首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Disulfide reductases of host-colonising bacteria are involved in the expression of virulence factors, resistance to drugs, and elimination of toxic compounds. Large-scale genome analyses of 281 prokaryotes identified CXXC and CXXC-derived motifs in each microorganism. The total number of these motifs showed correlations with genome size and oxygen tolerance of the prokaryotes. Specific bioinformatic analyses served to identify putative disulfide reductases in the Campylobacterales Campylobacter jejuni, Helicobacter pylori, Wolinella succinogenes and Arcobacter butzleri which colonise the gastrointestinal tract of higher animals. Three filters applied to the genomes of these species yielded 35, 25, 28 and 34 genes, respectively, encoding proteins with the characteristics of disulfide reductases. Ten proteins were common to the four species, including four belonging to the thioredoxin system. The presence of thioredoxin reductase activities was detected in the four bacterial species by observing dithiobis-2-nitrobenzoic acid reduction with β-nicotinamide adenine dinucleotide phosphate as cofactor. Phylogenetic analyses of the thioredoxin reductases TrxB1 and TrxB2 of the four Campylobacterales were performed. Their TrxB1 proteins were more closely related to those of Firmicutes than to the corresponding proteins of other Proteobacteria. The Campylobacterales TrxB2 proteins were closer to glutathione reductases of other organisms than to their respective TrxB1 proteins. The phylogenetic features of the Campylobacterales thioredoxin reductases suggested a special role for these enzymes in the physiology of these bacteria. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Sphingomonads DC-6 and DC-2 degrade the chloroacetanilide herbicides alachlor, acetochlor, and butachlor via N-dealkylation. In this study, we report a three-component Rieske non-heme iron oxygenase (RHO) system catalyzing the N-dealkylation of these herbicides. The oxygenase component gene cndA is located in a transposable element that is highly conserved in the two strains. CndA shares 24 to 42% amino acid sequence identities with the oxygenase components of some RHOs that catalyze N- or O-demethylation. Two putative [2Fe-2S] ferredoxin genes and one glutathione reductase (GR)-type reductase gene were retrieved from the genome of each strain. These genes were not located in the immediate vicinity of cndA. The four ferredoxins share 64 to 72% amino acid sequence identities to the ferredoxin component of dicamba O-demethylase (DMO), and the two reductases share 62 to 65% amino acid sequence identities to the reductase component of DMO. cndA, the four ferredoxin genes, and the two reductases genes were expressed in Escherichia coli, and the recombinant proteins were purified using Ni-affinity chromatography. The individual components or the components in pairs displayed no activity; the enzyme mixture showed N-dealkylase activities toward alachlor, acetochlor, and butachlor only when CndA-His6 was combined with one of the four ferredoxins and one of the two reductases, suggesting that the enzyme consists of three components, a homo-oligomer oxygenase, a [2Fe-2S] ferredoxin, and a GR-type reductase, and CndA has a low specificity for the electron transport component (ETC). The N-dealkylase utilizes NADH, but not NADPH, as the electron donor.  相似文献   

3.
The effect on glutathione reductase activities of feeding garlic oil to white albino rats maintained on high sucrose and alcohol diets was studied. Whereas high sucrose and alcohol diets resulted in significant increases in the activity of glutathione reductase in liver, kidneys and serum, the presence of garlic oil restored the levels to near normal. It is proposed that the mechanism of this action of garlic oil involves the active principle, diallyl disulphide, which interacts in an exchange reaction with enzymes and substrates such as glutathione reductase and glutathione which contain thiol groups.  相似文献   

4.
Cadmium ions are a potent carcinogen in animals, and cadmium is a toxic metal of significant environmental importance for humans. Response curves were used to investigate the effects of cadmium chloride on the growth of Camplyobacter jejuni. In vitro, the bacterium showed reduced growth in the presence of 0.1 mm cadmium chloride, and the metal ions were lethal at 1 mm concentration. Two-dimensional gel electrophoresis combined with tandem mass spectrometry analysis enabled identification of 67 proteins differentially expressed in cells grown without and with 0.1 mm cadmium chloride. Cellular processes and pathways regulated under cadmium stress included fatty acid biosynthesis, protein biosynthesis, chemotaxis and mobility, the tricarboxylic acid cycle, protein modification, redox processes and the heat-shock response. Disulfide reductases and their substrates play many roles in cellular processes, including protection against reactive oxygen species and detoxification of xenobiotics, such as cadmium. The effects of cadmium on thioredoxin reductase and disulfide reductases using glutathione as a substrate were studied in bacterial lysates by spectrophotometry and nuclear magnetic resonance spectroscopy, respectively. The presence of 0.1 mm cadmium ions modulated the activities of both enzymes. The interactions of cadmium ions with oxidized glutathione and reduced glutathione were investigated using nuclear magnetic resonance spectroscopy. The data suggested that, unlike other organisms, C. jejuni downregulates thioredoxin reductase and upregulates other disulfide reductases involved in metal detoxification in the presence of cadmium.  相似文献   

5.
Oxidative biodegradation of aromatic compounds by bacteria usually begins with hydroxylation of the aromatic ring by multi-component dioxygenases like benzene dioxygenase, biphenyl dioxygenase, and others. These enzymes are composed of ferredoxin reductase, ferredoxin, and terminal oxygenase. Reducing equivalents that originate from NADH are transferred from ferredoxin reductase to ferredoxin and, in turn, to the terminal oxygenase, thus resulting in the activation of a dioxygen. BphA4 is the ferredoxin reductase component of biphenyl dioxygenase from Pseudomonas sp. strain KKS102. The amino acid sequence of BphA4 exhibits significant homology with the putidaredoxin reductase of the cytochrome P450cam system in Pseudomonas putida, as well as with various other oxygenase-coupled NADH-dependent ferredoxin reductases (ONFRs) of bacteria. To date, no structural information has been provided for the ferredoxin reductase component of the dioxygenase systems. In order to provide a structural basis for discussing the mechanism of electron transport between ferredoxin reductase and ferredoxin, crystal structures of BphA4 and its NADH complex were solved. The three-dimensional structure of BphA4 is different from those of ferredoxin reductases whose structures have already been determined, but adopts essentially the same fold as the enzymes of the glutathione reductase (GR) family. Also the three-dimensional structure of the first two domains of BphA4 adopts a fold similar to that of adrenodoxin reductase (AdR) in the mitochondrial cytochrome P450 system. Comparing the amino acid sequence with what is known of the three-dimensional structure of BphA4 strongly suggests that the other ONFRs have secondary structural features that are similar to that of BphA4. This analysis of the crystal structures of BphA4 suggests that Lys53 and Glu159 seem to be involved in the hydride transfer from NADH to FAD. Since the amino acid residues around the active site, some of which seem to be important to electron transport, are highly conserved among ONFRs, it is likely that the mechanism of electron transport of BphA4 is quite applicable to other ONFRs.  相似文献   

6.
Trypanothione reductase belongs to the family of flavoprotein disulphide oxidoreductases that include glutathione reductases, dihydrolipoamide dehydrogenases and mercuric reductases. Trypanothione reductase and its substrate, trypanothione disulphide, are unique to parasitic trypanosomatids responsible for several tropical diseases. The crystal structure of the enzyme from Crithidia fasciculata is currently under investigation as an aid in the design of selective inhibitors with a view to producing new drugs. We report here the cloning and sequencing of the genes for trypanothione reductase from C. fasciculata and Trypanosoma brucei. Alignment of the deduced amino acid sequences with 21 other members of this family provides insight into the role of certain amino acid residues with respect to substrate specificity and catalytic mechanism as well as conservation of certain elements of secondary structure.  相似文献   

7.
A colorimetric micro-method for the determination of glutathione   总被引:19,自引:1,他引:18       下载免费PDF全文
1. A rapid colorimetric and apparently specific micromethod for the determination of total glutathione in small amounts of tissue is described. Generally, less than 30mg. of tissue is sufficient and this is homogenized in ice-cold 3% metaphosphoric acid. The product is filtered through sintered glass and neutralized or diluted before being added to a cuvette containing phosphate buffer, pH7·1, 5,5′-dithiobis-(2-nitrobenzoic acid), EDTA and glutathione reductase. Addition of NADPH2 to the system initiates a progressive reduction of 5,5′-dithiobis-(2-nitrobenzoic acid) by catalytic amounts of GSH, and this causes a colour increase at 412mμ. The rate of this change, calculated over 5min., is proportional to the total amount of glutathione present, and consequently unknown concentrations may be determined by reference to standards. 2. A preparation (based on that of Racker, 1955) of a suitable sample of glutathione reductase from yeast is described. 3. A less specific and less sensitive determination of extracted thiol groups with 5,5′-dithiobis-(2-nitrobenzoic acid) at pH8·0, based on observations of Ellman (1959) and Jocelyn (1962), is also described. 4. Although the precise nature of the reaction is not known, evidence is put forward to support a process of cyclo-reduction. GSSG is reduced enzymically to GSH, which reacts with 5,5′-dithiobis-(2-nitrobenzoic acid) to produce a coloured ion: [Formula: see text] (Emax. 412mμ) and a mixed disulphide. This disulphide reacts with further quantities of GSH to liberate another ion and GSSG, which then re-enters the cycle.  相似文献   

8.
Spinach leaf ferredoxin and ferredoxin:NADP oxidoreductase as well as pig adrenodoxin and adrenodoxin reductase have been purified to homogeneity. Ferredoxin-NADP reductase and adrenodoxin-NADP reductase can perform the same diaphorase reactions (dichloroindophenol, ferricyanide and cytochrome c reduction) albeit not with the same efficiency. Despite the differences in their redox potentials, animal and plant ferredoxins can be used as heterologous substrates by the ferredoxin-NADP reductases from both sources. In heterologous systems, however, the ferredoxin/adrenodoxin concentrations must be increased approximately 100-fold in order to reach rates similar to those obtained in homologous systems. Ferredoxin and adrenodoxin can form complexes with the heterologous reductases as demonstrated by binding experiments on ferredoxin-Sepharose or ferredoxin-NADP-reductase-Sepharose and by the realization of difference spectra. Adrenodoxin also weakly substitutes for ferredoxin in NADP photoreduction, and can be used as an electron carrier in the light activation of the chloroplastic enzyme NADP-dependent malate dehydrogenase. In addition adrenodoxin is a good catalyst of pseudocyclic photophosphorylation, but not of cyclic phosphorylation and can serve as a substrate of glutamate synthase. These results are discussed with respect to the known structures of plant and animals ferredoxins and their respective reductases.  相似文献   

9.
We cloned and sequenced the glutathione reductase gene (gor) of an oxygen-tolerant Streptococcus mutans, and constructed a gor-disruption mutant by homologous recombination. The gor gene consisted of 1,350 bp, coding for a protein of 450 amino acid residues. The deduced amino acid sequence of the S. mutans gor gene product showed extensive similarity with those of glutathione reductases from prokaryotes and eukaryotes. Although the mutant could grow aerobically, it showed no growth in the presence of 2 mM diamide, a thiol-specific oxidant. In contrast, growth of the wild-type strain was not significantly inhibited by 2 mM diamide, and glutathione reductase activity was increased 2.2-fold under these conditions. In addition, the level of glutathione reductase activity in the wild-type strain was increased 3.6-fold upon exposure to air, and the elevated level of the enzyme was retained throughout the aerobic growth. Thus, glutathione reductase may be important in protection of S. mutans against oxidative stress.  相似文献   

10.
Mitochondrial thioredoxin reductase was purified from bovine adrenal cortex. The enzyme is a first protein component in the mitochondrial thioredoxin-dependent peroxide reductase system. The purified reductase exhibited an apparent molecular mass of 56 kDa on SDS/PAGE, whereas the native protein was about 100 kDa, suggesting a homodimeric structure. It catalysed NADPH-dependent reduction of 5, 5'dithiobis(2-nitrobenzoic acid) and thioredoxins from various origins but not glutathione, oxidized dithiothreitol, DL-alpha-lipoic acid, or insulin. Amino acid and nucleotide sequence analyses revealed that it had a presequence composed of 21 amino acids which had features characteristic of a mitochondrial targeting signal. The amino acid sequence of the mature protein was similar to that of bovine cytosolic thioredoxin reductase (57%) and of human glutathione reductase (34%) and less similar to that of Escherichia coli (19%) or yeast (17%) enzymes. Human and bovine cytosolic thioredoxin reductase were recently identified to contain selenocysteine (Sec) as one of their amino acid constituents. We also identified Sec in the C-terminal region of mitochondrial (mt)-thioredoxin reductase by means of MS and amino acid sequence analyses of the C-terminal fragment. The four-amino acid motif, Gly-Cys-Sec-Gly, which is conserved among all Sec-containing thioredoxin reductases, probably functions as the third redox centre of the enzyme, as the mitochondrial reductase was inhibited by 1-chloro-2,4-dinitrobenzene, which was reported to modify Sec and Cys covalently. It is known that mammalian thioredoxin reductase is different from bacterial or yeast enzyme in, for example, their subunit molecular masses and domain structures. These two different types of enzymes with similar activity are suggested to have evolved convergently. Our data clearly show that mitochondria, which might have originated from symbiotic prokaryotes, contain thioredoxin reductase similar to the cytosolic enzyme and different from the bacterial one.  相似文献   

11.
On nitroaryl reductase activities in several Clostridia   总被引:5,自引:0,他引:5  
Crude extracts of Clostridium kluyveri, Clostridium spec. La 1, Clostridium sporogenes and Clostridium pasteurianum catalyse the NADH-dependent reduction of the nitro group of p-nitrobenzoate. The former three Clostridia also use pyruvate as electron donor for this reduction. The NADH-dependent reductases have been partially purified and characterized from Clostridium kluyveri. Nitroalkyl compounds as well as nitrite, sulfite, sulfate and hydroxylamine are no substrates. Based on chromatographic behavior, separation pattern, yields, stability, pH optima, molecular masses and EPR studies the three NADH-dependent nitroaryl group reducing enzymes in Clostridium kluyveri (three activities in Clostridium spec. La 1 and two activities in Clostridium sporogenes) are different from alcohol dehydrogenase, aldehyde dehydrogenase, 3-hydroxy-butyryl-CoA dehydrogenase, butyryrl-CoA dehydrogenase, 2-enoate reductase, ferredoxin-NAD and ferredoxin-NADP reductase. The physiological roles of the nitroaryl reductases are not known. The reductase activities show losses of 80-90% during classical protein purification procedures. One of the three nitroaryl reductases exhibits a pH optimum of 10.5. The crude extract reveals a pH optimum at 11.5. The first step of the reduction reaction leads to the nitroradical anion (1 electron transfer). The electron transfer to p-nitrobenzoate is also catalysed by ferrodoxin-NAD reductase from NADH and by ferredoxin-NADP reductase from NADP. Partially purified 2-oxo-acid synthases from Clostridium sporogenes catalyse with low rates the reduction of p-nitrobenzoate as well as 2-nitroethanol in the presence and absence of ferredoxin using pyruvate or 2-oxo-4-methylpentanoate as electron donors, respectively. The NADH-dependent reduction of p-nitro-benzoate accounts for at least 70% and the 2-oxo acid-dependent reduction for about 5% of the total nitroaryl reductase activity in the Clostridia. It seems that the pyridine nucleotide-dependent nitroaryl reductases are enzymes so far unknown in Clostridia.  相似文献   

12.
A set of amino acid side chains that confer specificity for the coenzyme NADPH and the substrate glutathione in the flavoprotein disulphide oxidoreductase, glutathione reductase, has been identified. Systematic replacement of these amino acid residues in the coenzyme-binding site switches the specificity of the enzyme from its natural strong preference for NADPH to a marked preference for NADH. The amino acids replaced all lie in a structural motif within the dinucleotide-binding domain of the protein. Since this domain is a feature common to most dehydrogenases (reductases) that use nicotinamide coenzymes, it may be that the coenzyme specificities of all such enzymes can be manipulated in this way. Similarly, amino acid residues involved in the selective recognition of trypanothione by trypanothione reductase, an enzyme related to glutathione reductase and exclusive to trypanosomatids, were identified. Suitable mutation of the corresponding residues in E. coli glutathione reductase switched its substrate specificity towards trypanothione. A better understanding of the substrate specificity of these enzymes could open up a route to the chemotherapy of trypanosomal infections.  相似文献   

13.
The amino acid sequences of the cysteinyl peptides of Spirulina sp. glutathione reductase were determined. Spirulina glutathione reductase was covalently bound to Thiopropyl-Sepharose 6B in the presence of 8M urea through thiol-disulfide exchange. After tryptic digestion, 4 distinct cysteinyl peptides were finally isolated from NADPH-reduced glutathione reductase and 2 from oxidized glutathione reductase. The amino acid sequences of the two cysteinyl peptides which could not be isolated from the oxidized glutathione reductase were very similar to those around the active site disulfide of the other flavoprotein disulfide oxidoreductases and a unique replacement of asparagine and valine by isoleucine and arginine between the two cysteine residues was found. The other two peptides isolated from both oxidized and reduced glutathione reductase also show considerable homology to the corresponding parts of human and Escherichia coli glutathione reductases.  相似文献   

14.
Abstract: The metabolism of Clostridium acetobutylicum was manipulated, at neutral pH and in chemostat culture, by the addition of Neutral red, a molecule that can replace ferredoxin in the oxido-reduction reactions catalysed by the enzymes involved in the distribution of the electron flow. Cultures grown on glucose alone produced mainly acids while cultures grown on glucose plus Neutral red produced mainly alcohols and butyrate and low levels of hydrogen. We demonstrated that just after addition of Neutral red to an acidogenic culture, the simultaneous utilizations of ferredoxin and dye deviate electron flow from hydrogen to NADH production initially by the enzymatic regulation of in vivo hydrogenase and ferredoxin NAD reductase activities. The higher NAD(P)H pool generated might, thereafter, be the signal for the setting up of a new metabolism. In the resulting steady-state, the NAD(P)H 'pressure' is maintained by high ferredoxin NAD and NADP reductases level associated to a low NADH ferredoxin reductase level. The regeneration of NAD is mainly achieved via the induced or increased NADH-dependent aldehyde and alcohol dehydrogenase activities.  相似文献   

15.
Nucleotide sequences were determined for cDNA clones for squash NADH:nitrate oxidoreductase (EC 1.6.6.1), which is one of the most completely characterized forms of this higher plant enzyme. An open reading frame of 2754 nucleotides began at the first ATG. The deduced amino acid sequence contains 918 residues, with a predicted Mr = 103,376. The amino acid sequence is very similar to sequences deduced for other higher plant nitrate reductases. The squash sequence has significant similarity to the amino acid sequences of sulfite oxidase, cytochrome b5, and NADH:cytochrome b5 reductase. Alignment of these sequences with that of squash defines domains of nitrate reductase that appear to bind its 3 prosthetic groups (molybdopterin, heme-iron, and FAD). The amino acid sequence of the FAD domain of squash nitrate reductase was aligned with FAD domain sequences of other NADH:nitrate reductases, NADH:cytochrome b5 reductases, NADPH:nitrate reductases, ferredoxin:NADP+ reductases, NADPH:cytochrome P-450 reductases, NADPH:sulfite reductase flavoproteins, and Bacillus megaterium cytochrome P-450BM-3. In this multiple alignment, 14 amino acid residues are invariant, which suggests these proteins are members of a family of flavoenzymes. Secondary structure elements of the structural model of spinach ferredoxin:NADP+ reductase were used to predict the secondary structure of squash nitrate reductase and the other related flavoenzymes in this family. We suggest that this family of flavoenzymes, nearly all of which reduce a hemoprotein, be called "flavoprotein pyridine nucleotide cytochrome reductases."  相似文献   

16.
Roldán  M. D.  Reyes  F.  Moreno-Vivián  C.  Castillo  F. 《Current microbiology》1994,29(4):241-245
Chlorate or trimethylamine-N-oxide (TMAO) added to phototrophic cultures ofRhodobacter sphaeroides DSM 158 increased both the growth rate and the growth yield although this stimulation was not observed in the presence of tungstate. This strain, exhibited basal activities of nitrate, chlorate, and TMAO reductases independently of the presence of these substrates in the culture medium, and nitrate reductase (NR) activity was competitively inhibited by chlorate. Phototrophic growth ofRhodobacter capsulatus B10, a strain devoid of NR activity, was inhibited only by 100 mM chlorate. However, growth of the nitrate-assimilatingR. capsulatus strains E1F1 and AD2 was sensitive to 10mm chlorate, and their NR activities were not inhibited by chlorate. Both NR and chlorate reductase (CR) activities of strain E1F1 were induced in the presence of nitrate or chlorate respectively, whereas strain AD2 showed basal levels of these activities in the absence of the substrates. A basal TMAO reductase (TR) activity was also observed when these strains ofR. capsulatus were cultured in the absence of this electron acceptor. These results suggest that chlorate and TMAO can be used as ancillary oxidants byRhodobacter strains and that a single enzyme could be responsible for nitrate and chlorate reduction inR. sphaeroides DSM 158, whereas these reactions are catalyzed by two different enzymes inR. capsulatus E1F1 and AD2.  相似文献   

17.
Bacillus anthracis is the causative agent of anthrax, which is associated with a high mortality rate. Like several medically important bacteria, B. anthracis lacks glutathione but encodes many genes annotated as thioredoxins, thioredoxin reductases, and glutaredoxin-like proteins. We have cloned, expressed, and characterized three potential thioredoxins, two potential thioredoxin reductases, and three glutaredoxin-like proteins. Of these, thioredoxin 1 (Trx1) and NrdH reduced insulin, 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB), and the manganese-containing type Ib ribonucleotide reductase (RNR) from B. anthracis in the presence of NADPH and thioredoxin reductase 1 (TR1), whereas thioredoxin 2 (Trx2) could only reduce DTNB. Potential TR2 was verified as an FAD-containing protein reducible by dithiothreitol but not by NAD(P)H. The recently discovered monothiol bacillithiol did not work as a reductant for RNR, either directly or via any of the redoxins. The catalytic efficiency of Trx1 was 3 and 20 times higher than that of Trx2 and NrdH, respectively, as substrates for TR1. Additionally, the catalytic efficiency of Trx1 as an electron donor for RNR was 7-fold higher than that of NrdH. In extracts of B. anthracis, Trx1 was responsible for almost all of the disulfide reductase activity, whereas Western blots showed that the level of Trx1 was 15 and 60 times higher than that of Trx2 and NrdH, respectively. Our findings demonstrate that the most important general disulfide reductase system in B. anthracis is TR1/Trx1 and that Trx1 is the physiologically relevant electron donor for RNR. This information may provide a basis for the development of novel antimicrobial therapies targeting this severe pathogen.  相似文献   

18.
Energized rat liver mitochondria in the presence of EGTA reduced linearly 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) at the rate of 7 nmol SH/min per mg protein within more than 1 hour at 20 degrees C. The Km for DTNB, 1.4 mM, was decreased by Mg2+ and spermine to 0.5 and 0.7 mM, respectively. The reaction was suppressed under conditions of decreasing mitochondrial content of NADPH, was blocked by 1,3-bis-(2-chloroethyl)-1-nitrosourea, the inhibitor of disulfide reductases, and was sensitive to external free Ca2+ in the micromolar range. After lysis of mitochondria the reduction of DTNB required the addition of NADPH and EGTA and was inhibited by 1 mM sodium arsenite. These observations suggest that the reduction of DTNB by mitochondria is catalyzed by Ca(2+)-sensitive thioredoxin reductase (EC 1.6.4.5).  相似文献   

19.
Iron limitation is one major constraint of microbial life, and a plethora of microbes use siderophores for high affinity iron acquisition. Because specific enzymes for reductive iron release in gram-positives are not known, we searched Firmicute genomes and found a novel association pattern of putative ferric siderophore reductases and uptake genes. The reductase from the schizokinen-producing alkaliphile Bacillus halodurans was found to cluster with a ferric citrate-hydroxamate uptake system and to catalyze iron release efficiently from Fe[III]-dicitrate, Fe[III]-schizokinen, Fe[III]-aerobactin, and ferrichrome. The gene was hence named fchR for ferric citrate and hydroxamate reductase. The tightly bound [2Fe-2S] cofactor of FchR was identified by UV-visible, EPR, CD spectroscopy, and mass spectrometry. Iron release kinetics were determined with several substrates by using ferredoxin as electron donor. Catalytic efficiencies were strongly enhanced in the presence of an iron-sulfur scaffold protein scavenging the released ferrous iron. Competitive inhibition of FchR was observed with Ga(III)-charged siderophores with K(i) values in the micromolar range. The principal catalytic mechanism was found to couple increasing K(m) and K(D) values of substrate binding with increasing k(cat) values, resulting in high catalytic efficiencies over a wide redox range. Physiologically, a chromosomal fchR deletion led to strongly impaired growth during iron limitation even in the presence of ferric siderophores. Inductively coupled plasma-MS analysis of ΔfchR revealed intracellular iron accumulation, indicating that the ferric substrates were not efficiently metabolized. We further show that FchR can be efficiently inhibited by redox-inert siderophore mimics in vivo, suggesting that substrate-specific ferric siderophore reductases may present future targets for microbial pathogen control.  相似文献   

20.
R G Lowery  P W Ludden 《Biochemistry》1989,28(12):4956-4961
The mechanism by which MgADP stimulates the activity of dinitrogenase reductase ADP-ribosyltransferase (DRAT) has been examined by using dinitrogenase reductases from Rhodospirillum rubrum, Klebsiella pneumoniae, and Azotobacter vinelandii as acceptor substrates. In the presence of 0.2 mM NAD, maximal rates of ADP-ribosylation of all three acceptors were observed at an ADP concentration of 150 microM; in the absence of added ADP, DRAT activity with the dinitrogenase reductases from R. rubrum and K. pneumoniae was less than 5% of the maximal rate, but the A. vinelandii protein was ADP-ribosylated at 40% of the maximal rate. Of eight dinucleotides tested, only ADP, 2'-deoxy-ADP, and ADP-beta S served as activators of the DRAT reaction; ADP, 2'-deoxy-ADP, and ADP-beta S were also the only dinucleotides found which inhibited acetylene reduction activity by dinitrogenase reductase. The dinucleotide specificities for both DRAT activation and acetylene reduction inhibition were the same for all three dinitrogenase reductases. In the DRAT reaction with the dinitrogenase reductases from K. pneumoniae and A. vinelandii, the Km for NAD was 30-fold higher in the absence of ADP than in its presence; the Km for NAD with the R. rubrum acceptor was not measurable. In the presence of saturating ADP, ADP-ribosylation of dinitrogenase reductase from R. rubrum was inhibited 63% by 1.5 mM ATP. It is concluded that MgADP stimulates DRAT activity by lowering the Km for NAD and that MgADP exerts its effect by binding to dinitrogenase reductase. MgATP inhibits DRAT activity by competing with MgADP for binding to dinitrogenase reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号