首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The sequences of nine different cytokines, growth hormone, and prolactin have been aligned and their secondary structure predicted. The alignment reveals that each exon has a characteristic sequence pattern shared by all cytokines. The most striking sequence similarity is observed in exon 4, where the residue pair Phe-Leu is conserved in many cytokines. In addition, there are discreet homologous regions between two specific growth factors, including a high degree of homology between granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 3 (IL-3). The secondary structure analysis predicts that exon 3 of all cytokines has an antiparallel helix-turn-helix motif, which is likely to form the central helical segments of a four -helical bundle-type structure. Based on the secondary structure and the disulfidebonding pattern, the topological connectivity for a number of cytokines has been predicted.  相似文献   

2.
The "ribose zipper", an important element of RNA tertiary structure, is characterized by consecutive hydrogen-bonding interactions between ribose 2'-hydroxyls from different regions of an RNA chain or between RNA chains. These tertiary contacts have previously been observed to also involve base-backbone and base-base interactions (A-minor type). We searched for ribose zipper tertiary interactions in the crystal structures of the large ribosomal subunit RNAs of Haloarcula marismortui and Deinococcus radiodurans, and the small ribosomal subunit RNA of Thermus thermophilus and identified a total of 97 ribose zippers. Of these, 20 were found in T. thermophilus 16 S rRNA, 44 in H. marismortui 23 S rRNA (plus 2 bridging 5 S and 23 S rRNAs) and 30 in D. radiodurans 23 S rRNA (plus 1 bridging 5 S and 23 S rRNAs). These were analyzed in terms of sequence conservation, structural conservation and stability, location in secondary structure, and phylogenetic conservation. Eleven types of ribose zippers were defined based on ribose-base interactions. Of these 11, seven were observed in the ribosomal RNAs. The most common of these is the canonical ribose zipper, originally observed in the P4-P6 group I intron fragment. All ribose zippers were formed by antiparallel chain interactions and only a single example extended beyond two residues, forming an overlapping ribose zipper of three consecutive residues near the small subunit A-site. Almost all ribose zippers link stem (Watson-Crick duplex) or stem-like (base-paired), with loop (external, internal, or junction) chain segments. About two-thirds of the observed ribose zippers interact with ribosomal proteins. Most of these ribosomal proteins bridge the ribose zipper chain segments with basic amino acid residues hydrogen bonding to the RNA backbone. Proteins involved in crucial ribosome function and in early stages of ribosomal assembly also stabilize ribose zipper interactions. All ribose zippers show strong sequence conservation both within these three ribosomal RNA structures and in a large database of aligned prokaryotic sequences. The physical basis of the sequence conservation is stacked base triples formed between consecutive base-pairs on the stem or stem-like segment with bases (often adenines) from the loop-side segment. These triples have previously been characterized as Type I and Type II A-minor motifs and are stabilized by base-base and base-ribose hydrogen bonds. The sequence and structure conservation of ribose zippers can be directly used in tertiary structure prediction and may have applications in molecular modeling and design.  相似文献   

3.
4.
Self-incompatibility (SI) is a mechanism for preventing self-fertilization in flowering plants. In Brassica, it is controlled by a single multi-allelic locus, S, and it is believed that two highly polymorphic genes in the S locus, SLG and SRK, play central roles in self-recognition in stigmas. SRK is a putative receptor protein kinase, whose extracellular domain exhibits high similarity to SLG. We analyzed two pairs of lines showing cross-incompatibility (S(2) and S(2-b); S(13) and S(13-b)). In S(2) and S(2-b), SRKs were more highly conserved than SLGs. This was also the case with S(13) and S(13-b). This suggests that the SRKs of different lines must be conserved for the lines to have the same self-recognition specificity. In particular, SLG(2-b) showed only 88. 5% identity to SLG(2), which is comparable to that between the SLGs of different S haplotypes, while SRK(2-b) showed 97.3% identity to SRK(2) in the S domain. These findings suggest that the SLGs in these S haplotypes are not important for self-recognition in SI.  相似文献   

5.
Sequence variation and genetic diversity in the giant panda   总被引:3,自引:0,他引:3  
About 336–444 bp mitochondrial D-loop region and tRNA gene were sequenced for 40 individuals of the giant panda which were collected from Mabian, Meigu, Yuexi, Baoxing, Pingwu, Qingchuan, Nanping and Baishuijiang, respectively. 9 haplotypes were found in 21 founders. The results showed that the giant panda has low genetic variations, and that there is no notable genetic isolation among geographical populations. The ancestor of the living giant panda population perhaps appeared in the late Pleistocene, and unfortunately, might have suffered bottleneck attacks. Afterwards, its genetic diversity seemed to recover to some extent. Project supported by the “8.5” Key Project of Chinese Academy of Sciences, the Chairman Foundation of Chinese Academy of Sciences, K. C. Wang Education Foundation, the Applied Basic Research Foundation of Yunnan, the National Natural Science Foundation of China, the Special Foundation for Returned Chinese Scientists, and Zoological Society of San Diego.  相似文献   

6.
Mannose, an abundant cell surface monosaccharide binds to a diverse set of receptors, which are involved in a variety of important cellular processes. Structural analysis has been carried out on all the proteins containing non-covalently bound mannose as a monosaccharide in the Protein Data Bank, to identify common recognition principles. Proteins, highly specific to mannose, belonging to the super family of bulb lectins, are found to contain a consensus sequence motif QXDXNXVXY, which has been identified to be essential for mannose binding. Analysis of this motif in the crystal structures of bulb lectins has led to the understanding of the contribution of individual residues in mannose recognition. Comparison with other mannose binding proteins, reveals common hydrogen bonding patterns in all of them, despite differences in sequence, overall fold and the substructures at the binding sites of individual proteins. A database analysis also suggests that although the topology of the backbone, as at the binding site in bulb lectins, can generate mannose binding capability in a few other proteins, sequence and disposition of not only the residues in the motif, but also the residues in the neighborhood play a crucial role in allowing that property to be retained.  相似文献   

7.
Sequence diversity of Mhc genes in lake whitefish   总被引:1,自引:0,他引:1  
The sequence variation of three exons of the major histocompatibility complex ( Mhc ) was examined in a lake whitefish Coregonus sp., population from the Swiss lake of Hallwil. DNA sequences from the Mhc class I A1 , A2 and class II B1 exons, corresponding to the α1, α2 and β1 domains of the Mhc glycoproteins, were obtained by the polymerase chain reaction followed by cloning and sequencing. The numbers of variable sequences detected for each exon were 15 ( A1 ), 11 ( A2 ) and 20 ( B1 ). Levels of nucleotide similarity ranged from 82 to 99% for the A1 exon, 58–96% for the A2 and 88–99% for the B1 exon. At the A1 and B1 exons, the nonsynonymous substitution rates ( dn ) exceeded synonymous substitution rates ( ds ) greatly within the peptide binding regions, indicating the effect of balancing selection. Sequence diversity at the A2 exon did not seem to be maintained by balancing selection ( ds > dn ). Phylogenetic comparison of whitefish Mhc sequences with sequences from other salmonid species and more distantly related teleosts indicated shared ancestral (trans-species) polymorphism.  相似文献   

8.
Sequence specificity in spermine-induced structural changes in CG-oligomers   总被引:1,自引:0,他引:1  
The role of spermine in inducing A-DNA conformation in deoxyoligonucleotides has been studied using CCGG and GGCC as model sequences. It has been found that while CCGG adopts an alternating B-DNA conformation in low salt solution at low temperature, addition of spermine to this medium induces a B --greater than A transition. In contrast, the A-DNA-like structure of GGCC in low salt solution at low temperature does not change under the influence of spermine. This suggests a sequence-dependent behaviour of spermine. Further these results suggest that the A-DNA conformation observed in the crystals of d(iCCGG) and d(GGCC)2 might have been due to the presence of spermine in the crystallization cocktail.  相似文献   

9.
10.
Liti G  Barton DB  Louis EJ 《Genetics》2006,174(2):839-850
Using the biological species definition, yeasts of the genus Saccharomyces sensu stricto comprise six species and one natural hybrid. Previous work has shown that reproductive isolation between the species is due primarily to sequence divergence acted upon by the mismatch repair system and not due to major gene differences or chromosomal rearrangements. Sequence divergence through mismatch repair has also been shown to cause partial reproductive isolation among populations within a species. We have surveyed sequence variation in populations of Saccharomyces sensu stricto yeasts and measured meiotic sterility in hybrids. This allows us to determine the divergence necessary to produce the reproductive isolation seen among species. Rather than a sharp transition from fertility to sterility, which may have been expected, we find a smooth monotonic relationship between diversity and reproductive isolation, even as far as the well-accepted designations of S. paradoxus and S. cerevisiae as distinct species. Furthermore, we show that one species of Saccharomyces--S. cariocanus--differs from a population of S. paradoxus by four translocations, but not by sequence. There is molecular evidence of recent introgression from S. cerevisiae into the European population of S. paradoxus, supporting the idea that in nature the boundary between these species is fuzzy.  相似文献   

11.
12.
A major pharmaceutical problem is designing diverse and selective lead compounds. The human genome sequence provides opportunities to discover compounds that are protein selective if we can develop methods to identify specificity determinants from sequence alone. We have analyzed sequence and structural diversity of sheep COX-1 and mouse COX-2 proteins by Active Site Profiling (ASP). Eleven residues that should serve as specificity determinants between COX-1 and COX-2 were identified; however, the literature suggests that only one has been utilized in structure-based discovery. ASP was used to create a position-specific scoring matrix, which was used to identify possible cross-reacting proteins from the human sequences. This method proved selective for cyclooxygenases, comparing well with results using BLAST. The methods identify a probable misannotation of a cyclooxygenase in which there is high sequence similarity scores using BLAST, but ASP shows it does not contain the residues necessary for cyclooxygenase function. ASP Analysis of human COX proteins suggests that some specificity determinants that distinguish COX-1 and COX-2 proteins are similar between sheep COX-1/mouse COX-2 and human COX-1/COX2; however, residue identities at those positions are not necessarily conserved. Our results lay groundwork for development of family-specific pattern recognition methods to selectively match compounds with proteins.  相似文献   

13.
Biochemical activity and core stability are essential properties of proteins, maintained usually by conserved amino acids. Structural dynamics emerged in recent years as another essential aspect of protein functionality. Structural dynamics enable the adaptation of the protein to binding substrates and to undergo allosteric transitions, while maintaining the native fold. Key residues that mediate structural dynamics would thus be expected to be conserved or exhibit coevolutionary patterns at least. Yet, the correlation between sequence evolution and structural dynamics is yet to be established. With recent advances in efficient characterization of structural dynamics, we are now in a position to perform a systematic analysis. In the present study, a set of 34 enzymes representing various folds and functional classes is analyzed using information theory and elastic network models. Our analysis shows that the structural regions distinguished by their coevolution propensity as well as high mobility are predisposed to serve as substrate recognition sites, whereas residues acting as global hinges during collective dynamics are often supported by conserved residues. We propose a mobility scale for different types of amino acids, which tends to vary inversely with amino acid conservation. Our findings suggest the balance between physical adaptability (enabled by structure-encoded motions) and chemical specificity (conferred by correlated amino acid substitutions) underlies the selection of a relatively small set of versatile folds by proteins.  相似文献   

14.
15.
Sequence and diversity of the rat delta T-cell receptor   总被引:1,自引:1,他引:0  
Watson D  Ando T  Knight JF 《Immunogenetics》2000,51(8-9):714-722
The cDNA sequence of the delta T-cell receptor (TCRD) in the adult Lewis rat thymus was determined using the technique of rapid amplification of cDNA ends. Sixteen variable region genes (TCRDV), two diversity regions (TCRDD), two joining regions (TCRDJ), and a single constant region gene (TCRDC) were identified. The sixteen unique TCRDV genes identified represented eight different subfamilies in the rat and were highly conserved (>80% nucleotide identity) to corresponding mouse sequences. Extensive junctional diversity was observed in the rat, with both TCRDD regions (TCRDD1 and TCRDD2) utilized in the majority of cDNA clones identified. The two TCRDJ genes were highly conserved and corresponded to TCRDJ1 and TCRDJ2 in the mouse; the majority of clones utilized TCRDJ1. The TCRDC region in the rat was 91.1% identical to the mouse TCRDC gene and was highly conserved to other species. Although extensive sequence information about mouse gamma-delta T-cell receptor genes is available, current knowledge of rat gamma-delta T-cells is limited. The sequence analysis presented in this study adds to our understanding of gamma-delta T-cells in general, and it may be utilized to study the role of gamma-delta T-cells in immune-mediated disease and transplantation models previously established in the rat.  相似文献   

16.
To improve our understanding of the evolution of novel functions, we performed a sequence, structural, and functional analysis of homologous enzymes and nonenzymes of known three-dimensional structure. In most examples identified, the nonenzyme is derived from an ancestral catalytic precursor (as opposed to the reverse evolutionary scenario, nonenzyme to enzyme), and the active site pocket has been disrupted in some way, owing to the substitution of critical catalytic residues and/or steric interactions that impede substrate binding and catalysis. Pairwise sequence identity is typically insignificant, and almost one-half of the enzyme and nonenzyme pairs do not share any similarity in function. Heterooligomeric enzymes comprising homologous subunits in which one chain is catalytically inactive and enzyme polypeptides that contain internal catalytic and noncatalytic duplications of an ancient enzyme domain are also discussed.  相似文献   

17.
以3个类群73个二倍体蔷薇属(Rosa)植物为材料,克隆获得其FLOWERING LOCUS T(FT)同源基因,并对该基因的编码区序列进行多态性分析以及多维尺度(MDS)聚类分析。结果显示,73个二倍体蔷薇植物的FT基因共检测到215个核苷酸多态性位点,其中包括214个SNP和1个缺失突变,平均185个碱基发生1次突变;氨基酸多态性分析结果显示共有35个氨基酸发生变异,平均379.6个氨基酸残基发生1次突变;突变位点统计分析结果发现39、258、426 bp位点是高频突变位点,其碱基由A或C突变为T。MDS聚类分析结果表明,3个类群FT基因编码区序列的碱基组内差异依次排序为:野生种月季组中国古老月季,氨基酸组内差异依次排序为:中国古老月季月季组野生种,推测中国古老月季在长期栽培驯化过程中,其FT基因可能经历了较强的人工选择压力,月季组的种和变种可能是古老月季的重要亲本来源。  相似文献   

18.
Recently solved structures and proposed models have helped to reveal the structural characteristics of the beta-propeller fold, as well as the features that contribute to its high rigidity and stability. Possible strategies for identifying beta-propeller proteins in newly characterised sequences are helping to overcome the problems of predicting the beta-propeller fold from amino acid sequences.  相似文献   

19.
20.
Fish microsporidia: fine structural diversity and phylogeny   总被引:1,自引:0,他引:1  
Structural diversity of fish microsporidian life cycle stages and of the host-parasite interface is reviewed. In the infected cell of the fish host, microsporidia may either cause serious degradation of the cytoplasm and demise of the cell, or they may elicit host cell hypertrophy, producing a parasite-hypertrophic host cell complex, the xenoma. The structure of the xenoma and of its cell wall may differ according to the genus of the parasite, and seems to express properties of the parasite rather than those of the host. In merogony, the parasite cell surface interacts with the host cell in diverse ways, the most conspicuous being the production of thick envelopes of different types. Sporogony stages reveal different types of walls or membranes encasing the sporoblasts and later the spores and these envelopes may be of host or parasite origin. Nucleospora differs from all other fish microsporidia by its unique process of sporogony. Except for the formation of conspicuous xenomas, there are no essentially different structures in fish-infecting microsporidia compared with microsporidia from other hosts. Although the structures associated with the development of fish microsporidia cannot be attributed importance in tracing the phylogeny, they are relevant for practical determination and assessing the relation to the host. The possibility of the existence of an intermediate host is discussed. Higher-level classification of Microsporidia is briefly discussed and structure and evolutionary rates in microsporidian rDNA are reviewed. Discussion of rDNA molecular phylogeny of fish-infecting microsporidia is followed by classification of these parasites. Most form a rather cohesive clade. Outside this clade is the genus Nucleospora, separated at least at the level of Order. Within the main clade, however, there are six species infecting hosts other than fish. Based on data available for analysis, a tentative classification of fish-infecting microsporidia into five groups is proposed. Morphologically defined groups represent families, others are referred to as clades. Group 1, represented by family Pleistophoridae, includes Pleistophora, Ovipleistophora and Heterosporis; Vavraia and Trachipleistophora infect non-fish hosts. Group 2, represented by family Glugeidae, is restricted to genus Glugea and Tuzetia weidneri from crustaceans. Group 3 comprises three clades: Loma and a hyperparasitic microsporidian from a myxosporean; Ichthyosporidium and Pseudoloma clade and the Loma acerinae clade. For the latter species a new genus has to be established. Group 4 contains two families, Spragueidae with the genus Spraguea and Tetramicridae with genera Microgemma and Tetramicra, and the Kabatana and Microsporidium seriolae clade. Group 5 is represented by the family Enterocytozoonidae with the genus Nucleospora and mammal-infecting genus Enterocytozoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号