首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three-dimensional model for the arrangement of 29 of the 33 proteins from the Escherichia coli large ribosomal subunit has been generated by interactive computer graphics. The topographical information that served as input in the model building process was obtained by combining the immunoelectron microscopically determined network of epitope-epitope distances on the surface of the large ribosomal subunit with in situ protein-protein cross-linking data. These two independent sets of data were shown to be compatible by geometric analysis, thus allowing the construction of an inherently consistent model. The model shows (i) that the lower third of the large subunit is protein-poor, (ii) that proteins known to be functionally involved in peptide bond formation and translocation are clustered in two separate regions, (iii) that proteins functionally interdependent during the self-assembly of the large subunit are close neighbours in the mature subunit and (iv) that proteins forming the early assembly nucleus are grouped together in a distinct region at the 'back' of the subunit.  相似文献   

2.
To detect the frequency of lactate dehydrogenase (LDH) subunit deficiency, screening for LDH subunit deficiency was performed on 3,776 blood samples from healthy individuals in Shizuoka Prefecture by means of electrophoresis. The frequency of heterozygote with LDH-A subunit deficiency was found to be 0.185%, and with LDH-B subunit deficiency, 0.159%. The frequencies of both subunit deficiencies were not significantly different. Gene frequencies of LDH subunit deficiencies were calculated by the simple counting procedure, and the results are as follows: gene frequency of LDH-A subunit deficiency was 11.9 X 10(-4), and that of LDH-B subunit deficiency, 7.9 X 10(-4). In addition, the second case in the world of a homozygous individual with LDH-A subunit deficiency was detected by this screening. This case with regard to the characteristics of LDH-A subunit deficiency are summarized herein.  相似文献   

3.
To understand how the alpha and beta 2 subunits of tryptophan synthase from Escherichia coli interact to form an alpha 2 beta 2 complex and undergo mutual activation, we have investigated alpha subunits with single amino acid replacements at conserved proline residues. Although the activities of alpha 2 beta 2 complexes that contain wild type alpha subunit or alpha subunits substituted at positions 28, 62, 96, and 207 are similar, the activities of alpha 2 beta 2 complexes that contain alpha subunits substituted at positions 57 and 132 are remarkably altered. Whereas the latter enzymes have greatly reduced activities in the individual half-reactions, they have considerably higher activities in the overall reaction. These remarkable activity results are explained by a decrease in the affinity of these mutant alpha subunits for the beta 2 subunit and by an increase in the affinity in the combined presence of ligands of both the alpha subunit and the beta 2 subunit. Isothermal calorimetric titrations of wild type beta 2 subunit with wild type alpha subunit and a mutant alpha subunit containing a substitution of glycine for proline at position 132 show that both the affinity and the exothermic association enthalpy are greatly reduced in the mutant alpha subunit although the stoichiometry of association is unchanged. The affinity of the mutant alpha subunit for the beta 2 subunits is greatly increased in the presence of an alpha subunit ligand, alpha-glycerol phosphate. We conclude that proline 132 plays a critical role in subunit interaction and in mutual subunit activation.  相似文献   

4.
Microvillus aminopeptidase (EC 3.4.11.2) is an enzyme with a molecular weight around 300 000. Normal preparations contain three different subunits (subunit A, Mr 162 000; subunit B, Mr 123 000; subunit C, Mr 61 000). The relationship between the three subunits was studied by immunoelectrophoresis using specific antibodies against individual denatured subunits and by densitometric scanning of polyacrylamide gels after separation of the three subunits. The results suggest that microvillus aminopeptidase initially appears in the membrane as a symmetric molecule built up to two identical A subunits. These subunits are then split into equimolar amounts of subunit B and subunit C by trypsin. Subunit B cannot generate subunit C but may be further degraded. The reaction sequence described is one which occurs in vivo. Treatment of purified aminopeptidase with trypsin increases the specific activity twofold. This phenomenon does not seem to be correlated to the generation of subunit B and subunit C or to the transformation of amphiphilic form into hydrophilic form.  相似文献   

5.
A conserved putative dimerization GxxxG motif located in the unique membrane-spanning segment of the ATP synthase subunit e was altered in yeast both by insertion of an alanine residue and by replacement of glycine by leucine residues. These alterations led to the loss of subunit g and the loss of dimeric and oligomeric forms of the yeast ATP synthase. Furthermore, as in null mutants devoid of either subunit e or subunit g, mitochondria displayed anomalous morphologies with onion-like structures. By taking advantage of the presence of the endogenous cysteine 28 residue in the wild-type subunit e, disulfide bond formation between subunits e in intact mitochondria was found to increase the stability of an oligomeric structure of the ATP synthase in digitonin extracts. The data show the involvement of the dimerization motif of subunit e in the formation of supramolecular structures of mitochondrial ATP synthases and are in favour of the existence in the inner mitochondrial membrane of associations of ATP synthases whose masses are higher than those of ATP synthase dimers.  相似文献   

6.
Rangan VS  Joshi AK  Smith S 《Biochemistry》2001,40(36):10792-10799
An in vitro mutant complementation approach has been used to map the functional topology of the animal fatty acid synthase. A series of knockout mutants was engineered, each mutant compromised in one of the seven functional domains, and heterodimers generated by hybridizing all possible combinations of the mutated subunits were isolated and characterized. Heterodimers comprised of a subunit containing either a beta-ketoacyl synthase or malonyl/acetyltransferase mutant, paired with a subunit containing mutations in any one of the other five domains, are active in fatty acid synthesis. Heterodimers in which both subunits carry a knockout mutation in either the dehydrase, enoyl reductase, keto reductase, or acyl carrier protein are inactive. Heterodimers comprised of a subunit containing a thioesterase mutation paired with a subunit containing a mutation in either the dehydrase, enoyl reductase, beta-ketoacyl reductase, or acyl carrier protein domains exhibit very low fatty acid synthetic ability. The results are consistent with a model for the fatty acid synthase in which the substrate loading and condensation reactions are catalyzed by cooperation of an acyl carrier protein domain of one subunit with the malonyl/acetyltransferase or beta-ketoacyl synthase domains, respectively, of either subunit. The beta-carbon-processing reactions, responsible for the complete reduction of the beta-ketoacyl moiety following each condensation step, are catalyzed by cooperation of an acyl carrier protein domain with the beta-ketoacyl reductase, dehydrase, and enoyl reductase domains associated exclusively with the same subunit. The chain-terminating reaction is carried out most efficiently by cooperation of an acyl carrier protein domain with the thioesterase domain of the same subunit. These results are discussed in the context of a revised model for the fatty acid synthase.  相似文献   

7.
Voltage-dependent L-type calcium (Ca) channels are heteromultimeric proteins that are regulated through phosphorylation by cAMP-dependent protein kinase (PKA). We demonstrated that the beta 2 subunit was a substrate for PKA in intact cardiac myocytes through back-phosphorylation experiments. In addition, a heterologously expressed rat beta 2a subunit was phosphorylated at two sites in vitro by purified PKA. This beta 2a subunit contains two potential consensus sites for PKA-mediated phosphorylation at Thr164 and Ser591. However, upon mutation of both of these residues to alanines, the beta 2a subunit remained a good substrate for PKA. The actual sites of phosphorylation on the beta 2a subunit were identified by phosphopeptide mapping and microsequencing. Phosphopeptide maps of a bacterially expressed beta 2a subunit demonstrated that this subunit was phosphorylated similarly to the beta 2 subunit isolated from heart tissue and that the phosphorylation sites were contained in the unique C-terminal region. Microsequencing identified three serine residues, each of which conformed to loose consensus sites for PKA-mediated phosphorylation. Mutation of these residues to alanines resulted in the loss of the PKA-mediated phosphorylation of the beta 2a subunit. The results suggest that phosphorylation of the beta 2a subunit by PKA occurs at three loose consensus sites for PKA in the C-terminus and not at either of the two strong consensus sites for PKA. The results also highlight the danger of assuming that consensus sites represent actual sites of phosphorylation. The actual sites of PKA-mediated phosphorylation are conserved in most beta 2 subunit isoforms and thus represent potential sites for regulation of channel activity. The sites phosphorylated by PKA are not substrates for protein kinase C (PKC), as the mutated beta 2 subunits lacking PKA sites remained good substrates for PKC.  相似文献   

8.
The complete nucleotide sequence of the gene encoding the cytochrome subunit of the photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis, and the derived amino acid sequence are presented. The nucleotide sequence of the gene reveals the existence of a typical bacterial signal peptide of 20 amino acid residues which is not found in the mature cytochrome subunit. The gene encoding the cytochrome subunit is preceded by the gene encoding the M subunit. Both genes overlap by 1 bp. The mature cytochrome subunit consists of 336 amino acid residues; 73% of its amino acid sequence was confirmed by protein sequencing work. The mol. wt of the cytochrome subunit including the covalently bound fatty acids and the bound heme groups is 40 500. The internal sequence homology is low, despite the symmetric structure of the cytochrome subunit previously shown by X-ray crystallographic analysis of the intact photosynthetic reaction centre. Sequence homologies to other cytochromes were not found.  相似文献   

9.
The human X chromosome-encoded protein kinase X (PrKX) belongs to the family of cAMP-dependent protein kinases. The catalytically active recombinant enzyme expressed in COS cells phosphorylates the heptapeptide Kemptide (LRRASLG) with a specific activity of 1.5 micromol/(min.mg). Using surface plasmon resonance, high affinity interactions were demonstrated with the regulatory subunit type I (RIalpha) of cAMP-dependent protein kinase (KD = 10 nM) and the heat-stable protein kinase inhibitor (KD = 15 nM), but not with the type II regulatory subunit (RIIalpha, KD = 2.3 microM) under physiological conditions. Kemptide and autophosphorylation activities of PrKX are strongly inhibited by the RIalpha subunit and by protein kinase inhibitor in vitro, but only weakly by the RIIalpha subunit. The inhibition by the RIalpha subunit is reversed by addition of nanomolar concentrations of cAMP (Ka = 40 nM), thus demonstrating that PrKX is a novel, type I cAMP-dependent protein kinase that is activated at lower cAMP concentrations than the holoenzyme with the Calpha subunit of cAMP-dependent protein kinase. Microinjection data clearly indicate that the type I R subunit but not type II binds to PrKX in vivo, preventing the translocation of PrKX to the nucleus in the absence of cAMP. The RIIalpha subunit is an excellent substrate for PrKX and is phosphorylated in vitro in a cAMP-independent manner. We discuss how PrKX can modulate the cAMP-mediated signal transduction pathway by preferential binding to the RIalpha subunit and by phosphorylating the RIIalpha subunit in the absence of cAMP.  相似文献   

10.
A working model of the mRNA path through the ribosome is proposed. According to the model, the template goes around the small ribosomal subunit along the region where its 'head' is separated from other parts of the subunit. The 5'-end of the mRNA fragment covered by the ribosome is located near the 3'-terminus of 16S rRNA, whereas the 3'-terminal residues of the fragment are situated on the outer surface of the subunit, opposite its 'side ledge'. When associated with the 50S subunit, the 30S subunit is oriented in such a manner that the decoding center faces the L7/L12 stalk. Implications of the proposed working model of the mRNA topography for the function of the ribosome are discussed.  相似文献   

11.
The nature of the PFK (6-phosphofructo-1-kinase) isoenzymes in many rat tissues was examined by immunological and chromatographic techniques and by measurement of their subunit compositions. It was revealed that, except for diaphragm and skeletal muscle, these complex isoenzymic populations contained different amounts of the three subunit types and were nearly tissue-specific. Apparently this tissue specificity is due to different concentrations of the tetramers, which in turn are controlled by the types and amounts of each subunit that are available to associate randomly.  相似文献   

12.
Gamma-aminobutyric acid Type A (GABAA) receptors are the major sites of synaptic inhibition in the central nervous system. These receptors are thought to be pentameric complexes of homologous transmembrane glycoproteins. Molecular cloning has revealed a multiplicity of different GABAA receptor subunits divided into five classes, alpha, beta, gamma, delta, and rho, based on sequence homology. Within the proposed major intracellular domain of these subunits, there are numerous potential consensus sites for protein phosphorylation by a variety of protein kinases. We have used purified fusion proteins of the major intracellular domain of GABAA receptor subunits produced in Escherichia coli to examine the phosphorylation of these subunits by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC). The purified fusion protein of the intracellular domain of the beta 1 subunit was an excellent substrate for both PKA and PKC. PKA and PKC phosphorylated the beta 1 subunit fusion protein on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 409 in the intracellular domain of the beta 1 subunit to an alanine residue eliminated the phosphorylation of the beta 1 subunit fusion protein by both protein kinases. The purified fusion proteins of the major intracellular domain of the gamma 2S and gamma 2L subunits of the GABAA receptor were rapidly and stoichiometrically phosphorylated by PKC but not by PKA. The phosphorylation of the gamma 2S subunit occurred on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 327 of the gamma 2S subunit fusion protein to an alanine residue eliminated the phosphorylation of the gamma 2S fusion protein by PKC. The gamma 2L subunit is an alternatively spliced form of the gamma 2S subunit that differs by the insertion of 8 amino acids (LLRMFSFK) within the major intracellular domain of the gamma 2S subunit. The PKC phosphorylation of the gamma 2L subunit occurred on serine residues on two tryptic phosphopeptides. Site-specific mutagenesis of serine 343 within the 8-amino acid insert to an alanine residue eliminated the PKC phosphorylation of the novel site in the gamma 2L subunit. No phosphorylation of a purified fusion protein of the major intracellular loop of the alpha 1 subunit was observed with either PKA or PKC. These results identify the specific amino acid residues within GABAA receptor subunits that are phosphorylated by PKA and PKC and suggest that protein phosphorylation of these sites may be important in regulating GABAA receptor function.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The plant vacuole is acidified by a complex multimeric enzyme, the vacuole-type H+-ATPase (V-ATPase). The initial association of ATPase subunits on membranes was studied using an in vitro assembly assay. The V-ATPase assembled onto microsomes when V-ATPase subunits were supplied. However, when the A or B subunit or the proteolipid were supplied individually, only the proteolipid associated with membranes. By using poly(A+) RNA depleted in the B subunit and proteolipid subunit mRNA, we demonstrated A subunit association with membranes at substoichiometric amounts of the B subunit or the 16-kD proteolipid. These data suggest that poly(A+) RNA-encoded proteins are required to catalyze the A subunit membrane assembly. Initial events were further studied by in vivo protein labeling. Consistent with a temporal ordering of V-ATPase assembly, membranes contained only the A subunit at early times; at later times both the A and B subunits were found on the membranes. A large-mass ATPase complex was not efficiently formed in the absence of membranes. Together, these data support a model whereby the A subunit is first assembled onto the membrane, followed by the B subunit.  相似文献   

14.
Crystalline Fraction I protein from tobacco has been dissociated and separated into three large subunit polypeptides and two small subunit polypeptides by isoelectric focusing in polyacrylamide gels containing 8m urea. The three large subunit polypeptides, resolved by isoelectric focusing, could not be differentiated by amino acid analysis or by fingerprinting of trypsin or chymotrypsin hydrolysates of the individual polypeptides. The two small subunit polypeptides, resolved by hydroxylapatite chromatography in 0.1% sodium dodecyl sulfate as well as by isoelectric focusing, were shown to be distinct polypeptides. The two polypeptides were shown to have different tyrosine:tryptophan ratios, shown by ultraviolet spectra in 0.1m NaOH, and different tyrosine contents shown by amino acid analysis, and they gave different peptide fingerprints after trypsin hydrolysis. The two small subunit polypeptides are concluded to be separate gene products but the three large subunit polypeptides are believed to be the result of modification of a single gene product.  相似文献   

15.
Properties of the mRNA coding for the large subunit of ribulose-1,5-bisphosphate carboxylase from Chlamydomonas reinhardi were determined. Large subunit synthesis, directed by RNA from partially purified whole cell extracts, was detected by specific immunoprecipitation of polypeptide products synthesized in a heterologous translation system derived from Escherichia coli. Large subunit synthesis showed sharp RNA concentration dependence in an E. coli translation system, and at optimal RNA concentrations, immunoprecipitable large subunit synthesis accounted for 2% of the total incorporation. Large subunit messenger activity sedimented at 12 to 14S on nondenaturing sucrose gradients and did not bind to oligo(dT)-cellulose suggesting the mRNA is not polyadenylated. The immunoprecipitable products translated in vitro are not complete polypeptide chains, but are smaller peptides identifiable as large subunit fragments by tryptic fingerprint analysis. No immunoprecipitable product was obtained when similar RNA fractions were tested in a wheat germ translation system.  相似文献   

16.
Subunit c of the proton-transporting ATP synthase of Escherichia coli forms an oligomeric complex in the membrane domain that functions in transmembrane proton conduction. The arrangement of subunit c monomers in this oligomeric complex was studied by scanning mutagenesis. On the basis of these studies and structural information on subunit c, different molecular models for the potential arrangement of monomers in the c-oligomer are discussed. Intersubunit contacts in the F(0) domain that have been analysed in the past by chemical modification and mutagenesis studies are summarised. Transient contacts of the c-oligomer with subunit a might play a crucial role in the mechanism of proton translocation. Schematic models presented by several authors that interpret proton transport in the F(0) domain by a relative rotation of the c-subunit oligomer against subunit a are reviewed against the background of the molecular models of the oligomer.  相似文献   

17.
Mechanism of the transition from plant ferritin to phytosiderin   总被引:9,自引:0,他引:9  
Soluble and insoluble forms of ferritins have been purified from dry pea seeds by gel filtration. The insoluble form is called phytosiderin by analogy with animal hemosiderin. Native gel electrophoresis of these two forms have shown that the soluble one (ferritin) is homogenous in size and more compact than the insoluble one (phytosiderin) which is heterogenous in size. However, when iron is removed from these two classes of molecules (apoferritin), they have the same mobility in isopycnic centrifugations. Polyacrylamide-sodium dodecyl sulfate gel electrophoresis revealed a difference in their subunit composition: ferritin molecules are built up from a 28-kDa subunit and phytosiderin from a 26.5-kDa subunit. Partial proteolysis using a Staphylococcus aureus protease indicates a strong relationship between these two polypeptides. Intermediates between these two forms have also been characterized and are composed of both subunits in various amounts. Ferritin and phytosiderin are both able to incorporate iron in vitro into their mineral core. It is also shown that in vitro iron exchange induces ferritin degradation. This degradation is prevented by inhibitors of the Fenton cycle (iron chelates like o-phenanthroline and desferrioxamine B) and reduced by Tris, a radical scavenger. Under in vitro conditions of controlled radical damage the 28-kDa subunit is converted into the 26.5-kDa subunit. Purification of the 28-kDa subunit has allowed us to determine the NH2-terminal sequence. The NH2 extremity of the 26.5-kDa subunit is heterogenous, but the sequence of its main component is identical to the sequence of the 28-kDa subunit downstream residue Leu-21. These data indicate that the 26.5-kDa subunit is produced by radical mediated damage leading to a series of cleavages in the NH2 terminal part of the 28-kDa subunit.  相似文献   

18.
The kinetics of initiator transfer RNA (tRNA) interaction with the messenger RNA (mRNA)-programmed 30S subunit and the rate of 50S subunit docking to the 30S preinitiation complex were measured for different combinations of initiation factors in a cell-free Escherichia coli system for protein synthesis with components of high purity. The major results are summarized by a Michaelis-Menten scheme for initiation. All three initiation factors are required for maximal efficiency (kcat/KM) of initiation and for maximal in vivo rate of initiation at normal concentration of initiator tRNA. Spontaneous release of IF3 from the 30S preinitiation complex is required for subunit docking. The presence of initiator tRNA on the 30S subunit greatly increases the rate of 70S ribosome formation by increasing the rate of IF3 dissociation from the 30S subunit and the rate of 50S subunit docking to the IF3-free 30S preinitiation complex. The reasons why IF1 and IF3 are essential in E. coli are discussed in the light of the present observations.  相似文献   

19.
Bauer PJ  Krause E 《Biochemistry》2005,44(5):1624-1634
Cyclic nucleotide-gated channels of photoreceptors and olfactory sensory neurons are tetramers consisting of A and B subunits. Here, the accessibility of the cysteines of the bovine rod cyclic nucleotide-gated channel is examined as a function of ligand binding. N-Ethylmaleimide-modified cysteines of both subunits were identified by mass spectrometry after trypsin digestion. In the absence of ligand, the intracellular carboxy-terminal cysteines of both subunits were accessible to N-ethylmaleimide. Activation of the channel abolished the accessibility of Cys505 of the A subunit and Cys1104 of the B subunit, with both being conserved cysteines of the cyclic nucleotide-binding sites. The cysteine of the pore loop of the B subunit was also found to be modified by this reagent in the absence of ligand. The total number of accessible cysteines of each subunit was determined by mass shifting upon modification with polyethylene glycol maleimide. In the absence of cyclic nucleotides, this hydrophilic reagent only weakly labeled cysteines of the A subunit but readily labeled at least three cysteines of the B subunit. Ligand binding exposed two cysteines of the A subunit and one cysteine of the B subunit to chemical modification. Double-modification experiments suggest that some of these cysteines are in or close to membrane-spanning domains. However, these cysteines could not yet be identified. Together, the cysteine accessibility of the native rod cyclic nucleotide-gated channel varies markedly upon ligand binding, thus indicating major structural rearrangements, which are of functional importance for channel activation.  相似文献   

20.
A library of mutants of the catalytic subunit of the Saccharomyces cerevisiae cAMP-dependent protein kinase was screened in vitro for mutants defective in the recognition of the regulatory subunit. The mutations identified were mapped onto the three-dimensional structure of the mouse catalytic subunit with a peptide inhibitor. Mutations defective in the recognition of both the regulatory subunit and the peptide substrate Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide) mapped to the peptide-binding site shared by all substrates and inhibitors of the catalytic subunit and functionally define the binding site for the autoinhibitor sequence in the hinge region of the regulatory subunit. Mutants defective only in the recognition of the regulatory subunit identified residues that comprise additional binding sites for the regulatory subunit. The majority of these residues are clustered on the surface of the catalytic subunit in a region flanking the distal portion of the autoinhibitor/peptide-binding site. The simultaneous substitution of Lys233, Asp237, Lys257, and Lys261 in this region caused a 260-fold decrease in affinity for the regulatory subunit, whereas the catalytic efficiency toward Kemptide decreased by only 1.8-fold. The substitution of autophosphorylated Thr241, also in this region, and the 3 residues interacting with the phosphate also caused an unregulated phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号