首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitochondrial outer membrane contains two integral proteins essential for cell viability, Tom40 of the translocase of the outer membrane (TOM complex) and Sam50 of the sorting and assembly machinery (SAM complex). Here we report the identification of Sam35, the first peripheral mitochondrial outer membrane protein that is essential for cell viability. Sam35 (encoded by the Saccharomyces cerevisiae ORF YHR083w) is a novel subunit of the SAM complex and is crucial for the assembly pathway of outer membrane beta-barrel proteins, such as the precursors of Tom40 and porin. Sam35 is not required for the import of inner membrane or matrix targeted proteins. The presence of two essential proteins in the SAM complex, Sam35 and Sam50, indicates that it plays a central role in mitochondrial biogenesis.  相似文献   

2.
The biogenesis of mitochondrial outer membrane proteins involves the general translocase of the outer membrane (TOM complex) and the sorting and assembly machinery (SAM complex). The two known subunits of the SAM complex, Mas37 and Sam50, are required for assembly of the abundant outer membrane proteins porin and Tom40. We have identified an unexpected subunit of the SAM complex, Mdm10, which is involved in maintenance of mitochondrial morphology. Mitochondria lacking Mdm10 are selectively impaired in the final steps of the assembly pathway of Tom40, including the association of Tom40 with the receptor Tom22 and small Tom proteins, while the biogenesis of porin is not affected. Yeast mutants of TOM40, MAS37, and SAM50 also show aberrant mitochondrial morphology. We conclude that Mdm10 plays a specific role in the biogenesis of the TOM complex, indicating a connection between the mitochondrial protein assembly apparatus and the machinery for maintenance of mitochondrial morphology.  相似文献   

3.
The mitochondrial outer membrane contains two distinct machineries for protein import and protein sorting that function in a sequential manner: the general translocase of the outer membrane (TOM complex) and the sorting and assembly machinery (SAM complex), which is dedicated to beta-barrel proteins. The SAM(core) complex consists of three subunits, Sam35, Sam37, and Sam50, that can associate with a fourth subunit, the morphology component Mdm10, to form the SAM(holo) complex. Whereas the SAM(core) complex is required for the biogenesis of all beta-barrel proteins, Mdm10 and the SAM(holo) complex play a selective role in beta-barrel biogenesis by promoting assembly of Tom40 but not of porin. We report that Tom7, a conserved subunit of the TOM complex, functions in an antagonistic manner to Mdm10 in biogenesis of Tom40 and porin. We show that Tom7 promotes segregation of Mdm10 from the SAM(holo) complex into a low molecular mass form. Upon deletion of Tom7, the fraction of Mdm10 in the SAM(holo) complex is significantly increased, explaining the opposing functions of Tom7 and Mdm10 in beta-barrel sorting. Thus the role of Tom7 is not limited to the TOM complex. Tom7 functions in mitochondrial protein biogenesis by a new mechanism, segregation of a sorting component, leading to a differentiation of beta-barrel assembly.  相似文献   

4.
Dissection of the mitochondrial import and assembly pathway for human Tom40   总被引:8,自引:0,他引:8  
Tom40 is the channel-forming subunit of the translocase of the mitochondrial outer membrane (TOM complex), essential for protein import into mitochondria. Tom40 is synthesized in the cytosol and contains information for its mitochondrial targeting and assembly. A number of stable import intermediates have been identified for Tom40 precursors in fungi, the first being an association with the sorting and assembly machinery (SAM) of the outer membrane. By examining the import pathway of human Tom40, we have been able to elucidate additional features in its import. We identify that Hsp90 is involved in delivery of the Tom40 precursor to mitochondria in an ATP-dependent manner. The precursor then forms its first stable intermediate with the outer face of the TOM complex before its membrane integration and assembly. Deletion of an evolutionary conserved region within Tom40 disrupts the TOM complex intermediate and causes it to stall at a new complex in the intermembrane space that we identify to be the mammalian SAM. Unlike its fungal counterparts, the human Tom40 precursor is not found stably arrested at a SAM intermediate. Nevertheless, we show that Tom40 assembly is reduced in mitochondria depleted of human Sam50. These findings are discussed in context with current models from fungal studies.  相似文献   

5.
Biogenesis of mitochondrial β-barrel proteins requires two preprotein translocases, the general translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). TOM and SAM form a supercomplex that promotes transfer of β-barrel precursors. The SAM core complex contains the channel protein Sam50, which cooperates with Sam35 in precursor recognition, and the peripheral membrane protein Sam37. The molecular function of Sam37 has been unknown. We report that Sam37 is crucial for formation of the TOM–SAM supercomplex. Sam37 interacts with the receptor domain of Tom22 on the cytosolic side of the mitochondrial outer membrane and links TOM and SAM complexes. Sam37 thus promotes efficient transfer of β-barrel precursors to the SAM complex. We conclude that Sam37 functions as a coupling factor of the translocase supercomplex of the mitochondrial outer membrane.  相似文献   

6.
Biogenesis of the translocase of the outer mitochondrial membrane (TOM complex) involves the assembly of the central β-barrel forming protein Tom40 with six different subunits that are embedded in the membrane via α-helical transmembrane segments. The sorting and assembly machinery (SAM complex) of the outer membrane plays a central role in this process. The SAM complex mediates the membrane integration of β-barrel precursor proteins including Tom40. The small Tom proteins Tom5 and Tom6 associate with the precursor of Tom40 at the SAM complex at an early stage of the assembly process and play a stimulatory role in the formation of the mature TOM complex. A fraction of the SAM components interacts with the outer membrane protein mitochondrial distribution and morphology protein 10 (Mdm10) to form the SAM-Mdm10 machinery; however, different views exist on the function of the SAM-Mdm10 complex. We report here that the third small Tom protein, Tom7, plays an inhibitory role at two distinct steps in the biogenesis of the TOM complex. First, Tom7 plays an antagonistic role to Tom5 and Tom6 at the early stage of Tom40 assembly at the SAM complex. Second, Tom7 interacts with Mdm10 that is not bound to the SAM complex, and thus promotes dissociation of the SAM-Mdm10 complex. Since the SAM-Mdm10 complex is required for the biogenesis of Tom22, Tom7 delays the assembly of Tom22 with Tom40 at a late stage of assembly of the TOM complex. Thus, Tom7 modulates the biogenesis of topologically different proteins, the β-barrel forming protein Tom40 and Tom22 that contains a transmembrane α-helix.  相似文献   

7.
Conserved roles of Sam50 and metaxins in VDAC biogenesis   总被引:2,自引:0,他引:2       下载免费PDF全文
Voltage-dependent anion-selective channel (VDAC) is a beta-barrel protein in the outer mitochondrial membrane that is necessary for metabolite exchange with the cytosol and is proposed to be involved in certain forms of apoptosis. We studied the biogenesis of VDAC in human mitochondria by depleting the components of the mitochondrial import machinery by using RNA interference. Here, we show the importance of the translocase of the outer mitochondrial membrane (TOM) complex in the import of the VDAC precursor. The deletion of Sam50, the central component of the sorting and assembly machinery (SAM), led to both a strong defect in the assembly of VDAC and a reduction in the steady-state level of VDAC. Metaxin 2-depleted mitochondria had reduced levels of metaxin 1 and were deficient in import and assembly of VDAC and Tom40, but not of three matrix-targeted precursors. We also observed a reduction in the levels of metaxin 1 and metaxin 2 in Sam50-depleted mitochondria, implying a connection between these three proteins, although Sam50 and metaxins seemed to be in different complexes. We conclude that the pathway of VDAC biogenesis in human mitochondria involves the TOM complex, Sam50 and metaxins, and that it is evolutionarily conserved.  相似文献   

8.
Tom40 forms the central channel of the preprotein translocase of the mitochondrial outer membrane (TOM complex). The precursor of Tom40 is encoded in the nucleus, synthesized in the cytosol, and imported into mitochondria via a multi-step assembly pathway that involves the mature TOM complex and the sorting and assembly machinery of the outer membrane (SAM complex). We report that opening of the mitochondrial intermembrane space by swelling blocks the assembly pathway of the beta-barrel protein Tom40. Mitochondria with defects in small Tim proteins of the intermembrane space are impaired in the Tom40 assembly pathway. Swelling as well as defects in the small Tim proteins inhibit an early stage of the Tom40 import pathway that is needed for formation of a Tom40-SAM intermediate. We propose that the biogenesis pathway of beta-barrel proteins of the outer mitochondrial membrane not only requires TOM and SAM components, but also involves components of the intermembrane space.  相似文献   

9.
The mitochondrial outer membrane contains two preprotein translocases: the general translocase of outer membrane (TOM) and the β-barrel–specific sorting and assembly machinery (SAM). TOM functions as the central entry gate for nuclear-encoded proteins. The channel-forming Tom40 is a β-barrel protein, whereas all Tom receptors and small Tom proteins are membrane anchored by a transmembrane α-helical segment in their N- or C-terminal portion. Synthesis of Tom precursors takes place in the cytosol, and their import occurs via preexisting TOM complexes. The precursor of Tom40 is then transferred to SAM for membrane insertion and assembly. Unexpectedly, we find that the biogenesis of α-helical Tom proteins with a membrane anchor in the C-terminal portion is SAM dependent. Each SAM protein is necessary for efficient membrane integration of the receptor Tom22, whereas assembly of the small Tom proteins depends on Sam37. Thus, the substrate specificity of SAM is not restricted to β-barrel proteins but also includes the majority of α-helical Tom proteins.  相似文献   

10.
The mitochondrial outer membrane contains two translocase machineries for precursor proteins—the translocase of the outer membrane (TOM complex) and the sorting and assembly machinery (SAM complex). The TOM complex functions as the main mitochondrial entry gate for nuclear-encoded proteins, whereas the SAM complex was identified according to its function in the biogenesis of β-barrel proteins of the outer membrane. The SAM complex is required for the assembly of precursors of the TOM complex, including not only the β-barrel protein Tom40 but also a subset of α-helical subunits. While the interaction of β-barrel proteins with the SAM complex has been studied in detail, little is known about the interaction between the SAM complex and α-helical precursor proteins. We report that the SAM is not static but that the SAM core complex can associate with different partner proteins to form two large SAM complexes with different functions in the biogenesis of α-helical Tom proteins. We found that a subcomplex of TOM, Tom5-Tom40, associates with the SAM core complex to form a new large SAM complex. This SAM-Tom5/Tom40 complex binds the α-helical precursor of Tom6 after the precursor has been inserted into the outer membrane in an Mim1 (mitochondrial import protein 1)-dependent manner. The second large SAM complex, SAM-Mdm10 (mitochondrial distribution and morphology protein), binds the α-helical precursor of Tom22 and promotes its membrane integration. We suggest that the modular composition of the SAM complex provides a flexible platform to integrate the sorting pathways of different precursor proteins and to promote their assembly into oligomeric complexes.  相似文献   

11.
Franziska Lueder 《FEBS letters》2009,583(9):1475-2833
The assembly of mitochondrial outer membrane proteins is an essential process, mediated by the SAM complex and a set of additional protein modules. We show that one of these, Mim1, is anchored in the outer membrane with its N-terminus exposed to the cytosol and its C-terminus in the mitochondrial intermembrane space. Using an in vitro assay to measure the multi-step pathway for assembly of Tom40 into the TOM complex, we find that an “early reaction” mediated by the SAM complex is regulated by the N-terminal domain of Mim1. In addition, a “late reaction” catalysed by the Sam37 subunit of the SAM complex is also influenced by Mim1. Thus, Mim1 participates at multiple stages in the assembly of the TOM complex.  相似文献   

12.
The translocase of the outer membrane (TOM complex) is the central entry gate for nuclear-encoded mitochondrial precursor proteins. All Tom proteins are also encoded by nuclear genes and synthesized as precursors in the cytosol. The channel-forming beta-barrel protein Tom40 is targeted to mitochondria via Tom receptors and inserted into the outer membrane by the sorting and assembly machinery (SAM complex). A further outer membrane protein, Mim1, plays a less defined role in assembly of Tom40 into the TOM complex. The three receptors Tom20, Tom22, and Tom70 are anchored in the outer membrane by a single transmembrane alpha-helix, located at the N terminus in the case of Tom20 and Tom70 (signal-anchored) or in the C-terminal portion in the case of Tom22 (tail-anchored). Insertion of the precursor of Tom22 into the outer membrane requires pre-existing Tom receptors while the import pathway of the precursors of Tom20 and Tom70 is only poorly understood. We report that Mim1 is required for efficient membrane insertion and assembly of Tom20 and Tom70, but not Tom22. We show that Mim1 associates with SAM(core) components to a large SAM complex, explaining its role in late steps of the assembly pathway of Tom40. We conclude that Mim1 is not only required for biogenesis of the beta-barrel protein Tom40 but also for membrane insertion and assembly of signal-anchored Tom receptors. Thus, Mim1 plays an important role in the efficient assembly of the mitochondrial TOM complex.  相似文献   

13.
The preprotein translocase of the outer mitochondrial membrane (TOM) consists of a central β-barrel channel, Tom40, and six proteins with α-helical transmembrane segments. The precursor of Tom40 is imported from the cytosol by a pre-existing TOM complex and inserted into the outer membrane by the sorting and assembly machinery (SAM). Tom40 then assembles with α-helical Tom proteins to the mature TOM complex. The outer membrane protein Mim1 promotes membrane insertion of several α-helical Tom proteins but also affects the biogenesis of Tom40 by an unknown mechanism. We have identified a novel intermediate in the assembly pathway of Tom40, revealing a two-stage interaction of the precursor with the SAM complex. The second SAM stage represents assembly of Tom5 with the precursor of Tom40. Mim1-deficient mitochondria accumulate Tom40 at the first SAM stage like Tom5-deficient mitochondria. Tom5 promotes formation of the second SAM stage and thus suppresses the Tom40 assembly defect of mim1Δ mitochondria. We conclude that the assembly of newly imported Tom40 is directly initiated at the SAM complex by its association with Tom5. The involvement of Mim1 in Tom40 biogenesis can be largely attributed to its role in import of Tom5.  相似文献   

14.
The beta-barrel proteins of mitochondria are synthesized on cytosolic ribosomes. The proteins are imported by the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It has been assumed that the SAM(core) complex with the subunits Sam35, Sam37 and Sam50 represents the last import stage common to all beta-barrel proteins, followed by splitting in a Tom40-specific route and a route for other beta-barrel proteins. We have identified new components of the beta-barrel assembly machinery and show that the major beta-barrel pathway extends beyond SAM(core). Mdm12/Mmm1 function after SAM(core) yet before splitting of the major pathway. Mdm12/Mmm1 have been known for their role in maintenance of mitochondrial morphology but we reveal assembly of beta-barrel proteins as their primary function. Moreover, Mdm10, which functions in the Tom40-specific route, can associate with SAM(core) as well as Mdm12/Mmm1 to form distinct assembly complexes, indicating a dynamic exchange between the machineries governing mitochondrial beta-barrel assembly. We conclude that assembly of mitochondrial beta-barrel proteins represents a major function of the morphology proteins Mdm12/Mmm1.  相似文献   

15.
Mitochondria contain two membranes, the outer membrane and the inner membrane with folded cristae. The mitochondrial inner membrane organizing system (MINOS) is a large protein complex required for maintaining inner membrane architecture. MINOS interacts with both preprotein transport machineries of the outer membrane, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It is unknown, however, whether MINOS plays a role in the biogenesis of outer membrane proteins. We have dissected the interaction of MINOS with TOM and SAM and report that MINOS binds to both translocases independently. MINOS binds to the SAM complex via the conserved polypeptide transport–associated domain of Sam50. Mitochondria lacking mitofilin, the large core subunit of MINOS, are impaired in the biogenesis of β-barrel proteins of the outer membrane, whereas mutant mitochondria lacking any of the other five MINOS subunits import β-barrel proteins in a manner similar to wild-type mitochondria. We show that mitofilin is required at an early stage of β-barrel biogenesis that includes the initial translocation through the TOM complex. We conclude that MINOS interacts with TOM and SAM independently and that the core subunit mitofilin is involved in biogenesis of outer membrane β-barrel proteins.  相似文献   

16.
Kornelius Zeth 《BBA》2010,1797(6-7):1292-1299
Gram-negative bacteria are the ancestors of mitochondrial organelles. Consequently, both entities contain two surrounding lipid bilayers known as the inner and outer membranes. While protein synthesis in bacteria is accomplished in the cytoplasm, mitochondria import 90–99% of their protein ensemble from the cytosol in the opposite direction. Three protein families including Sam50, VDAC and Tom40 together with Mdm10 compose the set of integral β-barrel proteins embedded in the mitochondrial outer membrane in S. cerevisiae (MOM). The 16-stranded Sam50 protein forms part of the sorting and assembly machinery (SAM) and shows a clear evolutionary relationship to members of the bacterial Omp85 family. By contrast, the evolution of VDAC and Tom40, both adopting the same fold cannot be traced to any bacterial precursor. This finding is in agreement with the specific function of Tom40 in the TOM complex not existent in the enslaved bacterial precursor cell. Models of Tom40 and Sam50 have been developed using X-ray structures of related proteins. These models are analyzed with respect to properties such as conservation and charge distribution yielding features related to their individual functions.  相似文献   

17.
Communication of mitochondria with the rest of the cell requires beta-barrel proteins of the outer membrane. All beta-barrel proteins are synthesized as precursors in the cytosol and imported into mitochondria by the general translocase TOM and the sorting machinery SAM. The SAM complex contains two proteins essential for cell viability, the channel-forming Sam50 and Sam35. We have identified the sorting signal of mitochondrial beta-barrel proteins that is universal in all eukaryotic kingdoms. The beta-signal initiates precursor insertion into a hydrophilic, proteinaceous membrane environment by forming a ternary complex with Sam35 and Sam50. Sam35 recognizes the beta-signal, inducing a major conductance increase of the Sam50 channel. Subsequent precursor release from SAM is coupled to integration into the lipid phase. We propose that a two-stage mechanism of signal-driven insertion into a membrane protein complex and subsequent integration into the lipid phase may represent a general mechanism for biogenesis of beta-barrel proteins.  相似文献   

18.
The mitochondrial outer membrane contains proteinaceous machineries for the translocation of precursor proteins. The sorting and assembly machinery (SAM) is required for the insertion of β-barrel proteins into the outer membrane. Sam50 is the channel-forming core subunit of the SAM complex and belongs to the BamA/Sam50/Toc75 family of proteins that have been conserved from Gram-negative bacteria to mitochondria and chloroplasts. These proteins contain one or more N-terminal polypeptide transport-associated (POTRA) domains. POTRA domains can bind precursor proteins, however, different views exist on the role of POTRA domains in the biogenesis of β-barrel proteins. It has been suggested that the single POTRA domain of mitochondrial Sam50 plays a receptor-like function at the SAM complex. We established a system to monitor the interaction of chemical amounts of β-barrel precursor proteins with the SAM complex of wild-type and mutant yeast in organello. We report that the SAM complex lacking the POTRA domain of Sam50 efficiently binds β-barrel precursors, but is impaired in the release of the precursors. These results indicate the POTRA domain of Sam50 is not essential for recognition of β-barrel precursors but functions in a subsequent step to promote the release of precursor proteins from the SAM complex.  相似文献   

19.
The TOM40 complex is a protein translocator in the mitochondrial outer membrane and consists of several different subunits. Among them, Tom40 is a central subunit that constitutes a protein-conducting channel by forming a β-barrel structure. To probe the nature of the assembly process of Tom40 in the outer membrane, we attached various mitochondrial presequences to Tom40 that possess sorting information for the intermembrane space (IMS), inner membrane, and matrix and would compete with the inherent Tom40 assembly process. We analyzed the mitochondrial import of those fusion proteins in vitro. Tom40 crossed the outer membrane and/or inner membrane even in the presence of various sorting signals. N-terminal anchorage of the attached presequence to the inner membrane did not prevent Tom40 from associating with the TOB/SAM complex, although it impaired its efficient release from the TOB complex in vitro but not in vivo. The IMS or matrix-targeting presequence attached to Tom40 was effective in substituting for the requirement for small Tim proteins in the IMS for the translocation of Tom40 across the outer membrane. These results provide insight into the mechanism responsible for the precise delivery of β-barrel proteins to the outer mitochondrial membrane.  相似文献   

20.
In the last years the picture of protein import into the mitochondria has become much more complicated in terms of new components and new sorting pathways. These novel findings have also changed views concerning the biogenesis pathway of mitochondrial outer membrane proteins. In addition to proteins anchored with transmembrane alpha-helices, the endosymbiotic origin of the mitochondria has resulted in the presence of transmembrane beta-barrels in this compartment. The sorting and assembly pathway of outer membrane proteins involves three machineries: the translocase of the outer membrane (TOM complex) the sorting and assembly machinery (SAM complex) and the MDM complex (mitochondrial distribution and morphology). Here we review recent developments on the biogenesis pathways of outer membrane proteins with a focus on Tom proteins, the most intensively studied class of these precursor proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号