首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A synthetic peptide modeled after the major threonine (T669) phosphorylation site of the epidermal growth factor (EGF) receptor was an efficient substrate (apparent Km approximately 0.45 mM) for phosphorylation by purified p44mpk, a MAP kinase from sea star oocytes. The peptide was also phosphorylated by a related human MAP kinase, which was identified by immunological criteria as p42mapk. Within 5 min of treatment of human cervical carcinoma A431 cells with EGF or phorbol myristate acetate (PMA), a greater than 3-fold activation of p42mapk was measured. However, Mono Q chromatography of A431 cells extracts afforded the resolution of at least three additional T669 peptide kinases, some of which may be new members of the MAP kinase family. One of these (peak I), which weakly adsorbed to Mono Q, phosphorylated myelin basic protein (MBP) and other MAP kinase substrates, immunoreacted as a 42 kDa protein on Western blots with four different MAP kinase antibodies, and behaved as a approximately 45 kDa protein upon Superose 6 gel filtration. Another T669 peptide kinase (peak IV), which bound more tightly to Mono Q than p42mapk (peak II), exhibited a nearly identical substrate specificity profile to that of p42mapk, but it immunoreacted as a 40 kDa protein only with anti-p44mpk antibody on Western blots, and eluted from Superose 6 in a high molecular mass complex of greater than 400 kDa. By immunological criteria, the T669 peptide kinase in Mono Q peak III was tentatively identified as an active form of p34cdc2 associated with cyclin A. The Mono Q peaks III and IV kinases were modestly stimulated following either EGF or PMA treatments of A431 cells, and they exhibited a greater T669 peptide/MBP ratio than p42mapk. These findings indicated that multiple proline-directed kinases may mediate phosphorylation of the EGF receptor.  相似文献   

2.
The subcellular distribution and activation state of protein kinase C (PKC) was studied after short-term exposure of rabbit platelets to platelet-activating factor (PAF). Cytosolic and nonidet P-40-solubilized particulate extracts prepared from treated platelets were subjected to analytical column chromatography on MonoQ, hydroxylapatite and Superose 6/12. PKC activity was assayed by the ability of the enzyme to phosphorylate the following substrates: (i) histone H1 in the presence of the activators calcium, diacylglycerol and phosphatidylserine; (ii) histone H1 following proteolytic activation of PKC with 0.5 micrograms trypsin/ml; and (iii) protamine in the absence of calcium and lipid. PAF treatment for 1-20 min elicited a rapid 2-4-fold activation of both cytosolic and particulate-derived PKC as assessed by all three methods. On the other hand, there were no significant PAF-induced changes in the level of [3H]phorbol-12,13-dibutyrate binding by soluble and particulate-associated PKC. Hydroxyapatite column chromatography revealed that in non-treated rabbit platelets the type II (beta) form of PKC predominated, but PAF appeared to induce a shift in the elution profile from this resin. The stability of the PAF activation of PKC to column chromatography and the altered binding affinity to hydroxylapatite indicated that the stimulation might be a consequence of covalent modification, albeit minor, since PKC still eluted as an 80 kDa protein from Superose 6/12. As the PAF-induced increases in the kinase activity of PKC were preserved even after proteolytic activation with trypsin, but were without effect on the phorbol ester binding activity, such a putative modification may have occurred within or near the catalytic domain of PKC. These findings imply that PAF may directly modulate the activity of preexisting membrane-associated PKC by a novel mechanism, rather than by eliciting its recruitment from the cytoplasm.  相似文献   

3.
The relationship between polyphosphoinositide hydrolysis and protein kinase C (PKC) activation was explored in rabbit platelets treated with the agonists platelet-activating factor (PAF), thrombin and 12-O-tetradecanoylphorbol 13-acetate (TPA), and with the anti-aggregant prostacyclin (PGI2). Measurement of the hydrolysis of radiolabelled inositol-containing phospholipids relied upon the separation of the products [3H]inositol mono-, bis- and tris-phosphates by Dowex-1 chromatography. PKC activity, measured in platelet cytosolic and Nonidet-P40-solubilized particulate extracts that were fractionated by MonoQ chromatography, was based upon the ability of the enzyme to phosphorylate either histone H1 in the presence of the activators Ca2+, diacylglycerol and phosphatidylserine, or protamine in the absence of Ca2+ and lipid. Treatment of platelets for 1 min with PAF (2 nM) or thrombin (2 units/ml) led to the rapid hydrolysis of inositol-containing phospholipids, a 2-3-fold stimulation of both cytosolic and particulate-derived PKC activity, and platelet aggregation. Exposure to TPA (200 nM) for 5 min did not stimulate formation of phosphoinositides, but translocated more than 95% of cytosolic PKC into the particulate fraction, and induced a slower rate of aggregation. PGI2 (1 microgram/ml) did not enhance phosphoinositide production, and at higher concentrations (50 micrograms/ml) it antagonized the ability of PAF, but not that of thrombin, to induce inositol phospholipid turnover, even though platelet aggregation in response to both agonists was blocked by PGI2. On the other hand, PGI2 alone also appeared to activate (by 3-5-fold) cytosolic and particulate PKC by a translocation-independent mechanism. The activation of PKC by PGI2 was probably mediated via cyclic AMP (cAMP), as this effect was mimicked by the cAMP analogue 8-chlorophenylthio-cAMP. It is concluded that this novel mechanism of PKC regulation by platelet agonists may operate independently of polyphosphoinositide turnover, and that activation of cAMP-dependent protein kinase represents another route leading to PKC activation.  相似文献   

4.
Incubation of human platelets with the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) caused the accumulation of a protein kinase in the particulate fraction which was not dependent on Ca2+ and phosphatidylserine (Ptd-Ser). The Ca2+/Ptd-Ser-independent kinase eluted from DEAE-cellulose at a NaCl concentration of 0.18-0.22 M compared with 0.08 - 0.16 M for Ca2+/Ptd-Ser-dependent protein kinase (C-kinase). Formation of the Ca2+/Ptd-Ser-independent kinase in 12-O-tetradecanoylphorbol-13-acetate-treated platelets was blocked by leupeptin, an inhibitor of Ca2+-dependent neutral proteases. The Ca2+/Ptd-Ser-independent kinase and C-kinase both catalysed the same pattern of phosphorylation of smooth muscle myosin light chains and histone H1 as detected by one-dimensional or two-dimensional peptide mapping after tryptic digestion. The phosphorylation sites were different from those obtained with myosin light chain kinase or cAMP-dependent kinase. The Ca2+/Ptd-Ser-independent kinase and C-kinase had Mr values of about 50 000 and 77 000 respectively as determined by sucrose-gradient centrifugation. It was concluded that 12-O-tetradecanoylphorbol-13-acetate induces the proteolytic cleavage of C-kinase to a Ca2+/Ptd-Ser-independent form.  相似文献   

5.
Type I and Type II adrenal steroid receptors from rat renal and hippocampal cytosols were studied by the technique of Fast Protein Liquid Chromatography. Type I receptors were labelled with [3H]aldosterone plus excess RU26988, and Type II receptors with [3H]dexamethasone. On a Mono Q anion exchange column the molybdate-stabilized renal and hippocampal Type I receptors both eluted as single symmetrical peaks at 0.27 M NaCl, with a recovery of approximately 90% and 60-fold purification (renal) and 10-15-fold (hippocampal). Molybdate-stabilized Type II binding sites from both hippocampal and renal cytosols co-eluted with the Type I sites. On Superose gel filtration renal Type I receptor-steroid complexes consistently eluted two fractions later than hippocampal Type I complexes, suggesting that the renal complexes are smaller; Type II receptor-steroid complexes from both cytosols co-eluted, consistently one fraction behind hippocampal Type I sites. Sequential gel filtration and anion exchange chromatography achieved a 1000-fold purification of renal Type I binding sites, with an overall recovery of 10%.  相似文献   

6.
The use of high-performance ion-exchange chromatography (HPIEC) on a Mono Q column was investigated for the analysis of glucocorticoid receptor. In the presence of 10 mM sodium molybdate, both liganded and unliganded glucocorticoid receptor were eluted as a single and sharp peak (0.32 M NaCl). In the absence of molybdate and after exposure to heat and salt, another peak of specifically bound radioactivity was eluted with 0.08 M NaCl. When HPIEC was performed in the absence of molybdate, two molecular forms of the liganded receptor were detected which eluted with 0.08 M NaCl (Stokes' radius Rs = 5.1 nm, s20,w = 4.6 S, calculated mol. wt Mr approximately 100,000) and 0.32 M NaCl (Rs = 7.3 nm, S20,w = 9.0 S, calculated Mr approximately 280,000). Analysis of both forms with mini-columns of DNA-Ultrogel, DEAE-Trisacryl and hydroxylapatite (HA-Ultrogel) confirmed the identity of the two peaks with transformed and non-transformed glucocorticoid-receptor complexes. These results suggest that HPIEC may provide a useful tool for the rapid resolution and quantification of receptor molecular forms.  相似文献   

7.
Two peaks (mPLC-I and mPLC-II) of phosphatidylinositol 4,5-bisphosphate (PIP2)-hydrolyzing activity were resolved when 1% sodium cholate extract from particulate fractions of human platelet was chromatographed on a heparin-Sepharose column. The major peak of enzyme activity (mPLC-II) was purified to homogeneity by a combination of Fast Q-Sepharose, heparin-Sepharose, Ultrogel AcA-44, Mono Q, Superose 6-12 combination column, and Superose 12 column chromatographies. The specific activity increased 2,700-fold as compared with that of the starting particulate fraction. The purified mPLC-II had an estimated molecular weight of 61,000 on sodium dodecyl sulfate-polyacrylamide gels. The minor peak of enzyme activity (mPLC-I) was partially purified to 430-fold. Both enzymes hydrolyzed PIP2 at low Ca2+ concentration (0.1-10 microM) and exhibited higher Vmax for PIP2 than for phosphatidylinositol. PIP2-hydrolyzing activities of both enzymes were enhanced by various detergents and lipids, such as deoxycholate, cholate, phosphatidylethanolamine, and dimyristoylphosphatidylcholine. The mPLC-I and mPLC-II activities were increased by Ca2+, but not by Mg2+, while Hg2+, Fe2+, Cu2+, and La3+ were inhibitory. GTP-binding proteins (Gi, Go, and Ki-ras protein) had no significant effects on the mPLC-II activity.  相似文献   

8.
Two forms of biologically active gonadotropin releasing hormones were isolated from the hypothalami ofCatla catla. Gonadotropin releasing hormone activity was studiedin vitro using enzymatically dispersed carp pituitary cell incubation system. Gonadotropin released into the medium was measured by carp gonadotropin-radio immuno assay. Acetic acid extracted hypothalamic material was subjected to acetone fractionation. Among the three protein pellets obtained at different time periods (ACI, ACII and ACIII), AC II exhibited the gonadotropin releasing hormone activity. Gel filtration of AC II through Sephadex G-25 column showed three protein peaks (SG I, SG II SGIII) and only S G II demonstrated strong gonadotropin releasing hormone activity. Elution of SG II through FPLC Mono Q column (an anion exchanger) in NaCl gradient programme showed one unadsorbed (MQ I) and three adsorbed (MQ II, MQ III and MQ IV) protein peaks. MQ III, which was eluted with 51% NaCl, exhibited gonadotropin releasing hormone activity. Surprisingly, unadsorbed fractions, MQ I, also showed gonadotropin releasing hormone activity. MQ 1 was therefore subjected to FPLC Mono S (a cation exchanger) column chromatography where a highly active gonadotropin releasing hormone enriched peak, i.e., MS III, could be eluted with 45% NaCl. These findings show thatCatla catla hypothalamus has two forms of gonadotropin releasing hormones one anionic (carp gonadotropin releasing hormone I) and another cationic (carp gonadotropin releasing hormone II). These two forms of gonadotropin releasing hormones were also active in heterologous carp species, rohu(Labeo rohita), mrigal(Cirrhinus mrigala) and an exotic common carp(Cyprinus carpio). Combined activity of two forms of gonadotropin releasing hormones was significantly greater as compared to any of the single form.  相似文献   

9.
A method to fractionate corn (Zea mays L. B73) mitochondria into soluble proteins, high molecular weight soluble proteins, and membrane proteins was developed. These fractions were analyzed by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and assays of mitochondrial enzyme activities. The Krebs cycle enzymes were enriched in the soluble fraction. Malate dehydrogenase has been purified from the soluble fraction by a two-step fast protein liquid chromatography method. Six different malate dehydrogenase peaks were obtained from the Mono Q column. These peaks were individually purified using a Phenyl Superose column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified peaks showed that three of the isoenzymes consisted of different homodimers (I, III, VI) and three were different heterodimers (II, IV, V). Apparent molecular masses of the three different monomer subunits were 37, 38, and 39 kilodaltons. Nondenaturing gel analysis of the malate dehydrogenase peaks showed that each Mono Q peak contained a band of malate dehydrogenase activity with different mobility. These observations are consistent with three nuclear genes encoding corn mitochondrial malate dehydrogenase. Polyclonal antibodies raised against purified malate dehydrogenase were used to identify the gene products using Western blots of two-dimensional gels.  相似文献   

10.
Two forms of porcine histone acetyltransferase (types I and II) have been purified to apparent homogeneity from liver nuclei. Both activities are extracted from nuclei by 0.5 M NaCl and display a native Mr of 110,000 as determined by gel filtration. Saline enzyme extracts were subject to ammonium sulfate precipitation and sequential chromatography on Q-Sepharose, Sephacryl S-200, hydroxylapatite, and Mono Q supports. The histone acetyltransferase type I fraction contains three polypeptide chains with apparent Mr values of 105,000, 62,000, and 45,000, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cyanogen bromide peptide mapping and immunoblotting suggest that the Mr 62,000 and 45,000 polypeptides are derived by cleavage of the Mr 105,000 polypeptide. Histone acetyltransferase type II contains two different subunits with apparent Mr values of 50,000 and 40,000, respectively. The amino acid composition, heat inactivation profiles, and Michaelis constants with respect to both acetyl coenzyme A and histones were indistinguishable for types I and II. However, affinity-purified polyclonal antibodies to both forms of the enzyme do not cross-react; cyanogen bromide-derived in situ cleavage digest patterns show few similarities; and the turnover number for type I is approximately 15-fold lower than that for type II. We estimate that there is one enzyme molecule for every 500 nucleosomes. The existence of two distinct forms of nuclear histone acetyltransferase in pig liver suggests that they may have separate functions in vivo.  相似文献   

11.
Effect of phorbol esters on protein kinase C-zeta.   总被引:7,自引:0,他引:7  
Protein kinase C-zeta (PKC-zeta) is a member of the protein kinase C gene family which using in vitro preparations has been described as being resistant to activation by phorbol esters. PKC-zeta was found to be expressed in several cell types as an 80-kDa protein. In vitro translation of a full-length PKC-zeta construct also yielded as a primary translation product an 80-kDa protein. In the U937 cell, PKC-zeta was slightly more abundant in the cytosol than in the particulate fraction. Acute exposure of U937 cells to tetradecanoyl-phorbol-13-acetate (TPA), phorbol dibutyrate, mezerin, or diacylglycerol derivatives did not induce translocation of this isoform to the particulate fraction. Chronic exposure to 1 microM TPA failed to translocate or down-regulate PKC-zeta in U937, HL-60, COS, or HeLa-fibroblast fusion cells. To examine whether PKC-zeta was activated by TPA, PKC activity was evaluated in COS cells transiently over-expressing this isoform. In non-transfected cells, two peaks of phospholipid- and TPA-dependent kinase activity were observed. Eluting at a lower salt concentration was a peak of activity associated with PKC-alpha. PKC-zeta eluted with the second peak of activity and at a higher salt concentration. In transfected cells which expressed PKC-zeta at 4-10-fold over endogenous levels, there was only a slight increase in activity associated with the second peak. The activity and quantity of PKC-zeta did not strictly correlate. Treatment with TPA under conditions that did not alter PKC-zeta content abolished detection of the second peak of PKC activity eluting from the Mono Q column. Thus, PKC-zeta does not translocate or down-regulate in response to phorbol esters or diacylglycerol derivatives. However, for reasons discussed these studies do not resolve the issue of whether this isoform is activated by TPA.  相似文献   

12.
SH-SY5Y human neuroblastoma cells can be induced to differentiate into a neuronal phenotype by treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA). In other cell systems, TPA treatment frequently leads to down-regulation of protein kinase C (PKC). However, we now report that TPA-treated and non-treated SH-SY5Y cells express PKC-alpha, but not PKC-beta and PKC-gamma, mRNA. Furthermore, only a slight down-regulation of the PKC-alpha protein could be seen during prolonged treatment with 16 nM TPA, the concentration giving optimal differentiation. In contrast, a higher concentration of TPA (1.6 microM) results in a poor neuronal differentiation and a complete down-regulation of PKC-alpha. PKC-alpha was rapidly translocated to the particulate fraction and remained membrane bound for at least 4 days during treatment with 16 nM TPA. In such cells a sustained increased level of the phosphorylated form of a 80,000 Dalton PKC-substrate was found. In addition to this sustained augmented phosphorylation, administration of fresh TPA at day 4 caused a small but reproducible further increased level of phosphorylated substrate. When the PKC activity was measured by the histone phosphorylation assay a substantial fraction of the initial enzyme activity could still be detected after 4 days of TPA treatment. Taken together, the data demonstrate that PKC remains functionally active during TPA induced differentiation of SH-SY5Y cells, which may suggest a continuous role for the enzyme during the differentiation process.  相似文献   

13.
Protein kinase C (PKC) has been widely studied from different tissues of mammals. Human platelets display higher levels of PKC activity, if compared with other sources. The PKC activity from calf platelets crude extract was determined in the presence of various protease inhibitors such as PMSF, Leupeptin or Trypsin inhibitro, and the Ca(2+)-chelators EGTA and EDTA. The free calcium requirement was 0.25 mM, calculated with the help of the Solgas-water computer program, which represents 1 mM CaCl2, in these assay conditions. Optimum PKC activity was obtained at 4 min in the presence of PS plus DAG or TPA, using H1 type III-S histone as substrate. Phospholipid-interacting drugs, such as trifluoperazine, chlorpromazine and tetracaine, inhibited the PKC activity in a dose-dependent manner. Triton X-100, a non-ionic detergent, which is usually employed to solubilize the membrane fraction, in different translocation assays, inhibited PKC activity at concentrations higher than 0.01%. In these conditions, non-proteolytic PKC activity from calf platelets was easily determined, and shares similar activity levels with those described in human platelets.  相似文献   

14.
Summary Two distinct lipases produced byCanadida rugosa were identified and separated by a high resolution anion-exchange column (Mono Q) after an ethanol extraction of the crude lipase. From this Mono Q column, lipase I eluted at 0.05 M NaCl whereas lipase II eluted at 0.15 M NaCl. The less anionic nature of lipase I was also confirmed by native polyacrylamide gel electrophoresis as well as isoelectrophoresis. Both proteins have an apparent molecular weight of 58,000 by SDS-PAGE. The isoelectric points of lipase I and II are 5.6 and 5.8 respectively.  相似文献   

15.
Properties of protein kinase C subspecies in human platelets   总被引:4,自引:0,他引:4  
Protein kinase C (PKC) from human platelets was resolved into two fractions by hydroxyapatite column chromatography. One of the enzymes was indistinguishable from the brain type III PKC having alpha-sequence in its kinetic and immunological properties. The other enzyme was kinetically different from any of the brain PKC subspecies so far isolated, although it resembled the brain type II PKC having beta-sequence. With H1 histone as substrate, this platelet enzyme was not very sensitive to Ca2+, and activated partly by phosphatidylserine plus diacylglycerol or by free arachidonic acid. Both platelet enzymes could phosphorylate the P47 protein in vitro, but the enzyme physiologically responsible for the P47 protein phosphorylation in the activated platelets remains to be identified.  相似文献   

16.
We obtained a Ca(2+)-independent but 12-O-tetradecanoyl phorbol ester (TPA).phospholipid-activated protein kinase from rat embryo fibroblast 3Y1 cells by succeeding steps of DEAE-cellulose, H-9 affinity, and hydroxylapatite chromatography. This kinase was separated chromatography. This kinase was separated from a conventional PKC (Type III), by H-9 affinity column chromatography. The major peak from H-9 affinity column was eluted at 0.4 M of arginine and on the following step of hydroxylapatite column chromatography, at the KPO4 concentration of 0.1 M. The enzyme could be stimulated by phospholipids and by the tumor promoter TPA, but did not respond to calcium. The Ca(2+)-independent, phospholipid-activated protein kinase activity was susceptible to the protein kinase C inhibitors H-7 and K252a, but showed a phospholipid dependency and substrate specificity distinct from the conventional types of PKC. This protein kinase did not react with monoclonal antibodies against Types I, II, and III PKC. The activity of this enzyme was specifically reduced by immunoprecipitation, depending on the concentration of the polyclonal antibody, PC-delta, which was raised against a peptide synthesized according to a sequence of rat brain nPKC delta. The enzyme had a Mr of 76,000 as estimated by Western blotting. These results provide evidence for a unique type of Ca(2+)-independent, phospholipid-activated kinase, as expressed in 3Y1 cells.  相似文献   

17.
Expression, purification, and characterization of protein kinase C-epsilon   总被引:7,自引:0,他引:7  
Of the recently described members of the protein kinase C (PKC) family (-delta, -epsilon, -zeta), no detailed properties of the purified enzymes have been presented. Here we describe the expression of PKC-epsilon in insect cells using a baculovirus vector. The recombinant enzyme has been purified to homogeneity by sequential chromatography on DEAE-cellulose, serine-Sepharose, Mono Q, and Superose 12; the protein shows a molecular mass of 90 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PKC-epsilon is dependent upon phospholipid and diacylglycerol (or phorbol esters) for activity and displays a pattern of specificity for these effectors similar to other PKC isotypes. Similarly, inhibition of PKC-epsilon by staurosporine and H-7 parallels inhibition of other PKC isotypes. However, unlike PKC-alpha, -beta, and -gamma, PKC-epsilon shows no dependence upon Ca2+. Furthermore, the substrate specificity of PKC-epsilon is quite different from other characterized PKCs. The importance of functional diversity within the PKC family is discussed.  相似文献   

18.
Androgen, estrogen and progesterone receptors have been characterized with anion exchange Fast Protein Liquid Chromatography (FPLC) on a Mono Q column (Pharmacia). In the presence of sodium molybdate androgen receptors in cytosols from rat prostate, rat epididymis and calf uterus eluted as a single sharp peak at 0.32 M NaCl with recoveries of approx 90%. The molybdate-stabilized form of the androgen receptor from rat prostate was purified about 75-fold. The receptor containing FPLC-peak fractions sedimented in high salt (0.4 M KCl) linear sucrose gradients at 3.6 S (prostate) and at 4.6 S (epididymis and calf uterus) respectively. Multiple forms of the androgen receptor were present in cytosols from rat prostate prepared in the absence of sodium molybdate, probably due to proteolytic breakdown of the native form. Calf uterine estradiol and progesterone receptors prepared in the presence of sodium molybdate (20 mM) eluted from the Mono Q column at 0.32 M NaCl. The molybdate-stabilized forms of the oestradiol and progesterone receptors were purified approx 70-fold and 30-fold respectively. In the absence of molybdate the estradiol receptor dissociated into two major forms eluting at 0.23 M NaCl and 0.37 M NaCl. After heat induced transformation (30 min at 25 degrees C) of the estradiol receptor one major peak was eluted at 0.42 M NaCl, indicating a change in the surface charge of the estradiol receptor as a result of the 4 S to 5 S transformation. It is concluded that the FPLC anion exchange system is a powerful, fast tool for characterization and partial purification of steroid receptors. In addition this technique could be applied as a rapid procedure for the quantitative estimation of steroid receptors in small biological samples.  相似文献   

19.
Two different types of diacylglycerol kinase (DGK) have been purified 10,455-fold (DGK I) and 7,410-fold (DGK IV) from the cytosol and membrane fractions of rat brain, respectively. The cytosolic DGK was purified by successive chromatographies on Affi-Gel Blue, Q-Sepharose F.F., Mono Q, hydroxylapatite, and ATP-agarose. The membrane-bound DGK was purified from the 2 M NaCl extract of membranes by chromatography on Affi-Gel Blue, phenyl-Superose, hydroxylapatite, and ATP-agarose. The resultant preparations contained homogeneous enzymes with a Mr of 110,000 (DGK I) and 150,000 (DGK IV) as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These enzymes both phosphorylate 1,2-dioleoyl glycerol at rates of 11.5 mumol/min/mg protein for DGK I and 5.2 mumol/min/mg protein for DGK IV. Both enzymes require divalent cations and ionic detergents for activity. Magnesium is the most potent cation for both enzymes, but Ca2+ was also found to be fairly effective. Manganese is less effective than Mg2+ or Ca2+. Anionic detergents such as sodium deoxycholate or sodium cholate stimulate the activities of both enzymes, although DGK IV is stimulated more markedly than DGK I at lower concentrations. The optimal pH for the two enzymes was found to be the same, pH 7.4. Some phospholipids such as phosphatidylserine and phosphatidylinositol elevate the kinase activities of these kinases even in the absence of detergents. DGK IV is activated more significantly than DGK I by low amounts of phospholipids. The two enzymes also show structural differences. DGK I and DGK IV give different peptide maps after digestion with Staphylococcus aureus V8 protease or alpha-chymotrypsin. The results suggest that these enzymes are different forms of DGK and may be involved in different biological processes.  相似文献   

20.
The phosphorylation of DNA topoisomerase I in quiescent murine 3T3-L1 fibroblasts treated with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) was characterized by in vivo labeling with [32P] orthophosphate and immunoprecipitation with a scleroderma anti-DNA topoisomerase I autoantibody. DNA topoisomerase I phosphorylation was stimulated 4-fold by 2 h of TPA treatment (TPA at 100 ng/ml maximally enhanced phosphorylation). Purified DNA topoisomerase I was phosphorylated in vitro in a Ca2+ and phospholipid-dependent fashion by types I, II, and III protein kinase C. The phosphorylation reaction was stimulated by TPA and had an apparent K(m) of 0.4 microM. DNA topoisomerase I was phosphorylated in vivo and in vitro predominantly at serine. The major tryptic phosphopeptides from DNA topoisomerase I in TPA-treated fibroblasts and phosphorylated by protein kinase C comigrated in thin-layer electrophoresis. The half-life of incorporated phosphate on DNA topoisomerase I was 40 min in both TPA-treated and control cells. These results suggest that phosphorylation is a mechanism for activating DNA topoisomerase I in fibroblasts treated with TPA and that protein kinase C functions in the phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号