首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Our previous experiments on maize (Zea mays L.) plants regenerated from tissue culture revealed genetic activity characteristic of the transposable element Activator (Ac) in the progeny of 2–3% of the plants tested, despite the lack of Ac activity in the progenitor plants. The objective of the present study was to determine whether the presence of Ac activity in tissue-culture-derived plants was associated with changes in the number or structure of Ac-homologous DNA sequences. Families segregating for Ac activity were obtained by crossing plants heterozygous for Ac activity onto Ac-responsive tester plants. A DNA probe derived from a previously isolated Ac sequence was used to examine the Ac-homologous sequences within individual progeny seedlings of segregating families and noncultured control materials. All plants tested had six or more Ac-homologous DNA sequences, regardless of whether Ac activity was present. In the segregating progeny of one tissue-culturederived plant, a 30-kb Ac-homologous SstI restriction fragment and a 10-kb Ac-homologous BglII restriction fragment were found to cosegregate with Ac activity. We propose that these fragments contained a previously silent Ac sequence that had been activated during tissue culture. Although one or more Ac sequences were often hypomethylated at internal PvuII and HpaII sites in plants with Ac activity, hypomethylation was not a prerequisite for activity. Reduced methylation at these sites may have been a result rather than a cause of Ac activity.  相似文献   

2.
3.
4.
Summary The nucleotide sequence of the 1494 by wxB4 Ds element is presented. A comparison with previously characterized Ds elements reveals several novel features. This element has less Ac terminal sequence than other Ac-like Ds elements. The left terminus contains 398 by of Ac sequence interrupted by a transposon-like DNA insertion, leaving only 317 by of contiguous Ac sequence. The right terminus has 259 by of Ac terminal sequence. The interior of the element contains sequences not found in other cloned members of the Ac/Ds family. We suggest that the role of this non-Ac DNA is to separate the Ac termini by a minimum distance and may be a cis requirement for Ds transposition in maize.Abbreviations Ac activator - Adh1 alcohol dehydrogenase 1 - Ds dissociation - RFLP restriction fragment length polymorphism - Spm suppressor mutator - Wx waxy  相似文献   

5.
Summary The wx m-9 autonomous controlling element mutation produces either a single or doublet type protein in 20 day endosperm, depending on the dosage of Ac. The single protein observed in one dose Ac endosperm is the product of wx m-9 to Wx revertants. The doublet observed in two and three dose Ac endosperm is the product of the Ac-containing, partially suppressed wx m-9 gene. Mutual exclusion of the activities of the wx m-9 gene and its included Ac element is postulated. A competition model is presented to account for the unexpected Ac dosage effect.  相似文献   

6.
Summary The maize controlling element activator, Ac, is capable of self-transposition. We isolated a spontaneously arisen derivative, (wx-m9Ds-cy) of the Ac element present in the wx-m9Ac mutant which does not itself transpose but can be induced to transpose by the presence of an Ac element elsewhere in the genome. The wx-m9Ds-cy derivative reverts to an active Ac form. A comparison of cloned isolates of the three forms of the element shows no differences in restriction enzyme pattern. Southern analysis of the genome organization of the elements shows marked differences in the methylation pattern. The active Ac element is methylated at one end of the element while the inactive derivative wx-m9Ds-cy is completely methylated at all HpaII sites in the element. The revertant Ac is partially demethylated. Reversion of the mutants to the active form appears to be at least a two-step process.  相似文献   

7.
Summary The maize mutable allele bz-m2 (Ac), which arose from insertion of the 4.6 kb Ac element in the bz (bronze) locus, gives rise to stable bz (bz-s) derivatives that retain an active Ac element closely linked to bz. In the derivative bz-s:2114 (Ac), the Ac element is recombinationally inseparable from bz and transposes to unlinked sites at a frequency similar to that in the progenitor allele bzm2 (Ac). Both alleles have been cloned and sequenced. The bz-s:2114 (Ac) mutation retains Ac at the original site of insertion, but has lost a 789 pb upstream bz sequence adjacent to the insertion, hence the stable phenotype. The 8 bp target site direct repeat flanking the Ac insertion in the bz-m2 (Ac) allele is deleted in bz-s: 2114 (Ac), yet the Ac element is not impaired in its ability to transpose. The only functional Ac element in bz-s:2114 (Ac) is the one at the bz locus: in second-cycle derivatives without Ac activity, the loss of Ac activity correlated with the physical loss of the Ac element from the bz locus. The deletion endpoint in bz-s: 2114 (Ac) corresponds exactly with the site of insertion of a Ds element in a different bz mutation, which suggests that there may be preferred integration sites in the genome and that the deletion originated as the consequence of an abortive transposition event. Finally, we report two errors in the published Ac sequence.  相似文献   

8.
We present data on the evolution of the Ac/Ds family of transposable elements in select grasses (Poaceae). A defective Ac-like element was cloned from a DNA library of the grass Pennisetum glaucum (pearl millet) and its entire 4531 bp sequence has been determined. When the pearl millet Ac-like sequence is aligned with the maize Ac sequence, it is found that there is approximately 70% DNA similarity in the central region spanning most of maize Ac exon II and all of exon III. In addition, there are two smaller regions of similarity at the Ac terminii. Besides these three major structural similarities, Pennisetum Ac has two large regions, one 5 and one 3, that show little similarity to Zea Ac. Furthermore, most of the sequences corresponding to intron II in maize Ac are absent in pearl millet Ac. Kimura's evolutionary distance between the central region of maize and pearl millet Ac sequences is estimated to be 0.429±0.020 nucleotide substitutions per site. This value is not significantly different from the average number of synonymous substitutions for coding regions of the Adh1 gene between maize and pearl millet, which is 0.395±0.051 nucleotide substitutions per site. If we assume Ac and Adh1 divergence times are equivalent between maize and pearl millet, then the above calculations suggest Ac-like sequences have probably not been strongly constrained by natural selection. Conserved DNA and amino acid sequence motifs are also examined. The level of DNA sequence divergence between maize and pearl millet Ac sequences, the estimated date when maize and pearl millet diverged (25–40 million years ago), coupled with their reproductive isolation/lack of current genetic exchange, all support the theory that Ac-like sequences have not been recently introduced into pearl millet from maize. Instead, Ac-like sequences were probably present in the progenitor of maize and pearl millet and have thus existed in the grasses for at least 25 million years.  相似文献   

9.
10.
A pilot-scale transposon mutagenesis experiment using a modified autonomous Activator (Ac) element, AcΔNael, was carried out in Arabidopsis thaliana. Four different transformants carrying Ac elements in different and defined genomic locations were used to generate 1000 plants carrying approximately 500 independent germinal transposition events. These plants were then selfed and the 1000 families screened in tissue culture and soil for phenotypic mutants. Fifty different families segregated mutations in their progeny. Preliminary Southern blot analysis of 29 families which segregated mutant progeny, showed that 28 had a transposed Ac. Six of the families were further tested for linkage between the transposed Ac and the mutant phenotype, and instability of the putatively tagged locus. Two of the mutants were shown to be tagged as they were tightly linked to a transposed Ac, and somatic and germinal reversion was associated with loss of Ac. One other mutant locus was shown to be closely linked to a transposed Ac, and therefore was likely to be tagged. The remaining three mutations were not tagged as they were not linked to a transposed Ac. In two of the tagged mutants Ac had transposed to closely linked sites, while in a third mutant the co-segregating Ac had transposed to a site which was not tightly linked to the donor T-DNA. Multiple insertions into the DIF1 locus were found, due to the preferential transposition of Ac to a linked site.  相似文献   

11.
Summary The sequence of the Ac element isolated from the wx-m7 allele has been determined. The Ac element is 4563 bp long. A central portion of roughly 3.1 kb is occupied by three open reading frames, two of which point in one direction and the third in the opposite direction. One of the reading frames potentially encodes a protein with a ten-fold repeat of pro gluN and pro glu dipeptides near its N-terminus. The sequences outside the open reading frames are characterized by the presence of a number of direct and inverted repeats. The Ac element may thus have evolved from a simpler progenitor structure. The sequence we have determined for the Ac from the wx-m7 allele differs in a few key positions from that reported for the Ac element from the wx-m9 allele (Pohlman et al. 1984). We have resequenced these positions in both Ac elements and find them to be identical. We conclude that the phenotypic differences between the two waxy alleles are not caused by structural differences in the Ac elements but rather may be attributable to the differences in their insertion sites.  相似文献   

12.
With a view to establish an efficient gene tagging system for forest tree species, we assessed the transposition behaviour of the maize transposable element Ac in poplar. In earlier work, we showed that new integration sites were often located within predicted or known coding sequences. However, somatic transposition behaviour of Ac with regard to conserved chromosome specificity or, more specifically, whether Ac transposition is restricted to the chromosome on which the primary insertion locus (donor) is located or whether it is able to pass chromosomal boundaries, remained unclear. To answer these questions, we took advantage of the publicly available Populus trichocarpa genome sequence (Phytozome v5.0; ) and three 35S::Ac-rolC transgenic hybrid aspen lines to determine the flanking sequences of Ac re-integration sites for tissue sectors from which Ac had been excised. Only about one-third of the analysed re-integrations were positioned within the scaffold containing the primary Ac donor locus, and the majority of re-integrations were found scattered over many unlinked sites on other scaffolds confirming that Ac transposition in poplar does in fact cross chromosome boundaries. The majority of re-integration sites (57.1%) were found within or near coding regions demonstrating that Ac/Ds transposon tagging in poplar holds much promise for the efficient induction of mutants and functional genomics studies in forest tree species.  相似文献   

13.
A. F. MacRae  M. T. Clegg 《Genetica》1992,86(1-3):55-66
We present data on evolution of the Ac/Ds family of transposable elements in select grasses (Poaceae). An Ac-like element was cloned from a DNA library of the grass Pennisetum glaucum (pearl millet) and 2387 bp of it have been sequenced. When the pearl millet Ac-like sequence is aligned with the corresponding region of the maize Ac sequence, it is found that all sequences corresponding to intron II in maize Ac are absent in pearl millet Ac. Kimura's evolutionary distance between maize and pearl millet Ac sequences is estimated to be 0.429±0.020 nucleotide substitutions per site. This value is not significantly different from the average number of synonymous substitutions for coding regions of the Adh1 gene between maize and pearl millet, which is 0.395±0.051 nucleotide substitutions per site. If we can assume Ac and Adh1 divergence times are equivalent between maize and pearl millet, then the above calculations suggest Ac-like sequences have probably not been strongly constrained by natural selection. The level of DNA sequence divergence between maize and pearl millet Ac sequences, the estimated date when maize and pearl millet diverged (25–40 million years ago), coupled with their reproductive isolation/lack of current genetic exchange, all support the theory that Ac-like sequences have not been recently introduced into pearl millet from maize. Instead, Ac-like sequences were probably present in the progenitor of maize and pearl millet, and have thus existed in the grasses for at least 25 million years. Ac-like sequences may be widely distributed among the grasses. We also present the first 2 Dsl controlling element sequences from teosinte species: Zea luxurians and Zea perennis. A total of 10 Dsl elements had previously been sequenced from maize and a distant maize relative, Tripsacum. When a maximum likelihood network of genetic relationships is constructed for all 12 sequenced Dsl elements, the 2 teosinte Dsl elements are as distant from most maize Dsl elements and from each other, as the maize Dsl elements are from one another. Our new teosinte sequence data support the previous conclusion that Dsl elements have been accumulating mutations independently since maize and Tripsacum diverged. We present a scenario for the origin of Dsl elements.  相似文献   

14.
DNA sequences homologous to the maize Activator (Ac) element are widespread in plant genomes. Nowadays, several reports are available concerning the distribution and characterisation of Ac-homologous sequences in natural populations of different cereal species. but these mobile genetic elements still remain to be comprehensively characterised. In this respect, there is a particular lack of information about the dynamics of Ac-homologous sequences within mutant germplasm collections. Here, we present data on the genomic diversity and methylation patterns of Ac-homologous sequences in ethyl methanesulphonate (EMS)-induced sphaerococcum mutant forms of common wheat (Triticum aestivum L.) and triticale (X Triticosecale Witt.). The results show that the initial EMS treatment has influenced the wheat genome stability by enhancing the dynamics of Ac transposon-homologous sequences.  相似文献   

15.
Behaviour of the maize transposable element Ac in Arabidopsis thaliana   总被引:1,自引:1,他引:0  
The somatic and germinal activity of the maize transposable element, Ac, has been analysed in progeny of 43 transformants of A. thaliana using a streptomycin resistance assay to monitor Ac excision. The ability to assay somatic activity enabled, for the first time, a detailed analysis of Ac activity in individual A. thaliana seedlings to be made. The effects of T-DNA copy number, generation, dosage at each locus, flanking sequences and orientation of the element were compared. The most striking observation was the variability in Ac activity in genotypically identical individuals and the poor penetrance of the variegated phenotype. In general, increasing Ac dosage increased both somatic and germinal excision frequencies. The majority of families from individuals selected as inheriting an excision event carried transposed Ac elements re-integrated in different positions in the genome.  相似文献   

16.
Summary The polypeptide encoded in the Activator (Ac) element of Zea mays L. has been expressed in Spodoptera frugiperda insect cells using plasmids which carry the strong polyhedrin promoter of the baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV). Recombinant AcNPVs with the Ac-cDNA integrated and under the control of the viral polyhedrin promoter have been isolated and their genomes have been partly characterized as to the location of the foreign DNA insert. Upon infection of S. frugiperda cells with the recombinant AcNPV, maize Ac element specific messenger RNAs, as well as a newly synthesized polypeptide with an apparent molecular weight of about 116 kDa, have been detected in extracts of recombinant infected cells. This polypeptide is absent from extracts of wild-type infected cells expressing the polyhedrin polypeptide which can be recognized by the presence of nuclear inclusion bodies. Recombinant infected cells lack this protein. The Ac specific polypeptide is detected by antisera, which have been raised against fusion proteins containing Ac sequences synthesized in Escherichia coli, both in immunoprecipitation and in Western blotting experiments. The Ac specific protein is a nuclear phosphoprotein and represents about 1%–2% of the newly synthesized protein.  相似文献   

17.
Summary Sequences sharing homology to the transposable element Activator (Ac) are prevalent in the maize genome. A cryptic Ac-like DNA, cAc-11, was isolated from the maize inbred line 4Co63 and sequenced. Cryptic Ac-11 has over 90% homology to known Ac sequences and contains an 11 by inverted terminal repeat flanked by an 8 by target site duplication, which are characteristics of Ac and Dissociation (Ds) transposable elements. Unlike the active Ac element, which encodes a transposase, the corresponding sequence in cAc-11 has no significant open reading frame. A 44 by tandem repeat was found at one end of cAc-11, which might be a result of aberrant transposition. The sequence data suggest that cAc-11 may represent a remnant of an Ac or a Ds element. Sequences homologous to cAc-11 can be detected in many maize inbred lines. In contrast to canonical Ac elements, cAc-11 DNA in the maize genome is hypermethylated and does not transpose even in the presence of an active Ac element.  相似文献   

18.
Studies on transposable elements of the Ac family have led to different models for excision gap repair in either plants or Drosophila. Excision products generated by the plant transposable elements Ac and Tam3 imply a more or less straightforward ligation of broken ends; excision products of the Drosophila P element indicate the involvement of ‘double-strand break’ (DSB) repair. Recent findings that excision products of Ac and Tam3 can also contain traces of the element ends indicate, however, that DSB repair might be an alternative repair mechanism in plants. A functional DSB repair mechanism in plants can also be deduced from the observed rapid increases of Ac copy number during plant development and from the involvement of Ac in the generation of internal Ac deletions. On the other hand, alternative repair mechanisms may also be functional in Drosophila, because some of the ‘footprints’ generated upon P excision can be explained by a mechanism that has been postulated for excision gap repair in plants. It is concluded that plants and Drosophila can use similar repair mechanisms, but that the predominance of a certain repair mechanism is determined by the host.  相似文献   

19.
The frequency and fidelity of Ac transposition, and that of its non-autonomous derivative Ds, were investigated in flax callus. Flax (Linum usitatissimum var. Antares) hypocotyls were transformed with Agrobacterium Ti plasmid vectors containing the Ac or Ds element inserted within the untranslated leader sequence of a chimaeric neomycin phosphotransferase II gene. Kanamycin resistant tissues were produced as a result of excision of Ac in around 35% of the total number of Ac-containing transformants. In contrast, no excision was observed from transformants containing the Ds element. Whilst Ac appears to have excised completely from T-DNAs, little evidence was found to infer reintegration of the Ac element into the genome.Abbreviations NPT-II/npt-II Neomycin phosphotransferase II - kb Kilobasepairs - bp basepairs - MSO Murashige and Skoog medium - NAA naphthalene acetic acid - BAP 6-benzylaminopurine  相似文献   

20.
Summary To develop a transposon tagging system in an important cereal plant, rice (Oryza sativa L.), the maize transposable element Ac (Activator) was introduced into rice protoplasts by electroporation. We employed a phenotypic assay for excision of Ac from the selectable hph gene encoding resistance to hygromycin B. Southern blot analysis of hygromycin B-resistant calli showed that the Ac element can transpose from the introduced hph gene into the rice chromosomes. Sequence analysis of several Ac excision sites in the hph gene revealed sequence alterations characteristic of the excision sites of this plant transposable element. The Ac element appears to be active during development of transgenic rice plants from calli. Moreover, hybridization patterns of different leaves from the same plant indicated that some Ac elements are stable whereas others are able to transpose further during development of leaves. The results indicate that the introduced Ac element can transpose efficiently in transgenic rice plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号