首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects and modes of action of certain lipid second messengers and protein kinase C regulators, such as sphingosine, lysophosphatidylcholine (lyso-PC), and oleic acid, on Na,K-ATPase and sodium pump were examined. Inhibition of purified rat brain synaptosome Na,K-ATPase by these lipid metabolites, unlike that by ouabain, was subject to membrane dilution (i.e. inhibition being counteracted by increasing amounts of membrane lipids). Kinetic analysis, using the purified enzyme, indicated that sphingosine and lyso-PC were likely to interact, directly or indirectly, with Na+-binding sites of Na,K-ATPase located at the intracellular face of plasma membranes, a conclusion also supported by studies on Na,K-ATPase and 22Na uptake using the inside-out vesicles of human erythrocyte membranes. The studies also showed that ouabain (but not sphingosine and lyso-PC) increased the affinity constant (K0.5) for K+, whereas sphingosine and lyso-PC (but not ouabain) increased K0.5 for Na+. Sphingosine and lyso-PC inhibited 86Rb uptake by intact human leukemia HL-60 cells at potencies comparable to those for inhibitions of purified Na,K-ATPase and protein kinase C. It is suggested that Na,K-ATPase (sodium pump) might represent an additional target system, besides protein kinase C, for sphingosine and possibly other lipid second messengers.  相似文献   

2.
Interactions of certain naturally occurring, amphiphilic polypeptides with membranes were investigated. Mastoparan (wasp venom toxin), melittin (bee venom toxin), cardiotoxin (cobra venom toxin), and polymyxin B (antibacterial antibiotic) inhibited protein kinase C stimulated by phosphatidylserine bilayer or arachidonate monomer and blocked binding of [3H] phorbol 12,13-dibutyrate to protein kinase C in the presence of phosphatidylserine bilayer, with IC50 values (concentrations causing 50% inhibition) of 1-8 microM. Mastoparan and polymyxin B were much less inhibitory (IC50, 10-20 microM), whereas melittin and cardiotoxin were similarly inhibitory (IC50, 1-4 microM), when protein kinase C was activated instead by synaptosomal membrane. Kinetic analysis indicate that mastoparan inhibited protein kinase C, assayed using phosphatidylserine or synaptosomal membrane as the phospholipid cofactor, competitively with the phospholipid cofactor, in a mixed manner with CaCl2 or diacylglycerol, noncompetitively with histone, and uncompetitively with ATP, with apparent Ki values of 1.6-18.7 microM. Inhibition of Na,K-ATPase in the membrane by these polypeptides had relative potencies different from those for their inhibition of protein kinase C activated by the same membrane preparation; mastoparan and melittin inhibited the two activities with comparable potencies, but polymyxin B and cardiotoxin were far less effective in inhibiting Na,K-ATPase. The same relative inhibitory potencies of the polypeptides (melittin greater than mastoparan greater than polymyxin B) for inhibition of Na,K-ATPase were also noted for their inhibition of Ca2+/calmodulin-dependent protein kinase II, 86Rb uptake (Na+ pump) by HL60 cells and the phorbol ester-induced differentiation of the leukemia cells. These findings were consistent with discrete interactions of the polypeptides with functionally distinct sites on the membrane, leading to differential inhibition of biological activities associated with the membrane. Actions of certain polypeptides appeared to be more specific compared to those of lipid second messengers such as lyso-phosphatidylcholine and sphingosine, and the antineoplastic ether lipid analogs such as 1-O-octadecyl-2-methyl-rac-glycero-3-ophosphocholine.  相似文献   

3.
Woolcock K  Specht SC 《Life sciences》2006,78(15):1653-1661
Adenylyl cyclase is activated by prostaglandin E and inhibited by mu-opioids. Since cAMP-related events influence the activity of the Na Pump and its biochemical correlate Na,K-ATPase in many systems, we tested the hypothesis that prostaglandin E1 and [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO), a mu-opioid agonist, have opposing actions on Na,K-ATPase activity. Studies were conducted with alamethicin-permeabilized SH-SY5Y human neuroblastoma cells. Prostaglandin E1 (1 microM) transiently inhibited Na,K-ATPase activity for 10-15 min. A direct activator of protein kinase A, 8-Br-cAMP (150 and 500 microM), also inhibited, but more rapidly and for a shorter duration. Both DAMGO (1 microM) and Rp-adenosine 3',5'-cyclic monophosphorothioate (500 microM), a protein kinase A-inhibitor, reversed the inhibitory effect of prostaglandin E1. DAMGO alone (1 microM) stimulated Na,K-ATPase activity up to nearly three-fold control activity. The stimulatory action of DAMGO was blocked by cyclosporine A (2 microM), an inhibitor of calcineurin, and was dependent on Ca2+ entry through nifedipine-sensitive Ca2+ channels. In the presence of 1 mM EGTA, DAMGO inhibited Na,K-ATPase activity. DAMGO-induced inhibition was blocked by the inositol 1,4,5-trisphosphate receptor antagonist xestospongin C (1 microM). Na,K-ATPase is poised to modulate neuronal excitability through its roles in maintaining the membrane potential and transmembrane ion gradients. The differential effects of prostaglandin E1 and opioids on Na,K-ATPase activity may be related to their actions in hyperalgesia.  相似文献   

4.
FXYD1 (phospholemman) is a member of an evolutionarily conserved family of membrane proteins that regulate the function of the Na,K-ATPase enzyme complex in specific tissues and specific physiological states. In heart and skeletal muscle sarcolemma, FXYD1 is also the principal substrate of hormone-regulated phosphorylation by c-AMP dependent protein kinase A and by protein kinase C, which phosphorylate the protein at conserved Ser residues in its cytoplasmic domain, altering its Na,K-ATPase regulatory activity. FXYD1 adopts an L-shaped α-helical structure with the transmembrane helix loosely connected to a cytoplasmic amphipathic helix that rests on the membrane surface. In this paper we describe NMR experiments showing that neither PKA phosphorylation at Ser68 nor the physiologically relevant phosphorylation mimicking mutation Ser68Asp induces major changes in the protein conformation. The results, viewed in light of a model of FXYD1 associated with the Na,K-ATPase α and β subunits, indicate that the effects of phosphorylation on the Na,K-ATPase regulatory activity of FXYD1 could be due primarily to changes in electrostatic potential near the membrane surface and near the Na+/K+ ion binding site of the Na,K-ATPase α subunit.  相似文献   

5.
The purpose of this study was to define mechanisms by which dopamine (DA) regulates the Na,K-ATPase in alveolar epithelial type 2 (AT2) cells. The Na,K-ATPase activity increased by twofold in cells incubated with either 1 μM DA or a dopaminergic D1 agonist, fenoldopam, but not with the dopaminergic D2 agonist quinpirole. The increase in activity paralleled an increase in Na,K-ATPase α1 and β1 protein abundance in the basolateral membrane (BLM) of AT2 cells. This increase in protein abundance was mediated by the exocytosis of Na,K-pumps from late endosomal compartments into the BLM. Down-regulation of diacylglycerol-sensitive types of protein kinase C (PKC) by pretreatment with phorbol 12-myristate 13-acetate or inhibition with bisindolylmaleimide prevented the DA-mediated increase in Na,K-ATPase activity and exocytosis of Na,K-pumps to the BLM. Preincubation of AT2 cells with either 2-[1-(3-dimethylaminopropyl)-5-methoxyindol-3-yl]-3-(1H-indol-3-yl)maleimide (Gö6983), a selective inhibitor of PKC-δ, or isozyme-specific inhibitor peptides for PKC-δ or PKC-ε inhibited the DA-mediated increase in Na,K-ATPase. PKC-δ and PKC-ε, but not PKC-α or -β, translocated from the cytosol to the membrane fraction after exposure to DA. PKC-δ– and PKC-ε–specific peptide agonists increased Na,K-ATPase protein abundance in the BLM. Accordingly, dopamine increased Na,K-ATPase activity in alveolar epithelial cells through the exocytosis of Na,K-pumps from late endosomes into the basolateral membrane in a mechanism-dependent activation of the novel protein kinase C isozymes PKC-δ and PKC-ε.  相似文献   

6.
In this study we compared the protein kinase dependent regulation of gastric H,K-ATPase and Na,K-ATPase. The protein kinase A/protein kinase C (PKA/PKC) phosphorylation profile of H,K-ATPase was very similar to the one found in the Na,K-ATPase. PKC phosphorylation was taking place in the N-terminal part of the alpha-subunit with a stoichiometry of approximately 0.6 mol Pi/mole alpha-subunit. PKA phosphorylation was in the C-terminal part and required detergent, as is also found for the Na,K-ATPase. The stoichiometry of PKA-induced phosphorylation was approximately 0.7 mol Pi/mole alpha-subunit. Controlled proteolysis of the N-terminus abolished PKC phosphorylation of native H,K-ATPase. However, after detergent treatment additional C-terminal PKC sites became exposed located at the beginning of the M5M6 hairpin and at the cytoplasmic L89 loop close to the inner face of the plasma membrane. N-terminal PKC phosphorylation of native H,K-ATPase alpha-subunit was found to stimulate the maximal enzyme activity by 40-80% at saturating ATP, depending on pH. Thus, a direct modulation of enzyme activity by PKC phosphorylation could be demonstrated that may be additional to the well-known regulation of acid secretion by recruitment of H,K-ATPase to the apical membranes of the parietal cells. Moreover, a distinct difference in the regulation of H,K-ATPase and Na,K-ATPase is the apparent absence of any small regulatory proteins associated with the H,K-ATPase.  相似文献   

7.
The purpose of this study was to define the role of the Rho family of small GTPases in the beta-adrenergic regulation of the Na,K-ATPase in alveolar epithelial cells (AEC). The beta-adrenergic receptor agonist isoproterenol (ISO) increased the Na,K-ATPase protein abundance at the plasma membrane and activated RhoA in a time-dependent manner. AEC pretreated with mevastatin, a specific inhibitor of prenylation, or transfected with the dominant negative RhoAN19, prevented ISO-mediated Na,K-ATPase exocytosis to the plasma membrane. The ISO-mediated activation of RhoA in AEC occurred via beta2-adrenergic receptors and involved Gs-PKA as demonstrated by incubation with the protein kinase A (PKA)-specific inhibitors H89 and PKI (peptide specific inhibitor), and Gi, as incubation with pertussis toxin or cells transfected with a minigene vector for Gi inhibited the ISO-mediated RhoA activation. However, cells transfected with minigene vectors for G12 and G13 did not prevent RhoA activation by ISO. Finally, the ISO-mediated Na,K-ATPase exocytosis was regulated by the Rho-associated kinase (ROCK), as preincubation with the specific inhibitor Y-27632 or transfection with dominant negative ROCK, prevented the increase in Na,K-ATPase at the plasma membrane. Accordingly, ISO regulates Na,K-ATPase exocytosis in AEC via the activation of beta2-adrenergic receptor, Gs, PKA, Gi, RhoA, and ROCK.  相似文献   

8.
9.
Dietary supplementation with fish oil that contains omega-3 polyunsaturated fatty acids has been shown to enhance bone density as well as duodenal calcium uptake in rats. The latter process is supported by membrane ATPases. The present in vitro study was undertaken to test the effect of omega-3 fatty acids on ATPase activity in isolated basolateral membranes from rat duodenal enterocytes. Ca-ATPase in calmodulin-stripped membranes was activated in a biphasic manner by docosahexanoic acid (DHA) (10-30 microg/ml) but not by eicosapentanoic acid (EPA). This effect was blocked partially by 0.5 microM calphostin (a protein kinase C blocker). DHA inhibited Na,K-ATPase (-49% of basal activity, [DHA]=30 microg/ml, P <0.01). This effect could be reversed partially by 50 microM genistein, a tyrosine kinase blocker. EPA also inhibited Na,K-ATPase: (-47% of basal activity, [EPA]=30 microg/ml, P <0.01), this effect was partially reversed by 100 microM indomethacin, a cyclo-oxygenase blocker. Omega-3 fatty acids are thus involved in multiple signalling effects that effect ATPases in BLM.  相似文献   

10.
11.
A Arora  M Esmann  D Marsh 《Biochemistry》1999,38(31):10084-10091
The microsecond motions of spin-labeled lipids associated with the Na(+)/K(+)-transporting ATP hydrolase (Na,K-ATPase) in native and tryptically shaved membranes from Squalus acanthias have been studied by progressive saturation electron spin resonance (ESR). This includes both the segmental mobility of the lipid chains and the exchange dynamics of the lipids interacting directly with the protein. The lipids at the protein interface display a temperature-dependent chain mobility on the submicrosecond time scale. Exchange of these lipids with those in the bulk bilayer regions of the membrane takes place on the time scale of the nitroxide spin-lattice relaxation, i.e., in the microsecond regime. The off-rates for exchange directly reflect the specificity of ionized fatty acids relative to protonated fatty acids for interaction with the Na,K-ATPase. These essential features of the lipid dynamics at the intramembranous protein surface, namely, a temperature-dependent exchange on the microsecond time scale that reflects the lipid selectivity, are preserved on removing the extramembranous parts of the Na,K-ATPase by extensive trypsinization.  相似文献   

12.
The influence of Lyn kinase on Na,K-ATPase in porcine lens epithelium   总被引:3,自引:0,他引:3  
Na,K-ATPase is essential for the regulation of cytoplasmic Na+ and K+ levels in lens cells. Studies on the intact lens suggest activation of tyrosine kinases may inhibit Na,K-ATPase function. Here, we tested the influence of Lyn kinase, a Src-family member, on tyrosine phosphorylation and Na,K-ATPase activity in membrane material isolated from porcine lens epithelium. Western blot studies indicated the expression of Lyn in lens cells. When membrane material was incubated in ATP-containing solution containing partially purified Lyn kinase, Na,K-ATPase activity was reduced by 38%. Lyn caused tyrosine phosphorylation of multiple protein bands. Immunoprecipitation and Western blot analysis showed Lyn treatment causes an increase in density of a 100-kDa phosphotyrosine band immunopositive for Na,K-ATPase 1 polypeptide. Incubation with protein tyrosine phosphatase 1B (PTP-1B) reversed the Lyn-dependent tyrosine phosphorylation increase and the change of Na,K-ATPase activity. The results suggest that Lyn kinase treatment of a lens epithelium membrane preparation is able to bring about partial inhibition of Na,K-ATPase activity associated with tyrosine phosphorylation of multiple membrane proteins, including the Na,K-ATPase 1 catalytic subunit. lens; Na,K-ATPase; tyrosine phosphorylation; Lyn  相似文献   

13.
Phospholemman (FXYD1), mainly expressed in heart and skeletal muscle, is a member of the FXYD protein family, which has been shown to decrease the apparent K(+) and Na(+) affinity of Na,K-ATPase ( Crambert, G., Fuzesi, M., Garty, H., Karlish, S., and Geering, K. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 11476-11481 ). In this study, we use the Xenopus oocyte expression system to study the role of phospholemman phosphorylation by protein kinases A and C in the modulation of different Na,K-ATPase isozymes present in the heart. Phosphorylation of phospholemman by protein kinase A has no effect on the maximal transport activity or on the apparent K(+) affinity of Na,K-ATPase alpha1/beta1 and alpha2/beta1 isozymes but increases their apparent Na(+) affinity, dependent on phospholemman phosphorylation at Ser(68). Phosphorylation of phospholemman by protein kinase C affects neither the maximal transport activity of alpha1/beta1 isozymes nor the K(+) affinity of alpha1/beta1 and alpha2/beta1 isozymes. However, protein kinase C phosphorylation of phospholemman increases the maximal Na,K-pump current of alpha2/beta1 isozymes by an increase in their turnover number. Thus, our results indicate that protein kinase A phosphorylation of phospholemman has similar functional effects on Na,K-ATPase alpha1/beta and alpha2/beta isozymes and increases their apparent Na(+) affinity, whereas protein kinase C phosphorylation of phospholemman modulates the transport activity of Na,K-ATPase alpha2/beta but not of alpha1/beta isozymes. The complex and distinct regulation of Na,K-ATPase isozymes by phosphorylation of phospholemman may be important for the efficient control of heart contractility and excitability.  相似文献   

14.
Na,K-ATPase activity has been identified in the apical membrane of rat distal colon, whereas ouabain-sensitive and ouabain-insensitive H,K-ATPase activities are localized solely to apical membranes. This study was designed to determine whether apical membrane Na,K-ATPase represented contamination of basolateral membranes or an alternate mode of H,K-ATPase expression. An antibody directed against the H, K-ATPase alpha subunit (HKcalpha) inhibited apical Na,K-ATPase activity by 92% but did not alter basolateral membrane Na,K-ATPase activity. Two distinct H,K-ATPase isoforms exist; one of which, the ouabain-insensitive HKcalpha, has been cloned. Because dietary sodium depletion markedly increases ouabain-insensitive active potassium absorption and HKcalpha mRNA and protein expression, Na, K-ATPase and H,K-ATPase activities and protein expression were determined in apical membranes from control and sodium-depleted rats. Sodium depletion substantially increased ouabain-insensitive H, K-ATPase activity and HKcalpha protein expression by 109-250% but increased ouabain-sensitive Na,K-ATPase and H,K-ATPase activities by only 30% and 42%, respectively. These studies suggest that apical membrane Na,K-ATPase activity is an alternate mode of ouabain-sensitive H,K-ATPase and does not solely represent basolateral membrane contamination.  相似文献   

15.
Na,K-ATPase activity of a plasma membrane fraction obtained from frog skeletal muscles was increased approximately two-fold by exposing muscles to insulin, whereas the addition of insulin to a membrane preparation suspension has no effect on Na,K-ATPase activity. The effect of insulin on Na,K-ATPase activity of whole muscles was specific to insulin and insulin derivatives that had the ability of receptor-binding and was not inhibited by actinomycin D. Insulin also induced a development of Na,K-ATPase activity in muscles whose Na,K-ATPase activity had been blocked by ouabain-pretreating. Such a insulin action was inhibited by monensin. These observations suggest that insulin stimulates the monensin-sensitive intracellular transport of membrane proteins which should be responsible for the increase in Na/K pumping activity.  相似文献   

16.
The phosphorylation of the alpha-subunit of Na+/K(+)-transporting ATPase (Na,K-ATPase) by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) was characterized in purified enzyme preparations of Bufo marinus kidney and duck salt gland and in microsomes of Xenopus oocytes. In addition, we have examined cAMP and phorbol esters, which are stimulators of PKA and PKC, respectively, for their ability to provoke the phosphorylation of alpha-subunits of Na,K-ATPase in homogenates of Xenopus oocytes. In the enzyme from the duct salt gland, phosphorylation by PKA and PKC occurs on serine and threonine residues, whereas in the enzyme from B. marinus kidney and Xenopus oocytes, phosphorylation by PKA occurs only on serine residues. Phosphopeptide analysis indicates that a site phosphorylated by PKA resides in a 12-kDa fragment comprising the C terminus of the polypeptide. Studies of phosphorylation performed on homogenates of Xenopus oocytes show that not only endogenous oocyte Na,K-ATPase but also exogenous Xenopus Na,K-ATPase expressed in the oocyte by microinjection of cRNA can be phosphorylated in response to stimulation of oocyte PKA and PKC. In conclusion, these data are consistent with the possibility that the alpha-subunit of Na,K-ATPase can serve as a substrate for PKA and PKC in vivo.  相似文献   

17.
18.
In Na,K-ATPase membrane preparations from shark rectal glands, we have previously identified an FXYD domain-containing protein, phospholemman-like protein from shark, PLMS. This protein was shown to associate and modulate shark Na,K-ATPase activity in vitro. Here we describe the complete coding sequence, expression, and cellular localization of PLMS in the rectal gland of the shark Squalus acanthias. The mature protein contained 74 amino acids, including the N-terminal FXYD motif and a C-terminal protein kinase multisite phosphorylation motif. The sequence is preceded by a 20 amino acid candidate cleavable signal sequence. Immunogold labeling of the Na,K-ATPase alpha-subunit and PLMS showed the presence of alpha and PLMS in the basolateral membranes of the rectal gland cells and suggested their partial colocalization. Furthermore, through controlled proteolysis, the C terminus of PLMS containing the protein kinase phosphorylation domain can be specifically cleaved. Removal of this domain resulted in stimulation of maximal Na,K-ATPase activity, as well as several partial reactions. Both the E1 approximately P --> E2-P reaction, which is partially rate-limiting in shark, and the K+ deocclusion reaction, E2(K) --> E1, are accelerated. The latter may explain the finding that the apparent Na+ affinity was increased by the specific C-terminal PLMS truncation. Thus, these data are consistent with a model where interaction of the phosphorylation domain of PLMS with the Na,K-ATPase alpha-subunit is important for the modulation of shark Na,K-ATPase activity.  相似文献   

19.
Fibroblast growth factor-10 upregulates Na,K-ATPase via the MAPK pathway   总被引:5,自引:0,他引:5  
We studied the effects of fibroblast growth factor (FGF-10) on alveolar epithelial cell (AEC) Na,K-ATPase regulation. Within 30 min FGF-10 increased Na,K-ATPase activity and alpha1 protein abundance by 2.5-fold at the AEC plasma membrane. Pretreatment of AEC with the mitogen-activated protein kinase (MAPK) inhibitor U0126, a Grb2-SOS inhibitor (SH3-b-p peptide), or a Ras inhibitor (farnesyl transferase inhibitor (FTI 277)), as well as N17-AEC that express a Ras dominant negative protein each prevented FGF-10-mediated Na,K-ATPase recruitment to the AEC plasma membrane. Accordingly, we provide first evidence that FGF-10 upregulates (short-term) the Na,K-ATPase activity in AEC via the Grb2-SOS/Ras/MAPK pathway.  相似文献   

20.
Although the intracellular fatty acid binding proteins have been investigated for nearly two decades and purified proteins are now available, little is known regarding the function of these proteins in intact cells. Therefore, L-cell fibroblasts transfected with cDNA encoding for rat liver fatty acid binding protein (L-FABP) were examined as to whether L-FABP expression in intact cells modifies plasma membrane enzyme activities, fluidity, and lipids. Plasma membrane Na/K-ATPase activity was 65.9 +/- 18.7 and 38.6 +/- 22.8 (P less than 0.001) nmol/mg protein x min for control and high-expression transfected cells, respectively. Consistent with this observation, [3H] ouabain binding to whole cells was significantly decreased from 3.7 +/- 0.3 to 2.0 +/- 0.8 pmol ouabain bound/mg cell protein in control and high-expression cells, respectively, whereas the cell's affinity for ouabain was not significantly altered. Unexpectedly, Western blot analysis indicated that transfected cells had higher levels of Na+, K(+)-ATPase protein; in contrast, the activities of 5'-nucleotidase and Mg-ATPase were unaltered. The effects of L-FABP expression on plasma membrane Na/K-ATPase function appeared to be mediated through alterations in plasma membrane lipids and/or structure. The plasma membrane cholesterol/phospholipid ratio decreased and the bulk plasma membrane fluidity increased in the high-expression cells. In conclusion, plasma membrane Na/K-ATPase activity in L cells may be regulated in part through expression of cytosolic L-FABP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号