首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The initiation of eukaryotic DNA replication requires the assembly of active CMG (Cdc45‐MCM‐GINS) helicases at replication origins by a set of conserved and essential firing factors. This process is controlled during the cell cycle by cyclin‐dependent kinase (CDK) and Dbf4‐dependent kinase (DDK), and in response to DNA damage by the checkpoint kinase Rad53/Chk1. Here we show that Sld3, previously shown to be an essential CDK and Rad53 substrate, is recruited to the inactive MCM double hexamer in a DDK‐dependent manner. Sld3 binds specifically to DDK‐phosphorylated peptides from two MCM subunits (Mcm4, 6) and then recruits Cdc45. MCM mutants that cannot bind Sld3 or Sld3 mutants that cannot bind phospho‐MCM or Cdc45 do not support replication. Moreover, phosphomimicking mutants in Mcm4 and Mcm6 bind Sld3 without DDK and facilitate DDK‐independent replication. Thus, Sld3 is an essential “reader” of DDK phosphorylation, integrating signals from three distinct protein kinase pathways to coordinate DNA replication during S phase.  相似文献   

2.
The essential cell cycle target of the Dbf4/Cdc7 kinase (DDK) is the Mcm2–7 helicase complex. Although Mcm4 has been identified as the critical DDK phosphorylation target for DNA replication, it is not well understood which of the six Mcm2–7 subunits actually mediate(s) docking of this kinase complex. We systematically examined the interaction between each Mcm2–7 subunit with Dbf4 and Cdc7 through two-hybrid and co-immunoprecipitation analyses. Strikingly different binding patterns were observed, as Dbf4 interacted most strongly with Mcm2, whereas Cdc7 displayed association with both Mcm4 and Mcm5. We identified an N-terminal Mcm2 region required for interaction with Dbf4. Cells expressing either an Mcm2 mutant lacking this docking domain (Mcm2ΔDDD) or an Mcm4 mutant lacking a previously identified DDK docking domain (Mcm4ΔDDD) displayed modest DNA replication and growth defects. In contrast, combining these two mutations resulted in synthetic lethality, suggesting that Mcm2 and Mcm4 play overlapping roles in the association of DDK with MCM rings at replication origins. Consistent with this model, growth inhibition could be induced in Mcm4ΔDDD cells through Mcm2 overexpression as a means of titrating the Dbf4-MCM ring interaction. This growth inhibition was exacerbated by exposing the cells to either hydroxyurea or methyl methanesulfonate, lending support for a DDK role in stabilizing or restarting replication forks under S phase checkpoint conditions. Finally, constitutive overexpression of each individual MCM subunit was examined, and genotoxic sensitivity was found to be specific to Mcm2 or Mcm4 overexpression, further pointing to the importance of the DDK-MCM ring interaction.  相似文献   

3.
4.
Activation of the eukaryotic replicative DNA helicase, the Mcm2-7 complex, requires phosphorylation by Cdc7/Dbf4 (Dbf4-dependent kinase or DDK), which, in turn, depends on prior phosphorylation of Mcm2-7 by an unknown kinase (or kinases). We identified DDK phosphorylation sites on Mcm4 and Mcm6 and found that phosphorylation of either subunit suffices for cell proliferation. Importantly, prior phosphorylation of either S/T-P or S/T-Q motifs on these subunits is required for DDK phosphorylation of Mcm2-7 and for normal S phase passage. Phosphomimetic mutations of DDK target sites bypass both DDK function and mutation of the priming phosphorylation sites. Mrc1 facilitates Mec1 phosphorylation of the S/T-Q motifs of chromatin-bound Mcm2-7 during S phase to activate replication. Genetic interactions between priming site mutations and MRC1 or TOF1 deletion support a role for these modifications in replication fork stability. These findings identify regulatory mechanisms that modulate origin firing and replication fork assembly during cell cycle progression.  相似文献   

5.
Eukaryotic chromosomal replication is a complicated process with many origins firing at different efficiencies and times during S phase. Prereplication complexes are assembled on all origins in G(1) phase, and yet only a subset of complexes is activated during S phase by DDK (for Dbf4-dependent kinase) (Cdc7-Dbf4). The yeast mcm5-bob1 (P83L) mutation bypasses DDK but results in reduced intrinsic firing efficiency at 11 endogenous origins and at origins located on minichromosomes. Origin efficiency may result from Mcm5 protein assuming an altered conformation, as predicted from the atomic structure of an archaeal MCM (for minichromosome maintenance) homologue. Similarly, an intragenic mutation in a residue predicted to interact with P83L suppresses the mcm5-bob1 bypass phenotype. We propose DDK phosphorylation of the MCM complex normally results in a single, highly active conformation of Mcm5, whereas the mcm5-bob1 mutation produces a number of conformations, only one of which is permissive for origin activation. Random adoption of these alternate states by the mcm5-bob1 protein can explain both how origin firing occurs independently of DDK and why origin efficiency is reduced. Because similar mutations in mcm2 and mcm4 cannot bypass DDK, Mcm5 protein may be a unique Mcm protein that is the final target of DDK regulation.  相似文献   

6.
Many replication proteins assemble on the pre-RC-formed replication origins and constitute the pre-initiation complex (pre-IC). This complex formation facilitates the conversion of Mcm2–7 in the pre-RC to an active DNA helicase, the Cdc45–Mcm–GINS (CMG) complex. Two protein kinases, cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), work to complete the formation of the pre-IC. Each kinase is responsible for a distinct step of the process in yeast; Cdc45 associates with origins in a DDK-dependent manner, whereas the association of GINS with origins depends on CDK. These associations with origins also require specific initiation proteins: Sld3 for Cdc45; and Dpb11, Sld2, and Sld3 for GINS. Functional homologs of these proteins exist in metazoa, although pre-IC formation cannot be separated by requirement of DDK and CDK because of experimental limitations. Once the replicative helicase is activated, the origin DNA is unwound, and bidirectional replication forks are established.The main events at the initiation step of DNA replication are the unwinding of double-stranded DNA and subsequent recruitment of DNA polymerases, to start DNA synthesis. Eukaryotic cells require an active DNA helicase to unwind the origin DNA. The core components of the replicative helicase, Mcm2–7, are loaded as a head-to-head double hexamer connected via their amino-terminal rings (Evrin et al. 2009; Remus et al. 2009; Gambus et al. 2011) onto Orc-associated origins, to form the pre-RC in late M and G1 phases (see Bell and Kaguni 2013). However, Mcm2–7 alone does not show DNA helicase activity at replication origins. After the formation of the pre-RC, other replication factors assemble on origins, and the pre-initiation complex (pre-IC) is formed. The pre-IC is defined as a complex formed just before the initiation of DNA replication (Zou and Stillman 1998); in yeast, it contains at least seven additional factors: Cdc45, GINS, Dpb11, Sld2, Sld3, Cdc45, and DNA polymerase ε (Pol ε) (Muramatsu et al. 2010). The formation of the pre-IC is a prerequisite for the activation of the Mcm2–7 helicase; two additional factors, Cdc45 and GINS, associate with Mcm2–7 and form a tight complex, the Cdc45–Mcm–GINS (CMG) complex (Gambus et al. 2006; Moyer et al. 2006). This reaction requires components of the pre-IC and two protein kinases, cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK) (for reviews, see Labib 2010; Masai et al. 2010; Tanaka and Araki 2010). In this article, we summarize and discuss the manner via which the pre-IC is formed in yeasts and metazoa. Although there are some discrepancies, the process of formation of the pre-IC is conserved fairly well in these organisms.  相似文献   

7.
The DNA unwinding element (DUE)-binding protein (DUE-B) binds to replication origins coordinately with the minichromosome maintenance (MCM) helicase and the helicase activator Cdc45 in vivo, and loads Cdc45 onto chromatin in Xenopus egg extracts. Human DUE-B also retains the aminoacyl-tRNA proofreading function of its shorter orthologs in lower organisms. Here we report that phosphorylation of the DUE-B unstructured C-terminal domain unique to higher organisms regulates DUE-B intermolecular binding. Gel filtration analyses show that unphosphorylated DUE-B forms multiple high molecular weight (HMW) complexes. Several aminoacyl-tRNA synthetases and Mcm2–7 proteins were identified by mass spectrometry of the HMW complexes. Aminoacyl-tRNA synthetase binding is RNase A sensitive, whereas interaction with Mcm2–7 is nuclease resistant. Unphosphorylated DUE-B HMW complex formation is decreased by PP2A inhibition or direct DUE-B phosphorylation, and increased by inhibition of Cdc7. These results indicate that the state of DUE-B phosphorylation is maintained by the equilibrium between Cdc7-dependent phosphorylation and PP2A-dependent dephosphorylation, each previously shown to regulate replication initiation. Alanine mutation of the DUE-B C-terminal phosphorylation target sites increases MCM binding but blocks Cdc45 loading in vivo and inhibits cell division. In egg extracts alanine mutation of the DUE-B C-terminal phosphorylation sites blocks Cdc45 loading and inhibits DNA replication. The effects of DUE-B C-terminal phosphorylation reveal a novel S phase kinase regulatory mechanism for Cdc45 loading and MCM helicase activation.  相似文献   

8.
In late mitosis and G1, Mcm2-7 are assembled onto replication origins to license them for initiation in the upcoming S phase. After initiation, Mcm2-7 provide helicase activity to unwind DNA at the replication fork. Here we examine the structure of Mcm2-7 on chromatin in Xenopus egg extracts. We show that prior to replication initiation, Mcm2-7 is present at licensed replication origins in a complex with a molecular mass close to double that of the Mcm2-7 hexamer. This complex has approximately stoichiometric quantities of the 6 Mcm2-7 proteins and we conclude that it consists of a double heterohexamer. This provides a configuration potentially capable of initiating a pair of bidirectional replication forks in S phase. We also show that after initiation, Mcm2-7 associate with Cdc45 and GINS to form a relatively stable CMG (Cdc45-MCM-GINS) complex. The CMG proteins also associate less strongly with other replication proteins, consistent with the idea that a single CMG complex forms the core of the replisome.  相似文献   

9.
The replication fork helicase in eukaryotes is composed of Cdc45, Mcm2-7, and GINS (CMG). The Dbf4-Cdc7 kinase phosphorylates Mcm2 in vitro, but the in vivo role for Dbf4-Cdc7 phosphorylation of Mcm2 is unclear. We find that budding yeast Dbf4-Cdc7 phosphorylates Mcm2 in vivo under normal conditions during S phase. Inhibiting Dbf4-Cdc7 phosphorylation of Mcm2 confers a dominant-negative phenotype with a severe growth defect. Inhibiting Dbf4-Cdc7 phosphorylation of Mcm2 under wild-type expression conditions also results in impaired DNA replication, substantially decreased single-stranded formation at an origin, and markedly disrupted interaction between GINS and Mcm2-7 during S phase. In vitro, Dbf4-Cdc7 kinase (DDK) phosphorylation of Mcm2 substantially weakens the interaction between Mcm2 and Mcm5, and Dbf4-Cdc7 phosphorylation of Mcm2 promotes Mcm2-7 ring opening. The extrusion of ssDNA from the central channel of Mcm2-7 triggers GINS attachment to Mcm2-7. Thus, Dbf4-Cdc7 phosphorylation of Mcm2 may open the Mcm2-7 ring at the Mcm2-Mcm5 interface, allowing for single-stranded DNA extrusion and subsequent GINS assembly with Mcm2-7.  相似文献   

10.
MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK.  相似文献   

11.
The Dbf4-Cdc7 kinase (DDK) is required for the activation of the origins of replication, and DDK phosphorylates Mcm2 in vitro. We find that budding yeast Cdc7 alone exists in solution as a weakly active multimer. Dbf4 forms a likely heterodimer with Cdc7, and this species phosphorylates Mcm2 with substantially higher specific activity. Dbf4 alone binds tightly to Mcm2, whereas Cdc7 alone binds weakly to Mcm2, suggesting that Dbf4 recruits Cdc7 to phosphorylate Mcm2. DDK phosphorylates two serine residues of Mcm2 near the N terminus of the protein, Ser-164 and Ser-170. Expression of mcm2-S170A is lethal to yeast cells that lack endogenous MCM2 (mcm2Δ); however, this lethality is rescued in cells harboring the DDK bypass mutant mcm5-bob1. We conclude that DDK phosphorylation of Mcm2 is required for cell growth.The Cdc7 protein kinase is required throughout the yeast S phase to activate origins (1, 2). The S phase cyclin-dependent kinase also activates yeast origins of replication (35). It has been proposed that Dbf4 activates Cdc7 kinase in S phase, and that Dbf4 interaction with Cdc7 is essential for Cdc7 kinase activity (6). However, it is not known how Dbf4-Cdc7 (DDK)2 acts during S phase to trigger the initiation of DNA replication. DDK has homologs in other eukaryotic species, and the role of Cdc7 in activation of replication origins during S phase may be conserved (710).The Mcm2-7 complex functions with Cdc45 and GINS to unwind DNA at a replication fork (1115). A mutation of MCM5 (mcm5-bob1) bypasses the cellular requirements for DBF4 and CDC7 (16), suggesting a critical physiologic interaction between Dbf4-Cdc7 and Mcm proteins. DDK phosphorylates Mcm2 in vitro with proteins purified from budding yeast (17, 18) or human cells (19). Furthermore, there are mutants of MCM2 that show synthetic lethality with DBF4 mutants (6, 17), suggesting a biologically relevant interaction between DBF4 and MCM2. Nevertheless, the physiologic role of DDK phosphorylation of Mcm2 is a matter of dispute. In human cells, replacement of MCM2 DDK-phosphoacceptor residues with alanines inhibits DNA replication, suggesting that Dbf4-Cdc7 phosphorylation of Mcm2 in humans is important for DNA replication (20). In contrast, mutation of putative DDK phosphorylation sites at the N terminus of Schizosaccharomyces pombe Mcm2 results in viable cells, suggesting that phosphorylation of S. pombe Mcm2 by DDK is not critical for cell growth (10).In budding yeast, Cdc7 is present at high levels in G1 and S phase, whereas Dbf4 levels peak in S phase (18, 21, 22). Furthermore, budding yeast DDK binds to chromatin during S phase (6), and it has been shown that Dbf4 is required for Cdc7 binding to chromatin in budding yeast (23, 24), fission yeast (25), and Xenopus (9). Human and fission yeast Cdc7 are inert on their own (7, 8), but Dbf4-Cdc7 is active in phosphorylating Mcm proteins in budding yeast (6, 26), fission yeast (7), and human (8, 10). Based on these data, it has been proposed that Dbf4 activates Cdc7 kinase in S phase and that Dbf4 interaction with Cdc7 is essential for Cdc7 kinase activity (6, 9, 18, 2124). However, a mechanistic analysis of how Dbf4 activates Cdc7 has not yet been accomplished. For example, the multimeric state of the active Dbf4-Cdc7 complex is currently disputed. A heterodimer of fission yeast Cdc7 (Hsk1) in complex with fission yeast Dbf4 (Dfp1) can phosphorylate Mcm2 (7). However, in budding yeast, oligomers of Cdc7 exist in the cell (27), and Dbf4-Cdc7 exists as oligomers of 180 and 300 kDa (27).DDK phosphorylates the N termini of human Mcm2 (19, 20, 28), human Mcm4 (10), budding yeast Mcm4 (26), and fission yeast Mcm6 (10). Although the sequences of the Mcm N termini are poorly conserved, the DDK sites identified in each study have neighboring acidic residues. The residues of budding yeast Mcm2 that are phosphorylated by DDK have not yet been identified.In this study, we find that budding yeast Cdc7 is weakly active as a multimer in phosphorylating Mcm2. However, a low molecular weight form of Dbf4-Cdc7, likely a heterodimer, has a higher specific activity for phosphorylation of Mcm2. Dbf4 or DDK, but not Cdc7, binds tightly to Mcm2, suggesting that Dbf4 recruits Cdc7 to Mcm2. DDK phosphorylates two serine residues of Mcm2, Ser-164 and Ser-170, in an acidic region of the protein. Mutation of Ser-170 is lethal to yeast cells, but this phenotype is rescued by the DDK bypass mutant mcm5-bob1. We conclude that DDK phosphorylation of Ser-170 of Mcm2 is required for budding yeast growth.  相似文献   

12.
13.
The Dbf4/Cdc7 kinase (DDK) plays an essential role in stimulating DNA replication by phosphorylating subunits of the Mcm2-7 helicase complex at origins. This kinase complex is itself phosphorylated and removed from chromatin in a Rad53-dependent manner when an S phase checkpoint is triggered. Comparison of Dbf4 sequence across a variety of eukaryotic species has revealed three conserved regions that have been termed motifs N, M and C. The most highly conserved of the three, motif C, encodes a zinc finger, which are known to mediate protein-protein and protein-DNA interactions. Mutation of conserved motif C cysteines and histidines disrupted the association of Dbf4 with ARS1 origin DNA and Mcm2, but not other known ligands including Cdc7, Rad53 or the origin recognition complex subunit Orc2. Furthermore, these mutations impaired the ability of Dbf4 to phosphorylate Mcm2. Budding yeast strains for which the single genomic DBF4 copy was replaced with these motif C mutant alleles were compromised for entry into and progression through S phase, indicating that the observed weakening of the Mcm2 interaction prevents DDK from efficiently stimulating the initiation of DNA replication. Following initiation, Mcm2-7 migrates with the replication fork. Interestingly, the motif C mutants were sensitive to long-term, but not short-term exposure to the genotoxic agents hydroxyurea and methyl methanesulfonate. These results support a model whereby DDK interaction with Mcm2 is important to stabilize and/or restart replication forks during conditions where a prolonged S-phase checkpoint is triggered.  相似文献   

14.
The initiation of DNA replication in eukaryotes requires the loading of the origin recognition complex (ORC), Cdc6, and minichromosome maintenance (MCM) proteins onto chromatin to form the preinitiation complex. In Xenopus egg extract, the proteins Orc1, Orc2, Cdc6, and Mcm4 are underphosphorylated in interphase and hyperphosphorylated in metaphase extract. We find that chromatin binding of ORC, Cdc6, and MCM proteins does not require cyclin-dependent kinase activities. High cyclin A-dependent kinase activity inhibits the binding and promotes the release of Xenopus ORC, Cdc6, and MCM from sperm chromatin, but has no effect on chromatin binding of control proteins. Cyclin A together with ORC, Cdc6 and MCM proteins is bound to sperm chromatin in DNA replicating pseudonuclei. In contrast, high cyclin E/cdk2 was not detected on chromatin, but was found soluble in the nucleoplasm. High cyclin E kinase activity allows the binding of Xenopus ORC and Cdc6, but not MCM, to sperm chromatin, even though the kinase does not phosphorylate MCM directly. We conclude that chromatin-bound cyclin A kinase controls DNA replication by protein phosphorylation and chromatin release of Cdc6 and MCM, whereas soluble cyclin E kinase prevents rereplication during the cell cycle by the inhibition of premature MCM chromatin association.  相似文献   

15.
Dpb11 is required for the initiation of DNA replication in budding yeast. Dpb11 binds to S-phase cyclin-dependent kinase-phosphorylated Sld2 and Sld3 to form a ternary complex during S phase. The replication fork helicase in eukaryotes is composed of Cdc45, Mcm2-7, and GINS. We show here, using purified proteins from budding yeast, that Dpb11 alone binds to Mcm2-7 and that Dpb11 also competes with GINS for binding to Mcm2-7. Furthermore, Dpb11 binds directly to single-stranded DNA (ssDNA), and ssDNA inhibits the Dpb11 interaction with Mcm2-7. We also found that Dpb11 can recruit Cdc45 to Mcm2-7. We identified a mutant of the BRCT4 motif of Dpb11 that remains bound to Mcm2-7 in the presence of ssDNA (dpb11-m1,m2,m3,m5), and this mutant exhibits a DNA replication defect when expressed in budding yeast cells. Expression of this mutant results in increased interaction between Dpb11 and Mcm2-7 during S phase, impaired GINS interaction with Mcm2-7 during S phase, and decreased replication protein A (RPA) interaction with origin DNA during S phase. We propose a model in which Dpb11 first recruits Cdc45 to Mcm2-7. Dpb11, although bound to Cdc45·Mcm2-7, can block the interaction between GINS and Mcm2-7. Upon extrusion of ssDNA from the central channel of Mcm2-7, Dpb11 dissociates from Mcm2-7, and Dpb11 binds to ssDNA, thereby allowing GINS to bind to Cdc45·Mcm2-7. Finally, we propose that Dpb11 functions with Sld2 and Sld3 to help control the assembly of the replication fork helicase.  相似文献   

16.
Heller RC  Kang S  Lam WM  Chen S  Chan CS  Bell SP 《Cell》2011,146(1):80-91
Proper eukaryotic DNA replication requires temporal separation of helicase loading from helicase activation and replisome assembly. Using an in?vitro assay for eukaryotic origin-dependent replication initiation, we investigated the control of these events. After helicase loading, we found that the Dbf4-dependent Cdc7 kinase (DDK) but not S phase cyclin-dependent kinase (S-CDK) is required for the initial origin recruitment of Sld3 and the Cdc45 helicase-activating protein. Likewise, in?vivo, DDK drives early-firing-origin recruitment of Cdc45 before activation of S-CDK. After S-CDK activation, a second helicase-activating protein (GINS) and the remainder of the replisome are recruited to the origin. Finally, recruitment of lagging but not leading strand DNA polymerases depends on Mcm10 and DNA unwinding. Our studies identify distinct roles for DDK and S-CDK during helicase activation and support a model in which the leading strand DNA polymerase is recruited prior to origin DNA unwinding and RNA primer synthesis.  相似文献   

17.
Minichromosome maintenance 2-7 proteins play a pivotal role in replication of the genome in eukaryotic organisms. Upon entry into S-phase several subunits of the MCM hexameric complex are phosphorylated. It is thought that phosphorylation activates the intrinsic MCM DNA helicase activity, thus allowing formation of active replication forks. Cdc7, Cdk2, and ataxia telangiectasia and Rad3-related kinases regulate S-phase entry and S-phase progression and are known to phosphorylate the Mcm2 subunit. In this work, by in vitro kinase reactions and mass spectrometry analysis of the products, we have mapped phosphorylation sites in the N terminus of Mcm2 by Cdc7, Cdk2, Cdk1, and CK2. We found that Cdc7 phosphorylates Mcm2 in at least three different sites, one of which corresponds to a site also reported to be phosphorylated by ataxia telangiectasia and Rad3-related. Three serine/proline sites were identified for Cdk2 and Cdk1, and a unique site was phosphorylated by CK2. We raised specific anti-phosphopeptide antibodies and found that all the sites identified in vitro are also phosphorylated in cells. Importantly, although all the Cdc7-dependent Mcm2 phosphosites fluctuate during the cell cycle with kinetics similar to Cdc7 kinase activity and Cdc7 protein levels, phosphorylation of Mcm2 in the putative cyclin-dependent kinase (Cdk) consensus sites is constant during the cell cycle. Furthermore, our analysis indicates that the majority of the Mcm2 isoforms phosphorylated by Cdc7 are not stably associated with chromatin. This study forms the basis for understanding how MCM functions are regulated by multiple kinases within the cell cycle and in response to external perturbations.  相似文献   

18.
ABSTRACT: BACKGROUND: The replicative helicase in eukaryotic cells is comprised of minichromosome maintenance (Mcm) proteins 2 through 7 (Mcm2-7) and is a key target for regulation of cell proliferation. In addition, it is regulated in response to replicative stress. One of the protein kinases that targets Mcm2-7 is the Dbf4-dependent kinase Cdc7 (DDK). In a previous study, we showed that alanine mutations of the DDK phosphorylation sites at S164 and S170 in Saccharomyces cerevisiae Mcm2 result in sensitivity to caffeine and methyl methanesulfonate (MMS) leading us to suggest that DDK phosphorylation of Mcm2 is required in response to replicative stress. RESULTS: We show here that a strain with the mcm2 allele lacking DDK phosphorylation sites (mcm2AA) is also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU) and to the base analogue 5-fluorouracil (5-FU) but not the radiomimetic drug, phleomycin. We screened the budding yeast non-essential deletion collection for synthetic lethal interactions with mcm2AA and isolated deletions that include genes involved in the control of genome integrity and oxidative stress. In addition, the spontaneous mutation rate, as measured by mutations in CAN1, was increased in the mcm2AA strain compared to wild type, whereas with a phosphomimetic allele (mcm2EE) the mutation rate was decreased. These results led to the idea that the mcm2AA strain is unable to respond properly to DNA damage. We examined this by screening the deletion collection for suppressors of the caffeine sensitivity of mcm2AA. Deletions that decrease spontaneous DNA damage, increase homologous recombination or slow replication forks were isolated. Many of the suppressors of caffeine sensitivity suppressed other phenotypes of mcm2AA including sensitivity to genotoxic drugs, the increased frequency of cells with RPA foci and the increased mutation rate. CONCLUSIONS: Together these observations point to a role for DDK-mediated phosphorylation of Mcm2 in the response to replicative stress, including some forms of DNA damage. We suggest that phosphorylation of Mcm2 modulates Mcm2-7 activity resulting in the stabilization of replication forks in response to replicative stress.  相似文献   

19.
Cdc7 kinase, conserved from yeasts to human, plays important roles in DNA replication. However, the mechanisms by which it stimulates initiation of DNA replication remain largely unclear. We have analyzed phosphorylation of MCM subunits during cell cycle by examining mobility shift on SDS-PAGE. MCM4 on the chromatin undergoes specific phosphorylation during S phase. Cdc7 phosphorylates MCM4 in the MCM complexes as well as the MCM4 N-terminal polypeptide. Experiments with phospho-amino acid-specific antibodies indicate that the S phase-specific mobility shift is due to the phosphorylation at specific N-terminal (S/T)(S/T)P residues of the MCM4 protein. These specific phosphorylation events are not observed in mouse ES cells deficient in Cdc7 or are reduced in the cells treated with siRNA specific to Cdc7, suggesting that they are mediated by Cdc7 kinase. The N-terminal phosphorylation of MCM4 stimulates association of Cdc45 with the chromatin, suggesting that it may be an important phosphorylation event by Cdc7 for activation of replication origins. Deletion of the N-terminal non-conserved 150 amino acids of MCM4 results in growth inhibition, and addition of amino acids carrying putative Cdc7 target sequences partially restores the growth. Furthermore, combination of MCM4 N-terminal deletion with alanine substitution and deletion of the N-terminal segments of MCM2 and MCM6, respectively, which contain clusters of serine/threonine and are also likely targets of Cdc7, led to an apparent nonviable phenotype. These results are consistent with the notion that the N-terminal phosphorylation of MCM2, MCM4, and MCM6 may play functionally redundant but essential roles in initiation of DNA replication.  相似文献   

20.
Cdc45, which binds to the minichromosomal maintenance (Mcm) proteins, has a pivotal role in the initiation and elongation steps of chromosomal DNA replication in eukaryotes. Here we show that throughout the cell cycle in Saccharomyces cerevisiae, Cdc45 forms a complex with a novel factor, Sld3. Consistently, Sld3 and Cdc45 associate simultaneously with replication origins in the chromatin immunoprecipitation assay: both proteins associate with early-firing origins in G(1) phase and with late-firing origins in late S phase. Moreover, the origin associations of Sld3 and Cdc45 are mutually dependent. The temperature-sensitive sld3 mutation confers a defect in DNA replication at the restrictive temperature and reduces an interaction not only between Sld3 and Cdc45, but also between Cdc45 and Mcm2. These results suggest that the Sld3-Cdc45 complex associates with replication origins through Mcm proteins. At the restrictive temperature in sld3-5 cells, replication factor A, a single-strand DNA binding protein, does not associate with origins. Therefore, the origin association of Sld3-Cdc45 complex is prerequisite for origin unwinding in the initiation of DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号