiple transitions from South America to North America, and tristyly to distyly. ? Key results: The American bulb-bearing Oxalis include sampled members of sections Ionoxalis and Pseudobulbosae and are derived from a larger clade that includes members of sections Palmatifoliae, Articulatae, and the African species. The American bulb-bearing Oxalis comprise two clades: one distributed in SE South America and the other in the Andes and North America. An SH test supports multiple dispersals to North America. Most sampled distylous species form a single clade, but at least two other independent distylous lineages are supported by the topologies and SH tests. ? Conclusions: Phylogenetic results suggest the American bulb-bearing Oxalis originated in southern South America, dispersed repeatedly to North America, and had multiple transitions from tristyly to distyly. This study adds to our understanding of biogeographic history and breeding system evolution and provides a foundation for more precise inferences about the study group. 相似文献
11.
Kelloggia Torrey ex Bentham (Rubiaceae) consists of two species disjunctly distributed in western North America (K. galioides Torrey) and the western part of eastern Asia (K. chinensis Franch.). The two species exhibit a high level of morphological divergence. To test its monophyly and to infer its biogeographic history, we estimated the phylogeny of Kelloggia and its relatives from sequences of three chloroplast DNA regions (rbcL gene, atpB-rbcL spacer, and rps16 intron). The monophyly of Kelloggia was strongly supported, and it forms a sister relationship with the tribe Rubieae. The divergence time between the two disjunct species of Kelloggia was estimated to be 5.42 ± 2.32 million years ago (mya) using the penalized likelihood method based on rbcL sequence data with fossil calibration. Our result does not support the Madrean-Tethyan hypothesis, which assumes an earlier divergence time of 20-25 mya. Ancestral area analysis, as well as dispersal-vicariance (DIVA) analysis, suggests the Asian origin of Kelloggia and the importance of Eurasia in the diversification of its close relatives in the Rubieae-Theligoneae-Paederieae group. The intercontinental disjunction in Kelloggia is suggested to have evolved via long-distance dispersal from Asia into western North America. 相似文献
12.
Ye W Giblin-Davis RM Davies KA Purcell MF Scheffer SJ Taylor GS Center TD Morris K Thomas WK 《Molecular phylogenetics and evolution》2007,45(1):123-141
Fergusobia nematodes (Tylenchida: Fergusobiinae) and Fergusonina flies (Diptera: Fergusoninidae) are putative mutualists that develop together in galls formed in meristematic tissues of many species of the plant family Myrtaceae in Australasia. Fergusobia nematodes were sampled from a variety of myrtaceous hosts and gall types from Australia and one location in New Zealand between 1999 and 2006. Evolutionary relationships of these isolates were inferred from phylogenetic analyses of the DNA sequences of the nuclear ribosomal DNA near-full length small subunit (up to 1689bp for 21 isolates), partial large subunit D2/D3 domain (up to 889bp for 87 isolates), partial mitochondrial cytochrome oxidase subunit I (618 bp for 82 isolates), and combined D2/D3 and mtCOI (up to 1497bp for 66 isolates). The SSU data supported a monophyletic Fergusobia genus within a paraphyletic Howardula. A clade of Drosophila-associated Howardula, including Howardula aoronymphium, was the closest sequenced sister group. Phylogenetic analysis of sequences from D2/D3 and mtCOI, separately and combined, revealed many monophyletic clades within Fergusobia. The relationships inferred by D2/D3 and mtCOI were congruent with some exceptions. Well-supported clades were generally consistent with host plant species and gall type. However, phylogenetic analysis suggested host switching or putative hybridization events in many groups, except the lineage of shoot bud gallers on the broad-leaved Melaleuca species complex. 相似文献
13.
Caenogastropoda is the dominant group of marine gastropods in terms of species numbers, diversity of habit and habitat and ecological importance. This paper reports the first comprehensive multi-gene phylogenetic study of the group. Data were collected from up to six genes comprising parts of 18S rRNA, 28S rRNA (five segments), 12S rRNA, cytochrome c oxidase subunit I, histone H3 and elongation factor 1alpha. The alignment has a combined length of 3995 base positions for 36 taxa, comprising 29 Caenogastropoda representing all of its major lineages and seven outgroups. Maximum parsimony, maximum likelihood and Bayesian analyses were conducted. The results generally support monophyly of Caenogastropoda and Hypsogastropoda (Caenogastropoda excepting Architaenioglossa, Cerithioidea and Campanilioidea). Within Hypsogastropoda, maximum likelihood and Bayesian analyses identified a near basal clade of nine or 10 families lacking an anterior inhalant siphon, and Cerithiopsidae s.l. (representing Triphoroidea), where the siphon is probably derived independently from other Hypsogastropoda. The asiphonate family Eatoniellidae was usually included in the clade but was removed in one Bayesian analysis. Of the two other studied families lacking a siphon, the limpet-shaped Calyptraeidae was associated with this group in some analyses, but the tent-shaped Xenophoridae was generally associated with the siphonate Strombidae. The other studied hypsogastropods with an anterior inhalant siphon include nine families, six of which are Neogastropoda, the only traditional caenogastropod group above the superfamily-level with strong morphological support. The hypotheses that Neogastropoda are monophyletic and that the group occupies a derived position within Hypsogastropoda are both contradicted, but weakly, by the molecular analyses. Despite the addition of large amounts of new molecular data, many caenogastropod lineages remain poorly resolved or unresolved in the present analyses, possibly due to a rapid radiation of the Hypsogastropoda following the Permian-Triassic extinction during the early Mesozoic. 相似文献
14.
The treehopper subfamily Membracinae (Insecta: Hemiptera: Membracidae) comprises the majority of genera and species diversity in the New World tropics. These treehoppers exhibit a wide range of social behaviors, making them an excellent group for studying patterns of social evolution in insects. However, to date the tribal and generic relationships have remained unclear. We reconstructed the phylogeny of the Membracinae using a combined mitochondrial (COI, COII, tRNA-Leu, and 12S) and nuclear (Wg) gene data set. A total of 2608 aligned nucleotide sites were obtained for 112 species, representing 25 of 38 currently recognized genera and all four tribes. A strict consensus of five equally parsimonious trees recovered the subfamily and three of its four tribes. The majority rule consensus tree derived from the Bayesian analyses based on the GTR+I+G and mixed-models recovered many clades shared with the parsimony trees and is identical to the single best tree inferred from maximum likelihood analysis, aside from the rearrangement of one node. A comparison of mitochondrial and nuclear genes indicated that Wg provided higher consistency index (CI), data decisiveness (DD), partitioned Bremer support (PBS) than any of the mitochondrial genes analyzed. The combined mitochondrial and nuclear DNA provide strong support for the monophyly of the subfamily and three of its four tribes (Aconophorini, Hoplophorionini, and Hypsoprorini). Membracini is paraphyletic with respect to Hoplophorionini and contains two lineages, the Membracini sensu strictu and the newly resurrected tribe Bolbonotini. Our analyses show that there is a strong phylogenetic component to the evolution of maternal care. Given the widespread occurrence of maternal care within the subfamily, this trait is estimated to have < or = 3 origins, two reversals, and one loss. Our results suggest that the evolution of maternal care in insects may not be as evolutionarily labile as previously thought. 相似文献
15.
Portulaca is the only genus in Portulacaceae and has ca. 100 species distributed worldwide, mainly in the tropics and subtropics. Molecular data place the genus as one of the closest relatives of Cactaceae, but phylogenetic relationships within Portulaca are barely known. This study samples 59 species of Portulaca, 10 infraspecific taxa, and three cultivars, including multiple samples of widespread species. The sampled taxa represent all subgenera in the classifications of von Poellnitz (1934), Legrand (1958), and Geesink (1969) and come from around the world. Nuclear ITS and chloroplast ndhF, trnT-psbD intergenic spacer, and ndhA intron DNA sequences were analyzed using maximum likelihood and Bayesian methods to produce a hypothesis of relationships within Portulaca. Divergence times were estimated using Hawaiian endemics for calibration, and biogeographical patterns were examined using a Bayes-DIVA approach. In addition, the evolution of chromosome numbers in the genus was investigated using probabilistic models. The analyses strongly support the monophyly of Portulaca, with an age of the most recent common ancestor (MRCA) of 23 Myr. Within Portulaca are two major lineages: the OL clade (comprising opposite-leaved species) distributed in Africa, Asia, and Australia, and the AL clade (comprising alternate to subopposite-leaved species), which is more widespread and originated in the New World. Sedopsis, a genus sometimes recognized as distinct from Portulaca based on a long corolla tube, is nested within the OL clade and does not merit taxonomic recognition. Samples of Portulaca grandiflora, Portulaca halimoides, and Portulaca oleracea were found to be non-monophyletic. It is hypothesized that the ancestral distribution area of Portulaca included southern hemisphere continents and Asia. The OL clade remained restricted to the Old World (except Portulaca quadrifida, a pantropical weed), while the AL clade, with a South American origin, was able to disperse multiple times to other continents. The base chromosome number for Portulaca is inferred to be x=9, although the analysis was primarily based on the available data for the AL clade. A number of chromosome number change events (polyploidization, demi-polyploidization, gain, and loss) were shown to have occurred in the genus, especially within the Oleracea clade. 相似文献
16.
Melastomataceae are among the most abundant and diversified groups of plants throughout the tropics, but their intrafamily relationships and morphological evolution are poorly understood. Here we report the results of parsimony and maximum likelihood (ML) analyses of cpDNA sequences from the rbcL and ndhF genes and the rpl16 intron, generated for eight outgroups (Crypteroniaceae, Alzateaceae, Rhynchocalycaceae, Oliniaceae, Penaeaceae, Myrtaceae, and Onagraceae) and 54 species of melastomes. The sample represents 42 of the family's currently recognized ~150 genera, the 13 traditional tribes, and the three subfamilies, Astronioideae, Melastomatoideae, and Memecyloideae (= Memecylaceae DC.). Parsimony and ML yield congruent topologies that place Memecylaceae as sister to Melastomataceae. Pternandra, a Southeast Asian genus of 15 species of which five were sampled, is the first- branching Melastomataceae. This placement has low bootstrap support (72%), but agrees with morphological treatments that placed Pternandra in Melastomatacaeae because of its acrodromal leaf venation, usually ranked as a tribe or subfamily. The interxylary phloem islands found in Memecylaceae and Pternandra, but not most other Melastomataceae, likely evolved in parallel because Pternandra resembles Melastomataceae in its other wood characters. A newly discovered plesiomorphic character in Pternandra, also present in Memecylaceae, is a fibrous anther endothecium. Higher Melastomataceae lack an endothecium as do the closest relatives of Melastomataceae and Memecylaceae. The next deepest split is between Astronieae, with anthers opening by slits, and all remaining Melastomataceae, which have anthers opening by pores. Within the latter, several generic groups, corresponding to traditional tribes, receive solid statistical support, but relationships among them, with one exception, are different from anything predicted on the basis of morphological data. Thus, Miconieae and Merianieae are sister groups, and both are sister to a trichotomy of Bertolonieae, Microlicieae + Melastomeae, and Dissochaeteae + Blakeeae. Sonerileae/Oxysporeae are nested within Dissochaeteae, Rhexieae within Melastomeae, and African and Asian Melastomeae within neotropical Melastomeae. These findings have profound implications for our understanding of melastome morphological evolution (and biogeography), implying, for example, that berries evolved from capsules minimally four times, stamen connectives went from dorsally enlarged to basal/ventrally enlarged, and loss of an endothecium preceded poricidal dehiscence. 相似文献
17.
Ellison NW Liston A Steiner JJ Williams WM Taylor NL 《Molecular phylogenetics and evolution》2006,39(3):688-705
Trifolium, the clover genus, is one of the largest genera of the legume family. We conducted parsimony and Bayesian phylogenetic analyses based on nuclear ribosomal DNA internal transcribed spacer and chloroplast trnL intron sequences obtained from 218 of the ca. 255 species of Trifolium, representatives from 11 genera of the vicioid clade, and an outgroup Lotus. We confirm the monophyly of Trifolium, and propose a new infrageneric classification of the genus based on the phylogenetic results. Incongruence between the nrDNA and cpDNA results suggests five to six cases of apparent hybrid speciation, and identifies the putative progenitors of the allopolyploids T. dubium, a widespread weed, and T. repens, the most commonly cultivated clover species. Character state reconstructions confirm 2n=16 as the ancestral chromosome number in Trifolium, and infer a minimum of 19 instances of aneuploidy and 22 of polyploidy in the genus. The ancestral life history is hypothesized to be annual in subgenus Chronosemium and equivocal in subgenus Trifolium. Transitions between the annual and perennial habit are common. Our results are consistent with a Mediterranean origin of the genus, probably in the Early Miocene. A single origin of all North and South American species is hypothesized, while the species of sub-Saharan Africa may originate from three separate dispersal events. 相似文献
18.
Versieux LM Barbará T Wanderley Md Calvente A Fay MF Lexer C 《Molecular phylogenetics and evolution》2012,64(1):177-189
The genus Alcantarea comprises near 30 species endemic to rocky outcrops from eastern Brazil. Most species are ornamental and several are threatened due to habitat loss and over collection. In this paper we examine the phylogenetics of Alcantarea and its relationship with the Brazilian members of Vriesea, a genus of which Alcantarea has been treated as a subgenus. We discuss the morphological evolution of the stamen position and its implication for pollination and the occurrence of Alcantarea in the Espinha?o mountain range rocky savanna-like habitat vegetation. DNA sequence data derived from two plastid markers (trnK-rps16, trnC-petN) and from a low copy nuclear gene (Floricaula/Leafy) together with 20 nuclear microsatellite loci were the data source to perform analyses and construct phylogenetic and Neighbor Joining trees for the genus. Alcantarea is well supported as monophyletic in both Bayesian and parsimony analyses, but sections of Vriesea, represented by the eastern Brazilian species, appear paraphyletic. Microsatellites delimit geographically isolated species groups. Nevertheless individuals belonging to a single species may appear related to distinct clusters of species, suggesting that hybridization and/or homoplasy and/or incomplete lineage sorting are also influencing the analysis based on such markers and may be the reasons for some unexpected results. Alcantarea brasiliana is hypothesized as putative hybrid between A. imperialis and A. geniculata. Spreading stamens, a morphological floral characteristic assumed to be related to Chiropterophily, apparently evolved multiple times within the genus, and invasion of rocky savanna-like habitat vegetation by Atlantic rainforest ancestors seems to have occurred multiple times as well. 相似文献
19.
20.
Lijtmaer DA Sharpe NM Tubaro PL Lougheed SC 《Molecular phylogenetics and evolution》2004,33(3):562-579
The evolutionary affinities within and among many groups of nine-primaried oscines remain unresolved. One such group is Sporophila, a large genus of New World tanager-finches. Our study focused particularly on clarifying the relationship between this genus and a closely related one, Oryzoborus, and on examining the phylogenetic affinities of the "capuchinos," a group of 11 Sporophila species that share a similar male plumage coloration pattern. Our phylogenetic analyses, based on 498 bp of mitochondrial DNA sequence, indicated that: (1) Oryzoborus is embedded within a well-supported clade containing all Sporophila species, which strongly suggests that both genera should be merged, (2) the species of capuchinos comprise a monophyletic group, implying that the plumage patterns common to all probably arose only once, and (3) the capuchinos clade is comprised of two sub-clades, one including two species that are distributed in northern South America and the other one containing eight species that are present south of the Amazon River. Mean sequence divergence among the southern capuchinos species was extremely low, suggesting a rapid radiation within the last half-million years that may be related to the high level of sexual selection present in the genus and might have been promoted by marine ingressions and egressions that occurred in some southern coastal regions of South America in the Late Pleistocene. 相似文献