首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Zonula occludens toxin (Zot) is an enterotoxin elaborated by Vibrio cholerae that increases intestinal permeability by interacting with a mammalian cell receptor with subsequent activation of intracellular signaling leading to the disassembly of the intercellular tight junctions. Zot localizes in the bacterial outer membrane of V. cholerae with subsequent cleavage and secretion of a carboxyl-terminal fragment in the host intestinal milieu. To identify the Zot domain(s) directly involved in the protein permeating effect, several zot gene deletion mutants were constructed and tested for their biological activity in the Ussing chamber assay and their ability to bind to the target receptor on intestinal epithelial cell cultures. The Zot biologically active domain was localized toward the carboxyl terminus of the protein and coincided with the predicted cleavage product generated by V. cholerae. This domain shared a putative receptor-binding motif with zonulin, the Zot mammalian analogue involved in tight junction modulation. Amino acid comparison between the Zot active fragment and zonulin, combined with site-directed mutagenesis experiments, confirmed the presence of an octapeptide receptor-binding domain toward the amino terminus of the processed Zot.  相似文献   

2.
In the present study, we report the preliminary characterization of the epithelial cell receptor for Vibrio cholerae zonula occludens toxin (Zot). Zot receptor was purified by ligand-affinity chromatography. Analysis of affinity-purified preparations by polyacrylamide gel electrophoresis revealed a protein of ca. 66 kDa. Partial N-terminal sequence obtained from purified murine and human Zot receptor revealed homology between the two proteins and with human alpha-1-chimaerin. Zot protein domain(s) involved in receptor binding were also analyzed by constructing several in frame deletion derivatives of a recombinant fusion Zot protein tagged with maltose binding protein. Our results suggest that Zot binding to its cellular membrane receptor requires a sequence that spans between amino acids 118 and 299.  相似文献   

3.
Normal development of both human and rat brain is associated with a switch in metabolic fuel from a combination of glucose and ketone bodies in the immature brain to a nearly total reliance on glucose in the adult. The delivery of glucose, lactate, and ketone bodies from the blood to the brain requires specific transporter proteins, glucose and monocarboxylic acid transporter proteins (GLUTs and MCTs), respectively. Developmental expression of the GLUTs in rat brain, i.e., 55-kDa GLUT1 in the blood-brain barrier (BBB), 45-kDa GLUT1 and GLUT3 in vascular-free brain, corresponds to maturational increases in cerebral glucose uptake and utilization. It has been suggested that MCT expression peaks during suckling and sharply declines thereafter, although a comparable detailed study has not been done. This study investigated the temporal and regional expression of MCT1 and MCT2 mRNA and protein in the BBB and the nonvascular brain during postnatal development in the rat. The results confirmed maximal MCT1 mRNA and protein expression in the BBB during suckling and a decline with maturation, coincident with the switch to glucose as the predominant cerebral fuel. However, nonvascular MCT1 and MCT2 levels do not reflect changes in cerebral energy metabolism, suggesting a more complex regulation. Although MCT1 assumes a predominantly glial expression in postweanling brain, the concentration remains fairly constant, as does that of MCT2 in neurons. The maintenance of nonvascular MCT levels in the adult brain implies a major role for these proteins, in concert with the GLUTs in both neurons and astrocytes, to transfer glycolytic intermediates during cerebral energy metabolism.  相似文献   

4.
Li JG  Chen C  Liu-Chen LY 《Biochemistry》2007,46(38):10960-10970
We examined glycosylation of FLAG-hKOR expressed in CHO cells and determined its functional significance. FLAG-hKOR was resolved as a broad and diffuse 55-kDa band and a less diffuse 45-kDa band by immunoblotting, indicating that the receptor is glycosylated. Endoglycosidase H cleaved the 45-kDa band to approximately 38 kDa but did not change the 55-kDa band, demonstrating that the 45-kDa band is N-glycosylated with high-mannose or hybrid-type glycan. Peptide-N-glycosidase F digestion of solubilized hKOR or incubation of cells with tunicamycin resulted in two species of 43 and 38 kDa, suggesting that the 43-kDa band is O-glycosylated. FLAG-hKOR was reduced to lower Mr bands by neuraminidase and O-glycosidase, indicating that the hKOR contains O-linked glycan. Mutation of Asn25 or Asn39 to Gln in the N-terminal domain reduced the Mr by approximately 5 kDa, indicating that both residues were glycosylated. The double mutant hKOR-N25/39Q was resolved as a 43-kDa (mature form) and a 38-kDa (intermediate form) band. When transiently expressed, hKOR-N25/39Q had a lower expression level than the wild type. In CHO cells stably expressing the hKOR-N25/39Q, pulse-chase experiments revealed that the turnover rate constants (ke) of the intermediate and mature forms were approximately 3 times those of the wild type. In addition, the maturation rate constant (ka) of the 43-kDa form of hKOR-N25/39Q was 6 times that of the mature form of the wild type. The hKOR-N25/39Q mutant showed increased agonist-induced receptor phosphorylation, desensitization, internalization, and downregulation, without changing ligand binding affinity or receptor-G protein coupling. Thus, N-glycosylation of the hKOR plays important roles in stability and trafficking along the biosynthesis pathway of the receptor protein as well as agonist-induced receptor regulation.  相似文献   

5.
Initially we established that the binding of collagen to human blood platelets stimulates both the rapid loss of PIP2 and the generation of inositol-4,5-bisphosphate (IP2) and inositol-1,4,5-triphosphate (IP3). These results indicate that the binding of collagen stimulates inositol phospholipid-specific phospholipase C during platelet activation. The fact that GTP or GTP-gamma-S augments, and pertussis toxin inhibits, collagen-induced IP3 formation suggests that a GTP-binding protein (or (or proteins) may be directly involved in the regulation of phospholipase C-mediated phosphoinositide turnover in human platelets. We have used several complementary techniques to isolate and characterize a platelet 41-kDa polypeptide (or polypeptides) that has a number of structural and functional similarities to the regulatory alpha i subunit of the GTP-binding proteins isolated from bovine brain. This 41-kDa polypeptide (or polypeptides) is found to be closely associated with at least four membrane glycoproteins (e.g., gp180, gp110, gp95, and gp75) in a 330-kDa complex that can be dissociated by treatment with high salt plus urea. Most important, we have demonstrated that antilymphoma 41-kDa (alpha i subunit of GTP-binding proteins) antibody cross-reacts with the platelet 41-kDa protein (or proteins) and the alpha i subunit of bovine brain Gi alpha proteins, and blocks GTP/collagen-induced IP3 formation. These data provide strong evidence that the 41-kDa platelet GTP-binding protein (or proteins) is directly involved in collagen-induced signal transduction during platelet activation.  相似文献   

6.

Objective

Blood brain barrier (BBB) breakdown and increased endothelial permeability is a hallmark of neuro-vascular inflammation. Angiopoietin-1 (Ang-1), a Tie-2 receptor agonist ligand, is known to modulate barrier function of endothelial cells; however the molecular mechanisms related to Ang-1 mediated repair of Tight Junctions (TJs) in brain endothelium still remain elusive. In this study, we investigated a novel role of non-receptor protein tyrosine phosphatase N-2 (PTPN-2) in Ang-1 mediated stabilization of tight junction proteins.

Method and Result

To study the barrier protective mechanism of Ang-1, we challenged human brain microvascular endothelial cells in-vitro, with a potent inflammatory mediator thrombin. By using confocal microscopy and transwell permeability assay, we show that pretreatment of brain endothelial cells with Ang-1 diminish thrombin mediated disruption of TJs and increase in endothelial permeability. We also found that Ang-1 inhibits thrombin induced tyrosine phosphorylation of Occludin and promote Occludin interaction with Zona Occludens-1 (ZO-1) to stabilize TJs. Interestingly, our study revealed that depletion of PTPN-2 by siRNAs abolishes Ang-1 ability to promote tyrosine dephosphorylation of Occludin, resulting Occludin disassociation from ZO-1 and endothelial hyperpermeability.

Summary

Collectively, our findings suggest that in brain endothelial cells blocking PTPN-2 mediated tyrosine phosphorylation of Occludin is a novel mechanism to maintain BBB function, and may offer a key therapeutic strategy for neuro-inflammatory disorders associated with BBB disruption.  相似文献   

7.
8.
The occurrence of calreticulin, the main Ca2+ binding protein in the endoplasmic reticulum of eukaryotic cells, was investigated in the unicellular green alga Chlamydomonas reinhardtii Dangeard. The biochemical characterization of a diethylaminoethyl purified extract highlighted the presence, on SDS-PAGE, of a 55-kDa protein that stained blue with the Stains All dye, a diagnostic feature of acidic Ca2+ binding proteins. Immunoblot analyses revealed a strong cross-reaction of the Chlamydomonas reinhardtii protein with antibodies to plant calreticulins and the endoplasmic reticulum retention signal HDEL. Furthermore, the 55-kDa protein bound [45Ca2+] and had an acidic isoelectric point (pI = 4.9) but was neither glycosylated nor phosphorylated. N-terminal sequencing revealed strong amino acid sequence similarity to calreticulin from other sources. The presence of calreticulin in Chlamydomonas reinhardtii suggested that an endoplasmic reticulum Ca2+ buffering mechanism was present in this unicellular chlorophyte. The data suggest an early origin and high conservation of endoplasmic-reticulum-mediated Ca2+ functions in eukaryotes, whereby specific posttranslational modifications of the proteinhave been specifically acquired in different lineages of photosynthetic eukaryotes. Moreover, northern and western blot analysis experiments showed a regulation of calreticulin expression during Chlamydomonas sexual reproduction with a high abundance of calreticulin mRNA and protein in reproductive cells.  相似文献   

9.
Several cell-mediated activities for the amino terminus of fibronectin have been documented. In the present study we describe a macrophage surface protein with binding activity directed to the amino terminus of the fibronectin molecule. The binding of a 29-kDa amino-terminal fibronectin fragment to macrophages reached steady state by 30 min and was half-maximal at approximately 2 x 10(-8) M. This binding was specifically inhibited by excess unlabeled 29-kDa fragment or intact fibronectin but not by a 180-kDa fibronectin fragment which lacks the amino terminus. Competitive binding studies of the 70-kDa amino-terminal fibronectin fragment to macrophages revealed a single binding site with KD = 7.14 x 10(-8) M and approximately 8 x 10(4) binding sites/cell. Radiolabeled surface proteins extracted from rat peritoneal macrophages and from the human U937 cell line were applied to an affinity column comprised of the 70-kDa amino-terminal fragment of fibronectin coupled to a solid support. A single trypsin-sensitive radiolabeled protein of 67 kDa, from either cell type, was eluted from this column with urea. This protein showed no immunologic identity with fibronectin, fibrin(ogen), or albumin. The 67-kDa protein exhibited identical apparent molecular weight under reducing and nonreducing conditions, as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. We have localized the fibronectin binding activity of this protein to within the 29-kDa amino-terminal domain of fibronectin. The 67-kDa protein eluted from the 70-kDa column failed to bind to a column comprised of the 45-kDa gelatin-binding fragment of fibronectin. Additionally, the 67-kDa protein was specifically eluted from the 70-kDa column by the 29-kDa amino-terminal fragment but not by the 45-kDa gelatin-binding fragment. These data suggest that this 67-kDa protein is a macrophage cell surface binding protein for the amino terminus of fibronectin.  相似文献   

10.
In mammalian systems, pregnane X receptor (PXR) and constitutive androstane receptor (CAR) have been recognized as xenobiotic-sensors which can up-regulate the functional expression of drug transporters, such as P-glycoprotein (P-gp). In the brain, an increase in P-gp expression can further limit drug permeability across the blood-brain barrier (BBB) and potentially reduce CNS pharmacotherapy efficacy. At present, the involvement of human PXR (hPXR) and CAR (hCAR) in the regulation of P-gp expression at the human BBB is unknown. In this study, we investigate the role of hPXR and hCAR in the regulation of P-gp expression using a human cerebral microvessel endothelial cell culture system. We demonstrate that activation of hPXR and hCAR by their respective ligands leads to P-gp induction at both mRNA and protein levels, while pharmacological inhibitors of hPXR and hCAR prevent ligand-mediated P-gp induction. Ligand-induced nuclear translocation of hPXR is observed, although such effect could not be demonstrated for hCAR. Furthermore, down-regulation of hPXR and hCAR proteins using small-interfering RNA decreased P-gp expression. Our findings provide first evidence for P-gp regulation by hPXR and hCAR at the human BBB and suggest insights on how to achieve selective P-gp regulation at this site.  相似文献   

11.
Lu49888, a photoaffinity analog of verapamil, was used to identify specific binding sites for phenylalkylamines of calcium channels present in rabbit skeletal muscle microsomes. Direct binding equilibrium measurements and displacement curves of Lu49888 by its non-radioactive analog yielded an apparent single class of binding sites with Kd and Bmax values of 16.5 nM and 7.5 pmol/mg respectively. Lu49888 was specifically incorporated into three proteins of apparently 165 kDa, and 33 kDa. Incorporation into the 55-kDa protein was blocked by 10--50-fold higher concentrations of unlabeled phenylalkylamines compared to incorporation into the 165-kDa protein, suggesting that the 165-kDa and 55-kDa proteins contain a high and a low-affinity verapamil-binding site respectively. The photoaffinity-labeled proteins were solubilized by 1% digitonin or 1% Chaps in roughly equal amounts. The 165-kDa protein bound to wheat-germ-agglutinin(WGA)--Sepharose and sedimented in sucrose density gradients with the same constant as the purified dihydropyridine receptor, which has been reconstituted to a functional calcium channel. The 55-kDa membrane protein did not bind to the WGA-Sepharose column and sedimented in sucrose density gradients with a lower s value than the 165-kDa protein. The 165-kDa but not the 55-kDa membrane protein was specifically labeled by azidopine, the photoaffinity analogue of dihydropyridines. The 55-kDa protein of the purified dihydropyridine receptor was not significantly labeled by Lu49888 showing that the 55-kDa protein of the membrane is unrelated to the purified high-affinity dihydropyridine receptor.  相似文献   

12.
This review aims to elucidate the different mechanisms of blood brain barrier (BBB) disruption that may occur due to invasion by different types of bacteria, as well as to show the bacteria–host interactions that assist the bacterial pathogen in invading the brain. For example, platelet-activating factor receptor (PAFR) is responsible for brain invasion during the adhesion of pneumococci to brain endothelial cells, which might lead to brain invasion. Additionally, the major adhesin of the pneumococcal pilus-1, RrgA is able to bind the BBB endothelial receptors: polymeric immunoglobulin receptor (pIgR) and platelet endothelial cell adhesion molecule (PECAM-1), thus leading to invasion of the brain. Moreover, Streptococcus pneumoniae choline binding protein A (CbpA) targets the common carboxy-terminal domain of the laminin receptor (LR) establishing initial contact with brain endothelium that might result in BBB invasion. Furthermore, BBB disruption may occur by S. pneumoniae penetration through increasing in pro-inflammatory markers and endothelial permeability. In contrast, adhesion, invasion, and translocation through or between endothelial cells can be done by S. pneumoniae without any disruption to the vascular endothelium, upon BBB penetration. Internalins (InlA and InlB) of Listeria monocytogenes interact with its cellular receptors E-cadherin and mesenchymal-epithelial transition (MET) to facilitate invading the brain. L. monocytogenes species activate NF-κB in endothelial cells, encouraging the expression of P- and E-selectin, intercellular adhesion molecule 1 (ICAM-1), and Vascular cell adhesion protein 1 (VCAM-1), as well as IL-6 and IL-8 and monocyte chemoattractant protein-1 (MCP-1), all these markers assist in BBB disruption. Bacillus anthracis species interrupt both adherens junctions (AJs) and tight junctions (TJs), leading to BBB disruption. Brain microvascular endothelial cells (BMECs) permeability and BBB disruption are induced via interendothelial junction proteins reduction as well as up-regulation of IL-1α, IL-1β, IL-6, TNF-α, MCP-1, macrophage inflammatory proteins-1 alpha (MIP1α) markers in Staphylococcus aureus species. Streptococcus agalactiae or Group B Streptococcus toxins (GBS) enhance IL-8 and ICAM-1 as well as nitric oxide (NO) production from endothelial cells via the expression of inducible nitric oxide synthase (iNOS) enhancement, resulting in BBB disruption. While Gram-negative bacteria, Haemophilus influenza OmpP2 is able to target the common carboxy-terminal domain of LR to start initial interaction with brain endothelium, then invade the brain. H. influenza type b (HiB), can induce BBB permeability through TJ disruption. LR and PAFR binding sites have been recognized as common routes of CNS entrance by Neisseria meningitidis. N. meningitidis species also initiate binding to BMECs and induces AJs deformation, as well as inducing specific cleavage of the TJ component occludin through the release of host MMP-8. Escherichia coli bind to BMECs through LR, resulting in IL-6 and IL-8 release and iNOS production, as well as resulting in disassembly of TJs between endothelial cells, facilitating BBB disruption. Therefore, obtaining knowledge of BBB disruption by different types of bacterial species will provide a picture of how the bacteria enter the central nervous system (CNS) which might support the discovery of therapeutic strategies for each bacteria to control and manage infection.  相似文献   

13.
Since most in vitro studies exploring the action of Clostridium perfringens enterotoxin (CPE) utilize either Vero or CaCo-2 cells, the current study directly compared the CPE responsiveness of those two cell lines. When CPE-treated in suspension, both CaCo-2 and Vero cells formed SDS-resistant, CPE-containing complexes of approximately 135, approximately 155, and approximately 200 kDa. However, confluent Transwell cultures of either cell line CPE-treated for 20 min formed only the approximately 155-kDa complex. Since those Transwell cultures also exhibited significant (86)Rb release, approximately 155-kDa complex formation is sufficient for CPE-induced cytotoxicity. Several differences in CPE responsiveness between the two cell lines were also detected. (i) CaCo-2 cells were more sensitive when CPE-treated on their basal surface, whereas Vero cells were more sensitive when CPE-treated on their apical surface; those sensitivity differences correlated with CPE binding the apical versus basolateral surfaces of these two cell lines. (ii) CPE-treated Vero cells released (86)Rb into both Transwell chambers, whereas CaCo-2 cells released (86)Rb only into the CPE-containing Transwell chamber. (iii) Vero cells express the tight junction (TJ) protein occludin but (unlike CaCo-2 cells) cannot form TJs. The ability of TJs to affect CPE responsiveness is supported by the similar effects of CPE on Transwell cultures of CaCo-2 cells and Madin-Darby canine kidney cells, another polarized cell forming TJs. Confluent CaCo-2 Transwell cultures CPE-treated for >1 h formed the approximately 200-kDa CPE complex (which also contains occludin), exhibited morphologic damage, and had occludin removed from their TJs. Collectively, these results identify CPE as a bifunctional toxin that, in confluent polarized cells, first exerts a cytotoxic effect mediated by the approximately 155-kDa complex. Resultant damage then provides CPE access to TJs, leading to approximately 200-kDa complex formation, internalization of some TJ proteins, and TJ damage that may increase paracellular permeability and thereby contribute to the diarrhea of CPE-induced gastrointestinal disease.  相似文献   

14.
A radiolabeled N-(3-aminopropyl)-leukotriene B4 amide ([3H]LTB4-APA) analog of the potent leukocyte chemotactic factor leukotriene B4 (LTB4) binds to receptors for LTB4 in plasma membrane-enriched preparations from human blood polymorphonuclear leukocytes (PMNL) and intact PMNL with respective mean dissociation constants of 2.3 nM and 69 nM at 4 degrees C. The [3H]LTB4-APA bound to plasma membrane-enriched preparations from PMNL was covalently cross-linked to membrane proteins with disuccinimidyl suberate. Solubilization and resolution by SDS-PAGE of proteins from [3H]LTB4-APA-labeled PMNL membranes revealed predominant labeling of a 60-kDa protein. Labeling of the PMNL membrane protein was inhibited by LTB4 and its analogs at concentrations similar to those inhibiting the binding of [3H]LTB4 to its receptor, with an identical rank order of potency of LTB4 greater than 20-hydroxy-LTB4 greater than LTB4-APA = 5(S),12(R)-dihydroxy-eicosa-14-cis-6,8,10-trans-tetraenoic acid much greater than LTD4 = LTC4. GTP suppressed the labeling of the 60-kDa PMNL membrane protein to an extent consistent with the decrease in receptor affinity for LTB4 induced by GTP. The stereospecificity of the affinity cross-linking reaction and the regulation by GTP support the identification of an approximately 60-kDa protein as the binding component of the PMNL receptor for LTB4.  相似文献   

15.
In the present paper, we report the isolation and characterization of embryonic corneal membrane glycoproteins that demonstrate specific affinity for collagen. Two collagen binding proteins have been isolated: a novel 70-kDa protein and a 47-kDa protein which is apparently similar to that reported by Kurkinen et al. (Kurkinen, M., Taylor, A., Garrels, J. I., and Hogan, B. (1984) J. Biol. Chem. 259, 5915-5922). Both proteins label metabolically with [35S]methionine and [3H] glucosamine. 125I iodination of cell surface proteins revealed that the two collagen binding proteins are expressed on the epithelial cell surface. The 70-kDa protein appears to be an integral membrane protein, whereas the 47-kDa protein can be removed from membranes by alkali treatment. The isolated proteins exhibit binding to native type IV collagen as well as heat-denatured type I collagen. It seems likely that we have isolated, at least in part, the cell surface receptor or receptor complex that binds collagen to the basal surface of epithelia.  相似文献   

16.
Cerebral microvessel endothelial cells that form the blood-brain barrier (BBB) have tight junctions (TJs) that are critical for maintaining brain homeostasis. The effects of initial reoxygenation after a hypoxic insult (H/R) on functional and molecular properties of the BBB and TJs remain unclear. In situ brain perfusion and Western blot analyses were performed to assess in vivo BBB integrity on reoxygenation after a hypoxic insult of 6% O2 for 1 h. Model conditions [blood pressure, blood gas chemistries, cerebral blood flow (CBF), and brain ATP concentration] were also assessed to ensure consistent levels and criteria for insult. In situ brain perfusion revealed that initial reoxygenation (10 min) significantly increased the uptake of [14C]sucrose into brain parenchyma. Capillary depletion and CBF analyses indicated the perturbations were due to increased paracellular permeability rather than vascular volume changes. Hypoxia with reoxygenation (10 min) produced an increase in BBB permeability with associated alterations in tight junctional protein expression. These results suggest that H/R leads to reorganization of TJs and increased paracellular diffusion at the BBB, which is not a result of increased CBF, vascular volume change, or endothelial uptake of marker. Additionally, the tight junctional protein occludin had a shift in bands that correlated with functional changes (i.e., increased permeability) without significant change in expression of claudin-3, zonula occludens-1, or actin. H/R-induced changes in the BBB may result in edema and/or associated pathological outcomes.  相似文献   

17.
The CD66 Ag is a neutrophil-specific "activation Ag" in that it is detected in low density on resting cells but its surface expression is up-regulated by stimulation (with the chemotactic peptide FMLP, the calcium ionophore A23187, and 12-O-tetradeconoyl-phorbol-13-acetate). Phosphorylation is an important mechanism of regulation of protein function. Although most studies of protein phosphorylation have focused on intracellular reactions, recent studies have provided evidence for the existence of ectoprotein kinase activity on the surface of several types of cells including human neutrophils. The role of ectoprotein kinase activity in cell function is unknown and little is known about the endogenous substrates of this enzyme system. The identification and characterization of physiologic substrates of ectoprotein kinase activity should aid the understanding of the role of this enzyme activity in cell function. Immunoprecipitation and subsequent gel electrophoresis of proteins from neutrophils labeled with [gamma-32P]ATP revealed that CD66 mAb specifically recognize a approximately 180-kDa phosphoprotein on the surface of human neutrophils. This protein was one of the major endogenous substrates for human neutrophil ectoprotein kinase activity. Phosphoamino acid analysis of the 180-kDa protein revealed that it contained predominantly phosphotyrosine. Preclearing studies demonstrated that this protein was also recognized by CD15 mAb, and by polyclonal anticarcinoembryonic Ag antiserum. In addition, the CD66 mAb reacted with purified carcinoembryonic Ag, biliary glycoprotein, and "nonspecific cross-reacting Ag." Thus, the neutrophil protein recognized by CD66 mAb appears to be a approximately 180-kDa form of the classical "nonspecific cross-reacting Ag" on human neutrophils.  相似文献   

18.
Recombinant human single-chain urokinase (rscu-PA), two-chain urokinase (tcu-PA), and diisopropyl-fluorophosphate-treated tcu-PA (DFP-tcu-PA) bound to cultured human and porcine endothelial cells in a rapid, saturable, dose-dependent and reversible manner. Analysis of specific binding results in cultured human umbilical vein endothelial cells (HUVECs) gave the following estimated values for Kd and Bmax: 0.57 +/- 0.08 nM (mean +/- S.E.) and 188,000 +/- 18,000 sites/cell for 125I-labeled rscu-PA; 0.54 +/- 0.10 nM and 132,000 +/- 23,900 sites/cells for 125I-labeled tcu-PA; 0.89 +/- 0.14 nM and 143,000 +/- 30,300 sites/cell for 125I-labeled DFP-tcu-PA, respectively. Values for Kd were similar for primary and subcultured (six passages) HUVECs, but Bmax values were lower in subcultured HUVECs. Similar Kd values were found in cultured porcine endothelial cells; however, Bmax values varied depending on the endothelial cell type. All 125I-labeled urokinase forms yielded similar cross-linked approximately 110-kDa ligand-receptor complexes with cultured HUVECs, and 125I-labeled DFP-tcu-PA bound to a single major approximately 55-kDa protein in whole-cell lysates (ligand blotting/autoradiography), suggesting the presence of a single major approximately 55-kDa urokinase receptor in cultured HUVECs. The approximately 55-kDa urokinase receptor, isolated from several separate batches of cultured HUVECs (3-5 micrograms of protein, approximately 1 x 10(9) cells), by ligand affinity chromatography, exhibited the following properties: retained biologic activity as evidenced by its ability to bind 125I-labeled rscu-PA by ligand blotting/autoradiography and formation of a cross-linked 125I-labeled approximately 110-kDa rscu-PA-receptor complex; single-chain approximately 55-kDa protein, following reduction; complete conversion to and formation of a single major deglycosylated approximately 35-kDa protein, following treatment with N-glycanase.  相似文献   

19.
In the central nervous system (CNS) complex endothelial tight junctions (TJs) form a restrictive paracellular diffusion barrier, the blood-brain barrier (BBB). Pathogenic changes within the CNS are frequently accompanied by the loss of BBB properties, resulting in brain edema. In order to investigate whether BBB leakiness can be monitored by a loss of TJ proteins from cellular borders, we used an in vitro BBB model where brain endothelial cells in co-culture with astrocytes form a tight permeability barrier for 3H-inulin and 14C-sucrose. Removal of astrocytes from the co-culture resulted in an increased permeability to small tracers across the brain endothelial cell monolayer and an opening of the TJs to horseradish peroxidase as detected by electron microscopy. Strikingly, opening of the endothelial TJs was not accompanied by any visible change in the molecular composition of endothelial TJs as junctional localization of the TJ-associated proteins claudin-3, claudin-5, occludin, ZO-1 or ZO-2 or the adherens junction-associated proteins -catenin or p120cas did not change. Thus, opening of BBB TJs is not readily accompanied by the complete loss of the junctional localization of TJ proteins.This work is dedicated to the memory of Werner Risau (died 13.12.1998), who initiated this collaboration  相似文献   

20.
The human melanoma growth-stimulatory activities (MGSA alpha, beta, gamma/GRO) are products of immediate early genes coding for cytokines that exhibit sequence similarity to platelet factor-4 and beta-thromboglobulin. MGSA/GRO alpha has been demonstrated to partially complete for binding to the approximately 58-kDa neutrophil receptor for another beta-thromboglobulin-related chemotactic protein, IL-8. We demonstrate that when [125I]MGSA/GRO alpha was cross-linked to receptors/binding proteins from human placenta, there were two major [125I]MGSA cross-linked bands of approximately 64,000 and approximately 84,000 Mr. Because [125I]MGSA exists primarily in monomer and dimer forms at the concentrations used here, it is not clear whether the receptor/binding proteins represented by the cross-linked bands are approximately 50,000 and approximately 70,000 or approximately 58,000 and approximately 78,000 Mr. Ligand binding to the receptor proteins is associated with enhanced tyrosine phosphorylation of a number of substrates, including proteins in the same Mr range as the MGSA/GRO receptor/binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号