首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three main lipid components of the stratum corneum, namely ceramides, free fatty acids and cholesterol, play a fundamental role in the maintenance of the skin barrier. The current investigation is aimed toward understanding the miscibility and intermolecular interactions of these lipids. Toward this end, Fourier transform infrared spectroscopic studies of the three possible equimolar binary mixtures of cholesterol, a synthetic non-hydroxylated fatty acid N-acyl sphingosine with a C18 chain length (N-stearoylsphingosine, approximating human ceramide 2), and stearic acid were undertaken. The thermotropic responses of the methylene stretching and scissoring vibrations were used to evaluate chain conformation and packing respectively. Selective perdeuteration, of either the stearic acid or the ceramide acid chains, permitted separate and simultaneous evaluation of the conformational order and packing properties of the sphingosine chain, the amide linked fatty acid chains and/or the stearic acid chain. Whereas cholesterol mixed well with ceramide at physiological temperatures, the stearic acid was miscible with the cholesterol only at relatively high temperatures where the fatty acid is disordered. A complex interaction between stearic acid and ceramide was detected. A separate fatty acid-rich phase persisted until at least 50 degrees C, whereas at higher temperatures the components appear to be quite miscible. However, a preferential association of the fatty acid with the ceramide base chain is indicated. None of the binary systems studied exhibit miscibility and interactions resembling those in the ternary mixtures of these substances, which is widely used to model stratum corneum. The role of cholesterol in controlling the miscibility characteristics in the ternary system is evident.  相似文献   

2.
Using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), we determined some thermodynamic and structural parameters for a series of amino acid-linked dialkyl lipids containing a glutamic acid-succinate headgroup and di-alkyl chains: C12, C14, C16 and C18 in CHES buffer, pH 10. Upon heating, DSC shows that the C12, C14 and annealed C16 lipids undergo a single transition which XRD shows is from a lamellar, chain ordered subgel phase to a fluid phase. This single transition splits into two transitions for C18, and FTIR shows that the upper main transition is predominantly the melting of the hydrocarbon chains whereas the lower transition involves changes in the headgroup ordering as well as changes in the lateral packing of the chains. For short incubation times at low temperature, the C16 lipid appears to behave like the C18 lipid, but appropriate annealing at low temperatures indicates that its true equilibrium behavior is like the shorter chain lipids. XRD shows that the C12 lipid readily converts into a highly ordered subgel phase upon cooling and suggests a model with untilted, interdigitated chains and an area of 77.2A(2)/4 chains, with a distorted orthorhombic unit subcell, a=9.0A, b=4.3A and beta=92.7 degrees . As the chain length n increases, subgel formation is slowed, but untilted, interdigitated chains prevail.  相似文献   

3.
Molecular packing and the thermotropic phase behavior of fully hydrated ammonium salts of 1,2-dimyristoyl-sn-glycero-3-phosphatidyl-sn-1'-glycerol (1'-DMPG) and the corresponding 3' stereoisomer (3'-DMPG) as well as the effects of 300 mM NaCl on these lipids were studied by Fourier transform infrared (FTIR) spectroscopy. The ammonium salts of both stereoisomer show similar thermotropic phase behavior and have an order-disorder phase transition at approximately 21 degrees C. While complexing with Na+, however, an incubation of liposomes at +6 degrees C for 3 days results in significant structural differences between liposomes of 1'-DMPG and 3'-DMPG. In the presence of 300 mM NaCl the infrared spectra for 3'-DMPG reveal the appearance of a more solidified lipid nominated here as the highly crystalline phase with a transition into the liquid-crystalline state at a significantly higher temperature (approximately at 33 degrees C) than that for 1'-DMPG (approximately at 23 degrees C). Crystal field splitting resulting from interchain vibrational coupling is observed in the CH2 scissoring mode of the 3'-DMPG(Na+) complex in the highly crystalline phase (T less than 33 degrees C); i.e., the acyl chains are packed in a rigid orthorhombic- or monoclinic-like crystal lattice. At temperatures above the transition at 33 degrees C the acyl chains of 3'-DMPG(Na+) give rise to infrared spectra indicative of hexagonal packing. The latter type of hydrocarbon chain packing is also found for the ammonium salts of 1'-DMPG and 3'-DMPG without Na+ as well as for 1'-DMPG with Na+. In addition, the binding of Na+ to 3'-DMPG causes narrowing of the bands associated with the interfacial and polar headgroup regions of 3'-DMPG and thus reveals reduced motional freedom. This demonstrates that Na+ binds tightly to 3'-DMPG, leading to the immobilization of the entire phospholipid polar headgroup. Such effects by Na+ are not observed for 1'-DMPG.  相似文献   

4.
A series of phosphatidylcholines and phosphatidylethanolamines was synthesized containing two acyl chains of the following polyunsaturated fatty acids: linoleic acid (18:2), linolenic acid (18:3), arachidonic acid (20:4) and docosahexaenoic acid (22:6). In addition two phospholipids with mixed acid composition were synthesized: 16:0/18:1c phosphatidylcholine and 16:0/18:1c phosphatidylethanolamine. The structural properties of these lipids in aqueous dispersions in the absence and in the presence of equimolar cholesterol were studied using 31P-NMR, freeze fracturing and differential scanning calorimetry (DSC).The phosphatidylcholines adopt a bilayer configuration above 0°C. Incorporation of 50 mol% of cholesterol in polyunsaturated species induces a transition at elevated temperatures into structures with 31P-NMR characteristics typical of non-bilayer organizations. When the acyl chains contain three or more double bonds, this non-bilayer organization is most likely the hexagonal HII phase, 16:0/15:1c phosphatidylethanolamine shows a bilayer to hexagonal transition temperature of 75°C. The polyunsaturated phosphatidylethanolamines exhibit a bilayer to hexagonal transition temperature below 0°C which decreases with increasing unsaturation and which is lowered by approximately 10°C upon incorporation of 50 mol% of cholesterol. Finally, it was found that small amounts of polyunsaturated fatty acyl chains in a phosphatidylethanolamine disproportionally lower its bilayer to hexagonal transition temperature.  相似文献   

5.
A combination of differential scanning calorimetry (DSC) and X-ray diffraction have been used to study the kinetics of formation and the structure of the low-temperature phase of 1-stearoyl-lysophosphatidylcholine (18:0-lysoPC). For water contents greater than 40 weight %, DSC shows a sharp endothermic transition at 27 degrees C (delta H = 6.75 kcal/mol) corresponding to a low-temperature phase----micelle transition. This sharp transition is not reversible, but is regenerated in a time and temperature-dependent manner. For example, with incubation at 0 degrees C the maximum transition enthalpy (delta H = 6.75 kcal/mol) is generated in about 45 min after an initial slow nucleation process of approx. 20 min. The kinetics of formation of the low-temperature phase is accelerated at lower temperatures and may be related to the disruption of 18:0-lysoPC micelles by ice crystal formation. X-ray diffraction patterns of 18:0-lysoPC recorded at 10 degrees C over the hydration range 20-80% are characteristic of a lamellar gel phase with tilted hydrocarbon chains with the bilayer repeat distance increasing from 47.6 A at 20% hydration to a maximum of 59.4 A at 39% hydration. At this maximum hydration, approx. 19 molecules of water are bound per molecule of 18:0-lysoPC. Electron density profiles show a phosphate-phosphate distance of 30 A, indicating an interdigitated lamellar gel phase for 18:0-lysoPC at all hydration values. The angle of chain tilt is calculated to be between 20 and 30 degrees. For water contents greater than 40%, this interdigitated lamellar phase converts to the micellar phase at 27 degrees C in a kinetically fast process, while the reverse (micelle----interdigitated bilayer) transition is a kinetically slower process (see also Wu, W. and Huang, C. (1983) Biochemistry 22, 5068-5073).  相似文献   

6.
Phase behavior of galactocerebrosides from bovine brain   总被引:3,自引:0,他引:3  
W Curatolo  F B Jungalwala 《Biochemistry》1985,24(23):6608-6613
Bovine brain cerebrosides (BOV-CER) were separated by high-performance liquid chromatography into cerebroside fractions with a single acyl chain type or with a relatively homogeneous acyl chain distribution. The thermal behavior of these isolated cerebroside fractions was studied by differential scanning calorimetry. Nonhydroxy (n-acyl) fatty acid cerebrosides (NFA-CER) possessing a saturated acyl chain (C16:0, C18:0, C24:0) exhibit their major order-disorder transition temperature TM at 83 degrees C, independent of chain length. NFA-CER possessing primarily unsaturated acyl chains (C24:1) exhibits TM at 70 degrees C. 2-Hydroxy fatty acid cerebrosides (HFA-CER), which possess a saturated hydroxyacyl chain (C18:0h, C24:0h), exhibit TM at 70-72 degrees C. Thus, naturally occurring cerebrosides exhibit high TM's that do not depend significantly on acyl chain length and that depend only to a small degree on unsaturation and the presence of a 2-hydroxy branch in the amide-linked chain. Isolated NFA-CER's each exhibit metastable polymorphism of the type previously described for unfractionated NFA-CER [Curatolo, W. (1982) Biochemistry 21, 1761]. Polymorphism in HFA-CER is complex, with a different type of thermal behavior observed for each isolated acyl chain fraction studied. On prolonged storage at low temperature, unfractionated HFA-CER and unfractionated BOV-CER reach a highly ordered gel state similar to that which is readily reached by NFA-CER's. These results indicate that all cerebrosides exhibit metastable polymorphism. However, the kinetic barriers to reaching the stable gel state are greater for HFA-CER and BOV-CER than for NFA-CER.  相似文献   

7.
Thermotropic properties of saturated mixed acyl phosphatidylethanolamines   总被引:2,自引:0,他引:2  
The mixed acyl phosphatidylethanolamine (PE) series C(18)C(18)PE, C(18)C(16)PE, C(18)C(14)PE, C(18)C(12)PE, and C(18)C(10)PE has been prepared from the corresponding phosphatidylcholines by phospholipase D mediated transphosphatidylation. The thermotropic behavior of unhydrated and hydrated preparations of these PEs has been investigated by differential scanning calorimetry and 31P NMR spectroscopy. Unhydrated preparations of the PEs undergo crystalline to liquid-crystalline transitions (Tm+h), which correspond to the simultaneous hydration and acyl chain melting of poorly hydrated crystalline samples. Hydrated preparations of the PEs undergo gel to liquid-crystalline transitions (Tm) when scanned immediately subsequent to cooling from temperatures above their respective Tm+hs. Multilamellar bilayers of C(18)C(18)PE, C(18)C(16)PE, and C(18)C(14)PE pack without significant interdigitation of the phospholipid acyl chains across the bilayer center in the gel phase. C(18)C(10)PE multilamellar preparations exhibit a mixed-interdigitated gel phase packing of the phospholipid acyl chains. Hydrated bilayers of C(18)C(12)PE adopt a mixed-interdigitated gel phase packing at temperatures below 13.9 degrees C. Between 13.9 degrees C and the gel to liquid-crystalline transition temperature of 36.9 degrees C, the C(18)C(12)PE bilayer adopts a noninterdigitated gel phase packing. The metastable behavior of fully hydrated and partially hydrated preparations of the mixed acyl PEs has been investigated. Bilayers of C(18)C(18)PE, C(18)C(16)PE, and C(18)C(14)PE exhibited little or no tendency toward regeneration of the crystalline phase. In contrast, bilayers of C(18C(12)PE and C(18)C(10)PE exhibited a metastability of the liquid-crystalline phase in the temperature interval between Tm and Tm+h, which can allow for the regeneration of the crystalline phase under certain conditions.Bilayers of C(18)C(12)PE exhibited an additional metastability of the noninterdigitated gel phase.  相似文献   

8.
Phosphatidylethanolamines in which the polar headgroup is N-acylated by a long-chain fatty acid (N-acyl PEs) are present in many plasma membranes under normal conditions, and their content increases dramatically in response to membrane stress in a variety of organisms. The thermotropic phase behavior of a homologous series of saturated N-acyl PEs, in which the length of the N-acyl chain is equal to that of the O-acyl chains attached at the glycerol backbone, has been investigated by differential scanning calorimetry (DSC). All fully hydrated N-acyl PEs with even chain lengths from C-12 to C-18 exhibit sharp endothermic chain-melting phase transitions in the absence of salt and in 1 M NaCl. Cooperative chain-melting is demonstrated directly by the temperature dependence of the electron spin resonance spectra from probe phospholipids bearing a spin label group in the acyl chain. The calorimetric transition enthalpy and the transition entropy obtained from DSC depend approximately linearly on the chain length with incremental values per CH2 group that exceed those of normal diacyl phosphatidylethanolamines, but to an extent that underrepresents the additional N-acyl chain. A thermodynamic model is constructed for the chain-length dependences and end effects of the calorimetric quantities, which includes a deficit proportional to the difference in O-acyl and N-acyl chain lengths for nonmatched chains, as is found and justified structurally for mixed-chain diacyl phospholipids. From data on the chain-length dependence of N-acyl diC16PEs, it is then deduced that the N-acyl chains are less well packed than the O-acyl chains and, from the data on the matched-chain N-acyl PEs, that the O-acyl chain packing is similar to that in normal diacyl PEs. The gel-to-fluid phase transition temperatures of the N-acyl PEs in the absence of salt are practically the same as those of the normal diacyl PEs of the corresponding chain lengths, although the transition enthalpies and entropies are appreciably greater, indicating entropy-enthalpy compensation. In 1 M NaCl, the transition temperatures are 3-4.5 degrees higher than in the absence of salt, representing the contribution of the electrostatic surface potential of the N-acyl PEs.  相似文献   

9.
Glycosphingolipids of Schistosoma mansoni adults, cercariae and eggs comprise ceramide monohexosides (CMH) with glucose or galactose and ceramide dihexosides (CDH) with the schistosome-specific structure GalNAc(beta1-4)Glc(1-1)ceramide. Ceramide analysis revealed C18- and C20-phytosphingosines in egg CMH, C18-sphinganine as well as C18-, C19- and C20-phytosphingosines in cercarial CMH, and C18- and C20-phytosphingosines as well as C18-sphingosine and C18-sphinganine in adult CMH. For all three life cycle stages, the predominant fatty acid was C16h:0. As a characteristic feature, a range of saturated, unsaturated and hydroxylated long-chain fatty acids with 24-28 carbon atoms were additionally found in minor cercarial CMH species. The corresponding ceramides represented major constituents in cercarial CDH, while adult and egg CDH were dominated by ceramides with short fatty acid chains. The resultant ceramide patterns could be correlated with the differential expression of carbohydrate antigens on schistosomal glycolipids at various stages. A possible impact of ceramide structure on the biosynthesis of the carbohydrate moieties is discussed.  相似文献   

10.
SAXS/WAXS studies were performed in combination with freeze fracture electron microscopy using mixtures of a new Gemini catanionic surfactant (Gem16-12, formed by two sugar groups bound by a hydrocarbon spacer with 12 carbons and two 16-carbon chains) and the zwitterionic phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) to establish the phase diagram. Gem16-12 in water forms bilayers with the same amount of hydration water as DPPC. A frozen interdigitated phase with a low hydration number is observed below room temperature. The kinetics of the formation of this crystalline phase is very slow. Above the chain melting temperature, multilayered vesicles are formed. Mixing with DPPC produces mixed bilayers above the corresponding chain melting temperature. At room temperature, partially lamellar aggregates with local nematic order are observed. Splitting of infinite lamellae into discs is linked to immiscibility in frozen state. The ordering process is always accompanied by dehydration of the system. As a consequence, an unusual order-disorder phase transition upon cooling is observed.  相似文献   

11.
SAXS/WAXS studies were performed in combination with freeze fracture electron microscopy using mixtures of a new Gemini catanionic surfactant (Gem16-12, formed by two sugar groups bound by a hydrocarbon spacer with 12 carbons and two 16-carbon chains) and the zwitterionic phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) to establish the phase diagram. Gem16-12 in water forms bilayers with the same amount of hydration water as DPPC. A frozen interdigitated phase with a low hydration number is observed below room temperature. The kinetics of the formation of this crystalline phase is very slow. Above the chain melting temperature, multilayered vesicles are formed. Mixing with DPPC produces mixed bilayers above the corresponding chain melting temperature. At room temperature, partially lamellar aggregates with local nematic order are observed. Splitting of infinite lamellae into discs is linked to immiscibility in frozen state. The ordering process is always accompanied by dehydration of the system. As a consequence, an unusual order-disorder phase transition upon cooling is observed.  相似文献   

12.
Differential scanning calorimetry (DSC) and electron spin resonance (ESR) measurements were made to characterize how modifications in the fatty acid composition of Escherichia coli affected the thermotropic phase transition(s) of the membrane lipd. When the fatty acid composition contained between 20 and 60% saturated fatty acids, the DSC curves for isolated phospholipids and cytoplasmic membranes showed a broad (15-25 degree C) gel to liquid-crystalline phase transition, the position of which depended on the particular fatty acid composition. Utilizing multiple lipid mutants, enrichment of the membrane phospholipids with a single long-chain cis-monoenoic fatty acid in excess of that possible in a fatty acid levels less than 20% and gradually replaced the broad peak as the cis-monoenoic fatty acid content increased. These results were obtained with phospholipids, cytoplasmic membranes, and whole cells. With these same phopholipids, plots of 2,2,6,6-tetramethylpiperidinyl-1-oxy partitioning and ESR order parameters vs. 1/T revealed discontinuities at temperatures 40-60 degrees C above the calorimetrica-ly measured gel to liquid-crystalline phase transitions. Moreover, when the membrane phospholipids were enriched with certain combinations of cis-monenoic fatty acids (e.g., cis-delta 9-16:1 plus cis-delta 11-18:1) the DSC curve showed a broad gel to liquid crystalline phase change below 0 degrees C but the ESR studies revealed no discontinuities at temperatures above those of the gel to liquid-crystalline transition. These results demonstrated that enrichment of the membrane lipids with molecules in which both fatty acyl chains are identical cis-monoenoic residues led to a distinct type of liquid-crystalline phase. Furthermore, a general conclusion from this study is that Escherichia coli normally maintains a heterogeneous mixture of lipid molecules and, by so doing, prevents strong lipid-lipid associations that lead to the formation of lipid domains in the membrane.  相似文献   

13.
Differential scanning calorimetry and x-ray diffraction techniques have been used to investigate the structure and phase behavior of hydrated dimyristoyl lecithin (DML) in the hydration range 7.5 to 60 weight % water and the temperature range -10 to +60 degrees C. Four different calorimetric transitions have been observed: T1, a low enthalpy transition (deltaH approximately equal to 1 kcal/mol of DML) at 0 degrees C between lamellar phases (L leads to Lbeta); T2, the low enthalpy "pretransition" at water contents greater than 20 weight % corresponding to the transition Lbeta leads to Pbeta; T3, the hydrocarbon chain order-disorder transition (deltaH = 6 to 7 kcal/mol of DML) representing the transition of the more ordered low temperature phases (Lbeta, Pbeta, or crystal C, depending on the water content) to the lamellar Lalpha phase; T4, a transition occurring at 25--27 degrees C at low water contents representing the transition from the lamellar Lbeta phase to a hydrated crystalline phase C. The structures of the Lbeta, Pbeta, C, and Lalpha phases have been examined as a function of temperature and water content. The Lbeta structure has a lamellar bilayer organization with the hydrocarbon chains fully extended and tilted with respect to the normal to the bilayer plane, but packed in a distorted quasihexagonal lattice. The Pbeta structure consists of lipid bilayer lamellae distorted by a periodic "ripple" in the plane of the lamellae; the hydrocarbon chains are tilted but appear to be packed in a regular hexagonal lattice. The diffraction pattern from the crystalline phase C indexes according to an orthorhombic cell with a = 53.8 A, b = 9.33 A, c = 8.82 A. In the lamellae bilayer Lalpha strucure, the hydrocarbon chains adopt a liquid-like conformation. Analysis of the hydration characteristics and bilayer parameters (lipid thickness, surface area/molecule) of synthetic lecithins permits an evaluation of the generalized hydration and structural behavior of this class of lipids.  相似文献   

14.
We have synthesized a homologous series of saturated 1,2-di-O-n-acyl-3-O-(beta-D-galactopyranosyl)-sn-glycerols with odd- and even-numbered hydrocarbon chains ranging in length from 10 to 20 carbon atoms, and have investigated their physical properties using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy. The DSC results show a complex pattern of phase behaviour, which in a typical preheated sample consists of a lower temperature, moderately energetic lamellar gel/lamellar liquid-crystalline (L(beta)/L(alpha)) phase transition and a higher temperature, weakly energetic lamellar/nonlamellar phase transition. On annealing at a suitable temperature below the L(beta)/L(alpha) phase transition, the L(beta) phase converts to a lamellar crystalline (L(c1)) phase which may undergo a highly energetic L(c1)/L(alpha) or L(c1)/inverted hexagonal (H(II)) phase transition at very high temperatures on subsequent heating or convert to a second L(c2) phase in certain long chain compounds on storage at or below 4 degrees C. The transition temperatures and phase assignments for these galactolipids are supported by our XRD and FTIR spectroscopic measurements. The phase transition temperatures of all of these events are higher than those of the comparable phase transitions exhibited by the corresponding diacyl alpha- and beta-D-glucosyl glycerols. In contrast, the L(beta)/L(alpha) and lamellar/nonlamellar phase transition temperatures of the beta-D-galactosyl glycerols are lower than those of the corresponding diacyl phosphatidylethanolamines (PEs) and these glycolipids form inverted cubic phases at temperatures between the lamellar and H(II) phase regions. Our FTIR measurements indicate that in the L(beta) phase, the hydrocarbon chains form a hexagonally packed structure in which the headgroup and interfacial region are undergoing rapid motion, whereas the L(c) phase consists of a more highly ordered, hydrogen-bonded phase, in which the chains are packed in an orthorhombic subcell similar to that reported for the diacyl-beta-D-glucosyl-sn-glycerols. A comparison of the DSC data presented here with our earlier studies of other diacyl glycolipids shows that the rate of conversion from the L(beta) to the L(c) phase in the beta-D-galactosyl glycerols is slightly faster than that seen in the alpha-D-glucosyl glycerols and much faster than that seen in the corresponding beta-D-glucosyl glycerols. The similarities between the FTIR spectra and the first-order spacings for the lamellar phases in both the beta-D-glucosyl and galactosyl glycerols suggest that the headgroup orientations may be similar in both beta-anomers in all of their lamellar phases. Thus, the differences in their L(beta)/L(c) conversion kinetics and the lamellar/nonlamellar phase properties of these lipids probably arise from subtly different hydration and H-bonding interactions in the headgroup and interfacial regions of these phases. In the latter case, such differences would be expected to alter the ability of the polar headgroup to counterbalance the volume of the hydrocarbon chains. This perspective is discussed in the context of the mechanism for the L(alpha)/H(II) phase transition which we recently proposed, based on our X-ray diffraction measurements of a series of PEs.  相似文献   

15.
We performed differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopic measurements to study the effects of lathosterol (Lath) on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine (DPPC) bilayer membranes and compared our results with those previously reported for cholesterol (Chol)/DPPC binary mixtures. Lath is the penultimate intermediate in the biosynthesis of Chol in the Kandutsch-Russell pathway and differs from Chol only in the double bond position in ring B, which is between C7 and C8 in Lath and between C5 and C6 in Chol. Our DSC studies indicate that the incorporation of Lath is more effective than Chol in reducing the temperature and enthalpy of the DPPC pretransition. At lower sterol concentrations (≤10 mol %), incorporation of both Lath and Chol decreases the temperature, enthalpy, and cooperativity of the sharp component of the main phase transition of DPPC to a similar extent, but at higher sterol concentrations, Lath is more effective at decreasing the phase transition temperature, enthalpy, and cooperativity than Chol. These results indicate that at higher concentrations, Lath is more disruptive of DPPC gel-state bilayer packing than Chol is. Moreover, incorporation of Lath decreases the temperature of the broad component of the main phase transition of DPPC, whereas Chol increases it; this difference in the direction and magnitude of the temperature shift is accentuated at higher sterol concentrations. Although at sterol concentrations of ≤20 mol % Lath and Chol are almost equally effective at reducing the enthalpy and cooperativity of the broad component of the main phase transition, at higher sterol levels Lath is less effective than Chol in these regards and does not completely abolish the cooperative hydrocarbon chain melting phase transition at 50 mol %, as does Chol. These latter results indicate that Lath both is more disruptive with respect to the low-temperature state of the sterol-enriched domains of DPPC bilayers and has a lower lateral miscibility in DPPC bilayers than Chol. Our FTIR spectroscopic studies suggest that Lath incorporation produces a less tightly packed bilayer than does Chol at both low (gel state) and high (liquid-crystalline state) temperatures, which is characterized by increased H-bonding between water and the carbonyl groups of the fatty acyl chains in the DPPC bilayer. Overall, our studies indicate that Lath and Chol incorporation can have rather different effects on the thermotropic phase behavior and organization of DPPC bilayers and thus that the position of the double bond in ring B of a sterol molecule can have an appreciable effect on the physical properties of sterol molecules.  相似文献   

16.
A new procedure is described for preparing the molecular species of GM1 ganglioside that carry a single fatty acid (myristic (C14:0), stearic (C18:0), arachidic (C20:0) or lignoceric (C24:0) acid) and a single long chain base (C18 or C20 sphingosine, C18 or C20 sphinganine, each of them in natural 3D(+)erythro or unnatural 3L(-)threo form). The procedure consisted of the following steps: a) alkaline hydrolysis of GM1 ganglioside in the presence of tetramethylammonium hydroxide, which produces de-N-acylation of the ceramide and de-N-acetylation of the sialic acid residue; b) specific re-N-acylation at the long chain base amino group with a new fatty acid (myristic, stearic, arachidic, or lignoceric) in the presence of 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride; and c) final re-N-acetylation at the level of the sialic acid residue. GM1 ganglioside molecular species, completely homogeneous in the ceramide portion, were prepared by reversed phase high performance liquid chromatography. The GM1 ganglioside molecular species were analyzed for saccharide, fatty acid, and long chain base composition by chemical and spectrometric analyses. Using a combination of the two procedures, 32 different molecular species of GM1 ganglioside, over 99% homogeneous, have been prepared.  相似文献   

17.
Binary phase diagrams have been constructed from differential scanning calorimetry (DSC) data for the systems 1-palmitoyl-2-oleylphosphatidylcholine (POPC)/dimyristoylphosphatidylcholine (DMPC), POPC/dipalmitoylphosphatidylcholine (DPPC) and POPC/distearoylphosphatidylcholine (DSPC). Mixtures of POPC with DMPC exhibit complete miscibility in the gel and liquid crystalline states. Mixtures of POPC with DPPC or with DSPC exhibit gel phase immiscibility over the composition range 0-75% DPPC (or DSPC). These results, when taken together with previous studies of mixtures of phosphatidylcholines, are consistent with the hypothesis that PCs whose order-disorder transition temperatures (Tm values) differ by less than 33 deg. C exhibit gel state miscibility. Those whose Tm values differ by more than 33 deg. C exhibit gel state immiscibility. 2H-NMR spectroscopy has been used to further study mixed model membranes composed of POPC and DPPC, in which either lipid has been labeled with deuterium in the 2-, 10- or 16-position of the palmitoyl chain(s) or in the N-methyls of the choline head group. POPC/DPPC mixtures in the liquid crystalline state are intermediate in order between pure POPC and DPPC at the same temperature. The POPC palmitoyl chain is always more disordered than the palmitoyl chains of DPPC in liquid crystalline POPC/DPPC mixtures. This is attributed to the fact that a POPC palmitoyl chain is constrained by direct bonding to have at least one oleyl chain among its nearest neighbors, while a DPPC palmitoyl chain must have at least one neighboring palmitoyl chain. When liquid crystalline POPC, DPPC and POPC/DPPC mixtures are compared at a reduced temperature (relative to the acyl chain order-disorder transition), POPC/DPPC mixtures are more disordered than predicted from the behavior of the pure components, in agreement with enthalpy data derived from DSC studies. Within the temperature range of the broad phase transition of 1:1 POPC/DPPC, a superposition of gel and liquid crystalline spectra is observed for 1:1 POPC/[2H]DPPC, while 1:1[2H]POPC/DPPC exhibits only a liquid crystalline spectrum. Thus, at temperatures within the phase transition region, the liquid crystalline phase is POPC-rich and the gel phase is DPPC-rich. Comparison of the liquid crystalline quadrupole splittings within the thermal phase transition range suggests that mixing of the residual liquid crystalline POPC and DPPC is highly non-ideal.  相似文献   

18.
The effects on dielaidoylphosphatidylethanolamine (DEPE) bilayers of ceramides containing different N-acyl chains have been studied by differential scanning calorimetry small angle x-ray diffraction and (31)P-NMR spectroscopy. N-palmitoyl (Cer16), N-hexanoyl (Cer6), and N-acetyl (Cer2) sphingosines have been used. Both the gel-fluid and the lamellar-inverted hexagonal transitions of DEPE have been examined in the presence of the various ceramides in the 0-25 mol % concentration range. Pure hydrated ceramides exhibit cooperative endothermic order-disorder transitions at 93 degrees C (Cer16), 60 degrees C (Cer6), and 54 degrees C (Cer2). In DEPE bilayers, Cer16 does not mix with the phospholipid in the gel phase, giving rise to high-melting ceramide-rich domains. Cer16 favors the lamellar-hexagonal transition of DEPE, decreasing the transition temperature. Cer2, on the other hand, is soluble in the gel phase of DEPE, decreasing the gel-fluid and increasing the lamellar-hexagonal transition temperatures, thus effectively stabilizing the lamellar fluid phase. In addition, Cer2 was peculiar in that no equilibrium could be reached for the Cer2-DEPE mixture above 60 degrees C, the lamellar-hexagonal transition shifting with time to temperatures beyond the instrumental range. The properties of Cer6 are intermediate between those of the other two, this ceramide decreasing both the gel-fluid and lamellar-hexagonal transition temperatures. Temperature-composition diagrams have been constructed for the mixtures of DEPE with each of the three ceramides. The different behavior of the long- and short-chain ceramides can be rationalized in terms of their different molecular geometries, Cer16 favoring negative curvature in the monolayers, thus inverted phases, and the opposite being true of the micelle-forming Cer2. These differences may be at the origin of the different physiological effects that are sometimes observed for the long- and short-chain ceramides.  相似文献   

19.
The synthesis of fatty acids de novo from acetate and the elongation of exogenous satuated fatty acids (C12-C18) by the psychrophilic bacterium Micrococcus cryophilus (A.T.C.C. 15174) grown at 1 or 20 degrees C was investigated. M. cryophilus normally contains only C16 and C18 acyl chains in its phospholipids, and the C18/C16 ratio is altered by changes in growth temperature. The bacterium was shown to regulate strictly its phospholipid acyl chain length and to be capable of directly elongating myristate and palmitate, and possibly laurate, to a mixture of C16 and C18 acyl chains. Retroconversion of stearate into palmitate also occurred. Fatty acid elongation could be distinguished from fatty acid synthesis de novo by the greater sensitivity of fatty acid elongation to inhibition by NaAsO2 under conditions when the supply of ATP and reduced nicotinamide nucleotides was not limiting. It is suggested that phospholipid acyl chain length may be controlled by a membrane-bound elongase enzyme, which interconverts C16 and C18 fatty acids via a C14 intermediate; the activity of the enzyme could be regulated by membrane lipid fluidity.  相似文献   

20.
In order to characterize the arrangements of the hydrocarbon chains of ceramide 3, the thermotropic phase behaviour of the ceramides N-octadecanoylphytosphingosine (CER3) and its chain deuterated derivative N-(d(35)-octadecanoyl)phytosphingosine (d(35)CER3) was studied by means of X-ray powder diffraction, FT-IR and Raman spectroscopy. CER3 and d(35)CER3 exhibit an identical thermotropic polymorphism involving three different crystalline phases. The selective deuteration of the fatty acid chain enables to distinguish the sphingoid part from the fatty acid part by means of FT-IR and Raman spectroscopy. It could be shown that both hydrocarbon chains are arranged in different subcells. Temperature dependent Raman measurements elucidate simultaneously the changes in the trans/gauche ratios and the packing of both the hydrocarbon chains of the fatty acid and of the sphingoid part. The phase behaviour of CER3 and d(35)CER3, both dry and hydrated, was investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号