首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Interactions between dendritic cells (DCs) and T cells play a pivotal role in the regulation and maintenance of immune responses. In cancer patients, various immunological abnormalities have been observed in these immune cells. Here, we investigated proportions and the phenotype of DCs and the cytokine profile of T-cell subsets in the peripheral blood of patients with squamous cell carcinoma of the head and neck (SCCHN), using multicolor flow cytometry. The percentage of myeloid (CD11c+), but not plasmacytoid (CD123+) DCs, was significantly lower (P<0.05) and expression of HLA-DR was significantly decreased in total and myeloid DCs of cancer patients compared to healthy donors. Simultaneous analyses of T-cell subsets in the patients’ circulation showed significantly increased proportions of CD4+ T cells expressing Th1 and Th2 cytokines after ex vivo stimulation without any skewing in the Th1/Th2 ratio. The relative level of HLA-DR expression on myeloid or total DCs positively correlated with the Th1/Th2 ratio (P<0.01), and the proportion of total circulating DCs was inversely correlated with that of regulatory CD4+CD25+ T cells (P<0.01). These results suggest that the decreased proportion of circulating DCs and decreased HLA-DR expression in DCs may have a major impact on systemic immune responses in patients with SCCHN.  相似文献   

2.
Infection with the parasite Toxoplasma gondii leads to the induction of a Th1-type response dominated by IFN-gamma production and control of this pathogen. Cells of the innate immune system are essential in initiating this response both through the production of IL-12 as well as the presentation of parasite-derived Ags to MHC-restricted T cells. Although dendritic cells (DCs) have been implicated in these events, the contribution of individual DC populations remains unclear. Therefore, multiparameter flow cytometry was used to identify and characterize subsets of murine DCs during acute toxoplasmosis. This approach confirmed that infection leads to the expansion and activation of conventional DC (cDC) subsets. Unexpectedly, however, this analysis further revealed that plasmacytoid DCs are also expanded and that these cells up-regulate MHC class II and costimulatory molecules associated with their acquired ability to prime naive CD4(+) T cells. Furthermore, T. gondii-activated plasmacytoid DCs produce high levels of IL-12 and both plasmacytoid DC maturation and cytokine production are dependent on TLR11. Together these studies suggest that pDCs are a prominent DC subset involved in the initial stages of T. gondii infection, presenting parasite Ags and producing cytokines that are important for controlling infection.  相似文献   

3.
Dendritic cells (DCs) have a unique ability to stimulate naive T cells. Recent evidence suggests that distinct DC subsets direct different classes of immune responses in vitro and in vivo. In humans, the monocyte-derived CD11c+ DCs induce T cells to produce Th1 cytokines in vitro, whereas the CD11c- plasmacytoid T cell-derived DCs elicit the production of Th2 cytokines. In this paper we report that administration of either Flt3-ligand (FL) or G-CSF to healthy human volunteers dramatically increases distinct DC subsets, or DC precursors, in the blood. FL increases both the CD11c+ DC subset (48-fold) and the CD11c- IL-3R+ DC precursors (13-fold). In contrast, G-CSF only increases the CD11c- precursors (>7-fold). Freshly sorted CD11c+ but not CD11c- cells stimulate CD4+ T cells in an allogeneic MLR, whereas only the CD11c- cells can be induced to secrete high levels of IFN-alpha, in response to influenza virus. CD11c+ and CD11c- cells can mature in vitro with GM-CSF + TNF-alpha or with IL-3 + CD40 ligand, respectively. These two subsets up-regulate MHC class II costimulatory molecules as well as the DC maturation marker DC-lysosome-associated membrane protein, and they stimulate naive, allogeneic CD4+ T cells efficiently. These two DC subsets elicit distinct cytokine profiles in CD4+ T cells, with the CD11c- subset inducing higher levels of the Th2 cytokine IL-10. The differential mobilization of distinct DC subsets or DC precursors by in vivo administration of FL and G-CSF offers a novel strategy to manipulate immune responses in humans.  相似文献   

4.
Granzyme B (grB) is a serine proteinase released by cytotoxic lymphocytes (CLs) to kill abnormal cells. GrB-mediated apoptotic pathways are conserved in nucleated cells; hence, CLs require mechanisms to protect against ectopic or misdirected grB. The nucleocytoplasmic serpin, proteinase inhibitor 9 (PI-9), is a potent inhibitor of grB that protects cells from grB-mediated apoptosis in model systems. Here we show that PI-9 is present in CD4(+) cells, CD8(+) T cells, NK cells, and at lower levels in B cells and myeloid cells. PI-9 is up-regulated in response to grB production and degranulation, and associates with grB-containing granules in activated CTLs and NK cells. Intracellular complexes of PI-9 and grB are evident in NK cells, and overexpression of PI-9 enhances CTL potency, suggesting that cytoplasmic grB, which may threaten CL viability, is rapidly inactivated by PI-9. Because dendritic cells (DCs) acquire characteristics similar to those of target cells to activate naive CD8(+) T cells and therefore may also require protection against grB, we investigated the expression of PI-9 in DCs. PI-9 is evident in thymic DCs (CD3(-), CD4(+), CD8(-), CD45(+)), tonsillar DCs, and DC subsets purified from peripheral blood (CD16(+) monocytes and CD123(+) plasmacytoid DCs). Furthermore, PI-9 is expressed in monocyte-derived DCs and is up-regulated upon TNF-alpha-induced maturation of monocyte-derived DCs. In conclusion, the presence and subcellular localization of PI-9 in leukocytes and DCs are consistent with a protective role against ectopic or misdirected grB during an immune response.  相似文献   

5.
Mature dendritic cells (DCs) have the capacity to induce efficient primary T cell response and effector cell differentiation. Thus, these cells are a major tool in the design of various immunotherapeutic protocols. We have tested the capacity of different subsets of matured DCs pulsed with a peptide to induce the differentiation of naive CD8 T cells into memory cells in vivo. Flt3 ligand (FL) induces the differentiation of conventional DCs (cDCs) and plasmacytoid DCs (PDCs) from murine bone marrow precursors in vitro. After maturation, both subsets become strong stimulators of Ag-specific T cell responses in vitro. However, the in vivo T cell stimulatory capacity of these DC subsets has not been studied in detail. In the present study, we demonstrate that mature FL-generated DCs induce efficient peptide-specific CD8 T cell response and memory cell differentiation in vivo. This is mainly due to the cDC subset because the PDC subset induced only a negligible primary CD8 response without detectable levels of memory CD8 T cell differentiation. Thus, in vitro FL-generated mature cDCs, but not PDCs, are potent stimulators of peptide-specific CD8 T cell responses and memory generation in vivo.  相似文献   

6.
Expression of the physiological cellular prion protein (PrP(C)) is remarkably regulated during differentiation and activation of cells of the immune system. Among these, dendritic cells (DCs) display particularly high levels of membrane PrP(C), which increase upon maturation, in parallel with that of molecules involved in Ag presentation to T cells. Freshly isolated mouse Langerhans cells, dermal DCs, and DCs from thymus, spleen, and mesenteric lymph nodes expressed low to intermediate levels of PrP(C). Highest levels of both PrP(C) and MHC class II molecules were displayed by lymph node CD8alpha(int) DCs, which represent fully mature cells having migrated from peripheral tissues. Maturation induced by overnight culture resulted in increased levels of surface PrP(C), as did in vivo DC activation by bacterial LPS. Studies on Fms-like tyrosine kinase 3 ligand bone marrow-differentiated B220(-) DCs confirmed that PrP(C) expression followed that of MHC class II and costimulatory molecules, and correlated with IL-12 production in response to TLR-9 engagement by CpG. However, at variance with conventional DCs, B220(+) plasmacytoid DCs isolated from the spleen, or in vitro differentiated, did not significantly express PrP(C), both before and after activation by TLR-9 engagement. PrP knockout mice displayed higher numbers of spleen CD8alpha(+) DCs, but no significant differences in their maturation response to stimulation through TLR-4 and TLR-9 were noticed. Results are discussed in relation to the functional relevance of PrP(C) expression by DCs in the induction of T cell responses, and to the pathophysiology of prion diseases.  相似文献   

7.
The evidence that dendritic cell (DC) subsets produce differential cytokines in response to specific TLR stimulation is robust. However, the role of TLR stimulation in Ag presentation and phenotypic maturation among DC subsets is not clear. Through the adjuvanticity of a novel mannosylated Ag, mannosylated dendrimer OVA (MDO), as a pathogen-associated molecular pattern Ag, we characterized the functionality of GM-CSF/IL-4-cultured bone marrow DC and Flt3 ligand (Flt3-L) DC subsets by Ag presentation and maturation assays. It was demonstrated that both bone marrow DCs and Flt3-L DCs bound, processed, and presented MDO effectively. However, while Flt3-L CD24(high) (conventional CD8(+) equivalent) and CD11b(high) (CD8(-) equivalent) DCs were adept at MDO processing by MHC class I and II pathways, respectively, CD45RA(+) plasmacytoid DCs presented MDO poorly to T cells. Successful MDO presentation was largely dependent on competent TLR4 for Ag localization and morphological/phenotypic maturation of DC subsets, despite the indirect interaction of MDO with TLR4. Furthermore, Toll/IL-1 receptor-domain-containing adaptor-inducing IFN-beta, but not MyD88, as a TLR4 signaling modulator was indispensable for MDO-induced DC maturation and Ag presentation. Taken together, our findings suggest that DC subsets differentially respond to a pathogen-associated molecular pattern-associated Ag depending on the intrinsic programming and TLRs expressed. Optimal functionality of DC subsets in Ag presentation necessitates concomitant TLR signaling critical for efficient Ag localization and processing.  相似文献   

8.
Differential regulation of human blood dendritic cell subsets by IFNs   总被引:29,自引:0,他引:29  
Based on the relative expression of CD11c and CD1a, we previously identified subsets of dendritic cells (DCs) or DC precursors in human peripheral blood. A CD1a(+)/CD11c(+) population (CD11c(+) DCs), also called myeloid DCs, is an immediate precursor of Langerhans cells, whereas a CD1a(-)/CD11c(-) population (CD11c(-) DCs), sometimes called lymphoid DCs but better known as plasmacytoid DCs, is composed of type I IFN (IFN-alpha beta)-producing cells. Here, we investigate the effects of IFN-alpha beta and IFN-gamma as well as other cytokines on CD11c(+) and CD11c(-) DC subsets, directly isolated from the peripheral blood, instead of in vitro-generated DCs. IFN-gamma and IFN-alpha, rather than GM-CSF, were the most potent cytokines for enhancing the maturation of CD11c(+) DCs. Incubation of CD11c(+) DCs with IFN-gamma also resulted in increased IL-12 production, and this IL-12 allowed DCs to increase Th1 responses by alloreactive T cells. In contrast, IFN-alpha did not induce IL-12 but, rather, augmented IL-10 production. IFN-alpha-primed matured CD11c(+) DCs induced IL-10-producing regulatory T cells; however, this process was independent of the DC-derived IL-10. On the other hand, IFN-alpha by itself neither matured CD11c(-) DCs nor altered the polarization of responding T cells, although this cytokine was a potent survival factor for CD11c(-) DCs. Unlike IFN-alpha, IL-3 was a potent survival factor and induced the maturation of CD11c(-) DCs. The IL-3-primed CD11c(-) DCs activated T cells to produce IL-10, IFN-gamma, and IL-4. Thus, CD11c(+) and CD11c(-) DC subsets play distinct roles in the cytokine network, especially their responses to IFNs.  相似文献   

9.
H2-O is a nonpolymorphic class II molecule whose biological role remains to be determined. H2-O modulates H2-M function, and it has been generally believed to be expressed only in B lymphocytes and thymic medullary epithelial cells, but not in dendritic cells (DCs). In this study, we report identification of H2-O expression in primary murine DCs. Similar to B cells, H2-O is associated with H2-M in DCs, and its expression is differentially regulated in DC subsets as well as during cell maturation and activation. Primary bone marrow DCs and plasmacytoid DCs in the spleen and lymph nodes express MHC class II and H2-M, but not the inhibitor H2-O. In contrast, myeloid DCs in secondary lymphoid organs express both H2-M and H2-O. In CD8alphaalpha(+) DCs, the ratio of H2-O to H2-M is higher than in CD8alphaalpha(-) DCs. In DCs generated from GM-CSF- and IL-4-conditioned bone marrow cultures, H2-O expression is not detected regardless of the maturation status of the cells. Administration of LPS induces in vivo activation of myeloid DCs, and this activation is associated with down-regulation of H2-O expression. Primary splenic DCs from H2-O(-/-) and H2-O(+/+) mice present exogenous protein Ags to T cell hybridomas similarly well, but H2-O(-/-) DCs induce stronger allogeneic CD4 T cell response than the H2-O(+/+) DCs in mixed leukocyte reactions. Our results suggest that H2-O has a broader role than previously appreciated in regulating Ag presentation.  相似文献   

10.
After systemic infection of mice with 104 PFU of lymphocytic choriomeningitis virus (LCMV), infected cells are detected simultaneously in various organs, including spleen and intestinal mucosa. Most notably, virus-infected cells are also present among CD11c+ dendritic cells in the subepithelial area of the small intestinal mucosa. Some of these virus-infected cells are in close spatial association with intestinal intraepithelial lymphocytes (IEL). Therefore, we compared virus-specific cytotoxic activity of CD8 splenocytes with that of IEL subsets. While ex vivo isolated TCRalphabeta+CD8alphaalpha+ IEL exert only minimal virus-specific cytotoxicity, maximum specific killing mediated by TCRalphabeta+CD8alphabeta+ IEL on day 8 postinfection exceeds maximum cytotoxic activity observed with CD8 splenocytes when assessed in vitro. Maximum cytotoxic activity of IEL is preceded by peak perforin and granzyme B mRNA expression in IEL around day 6 postinfection, suggesting a recent activation in situ. The antivirus cytotoxicity of in vivo primed IEL is further demonstrated by the protection from virus production in the spleen of mice infected with LCMV 10 h before adoptive cell transfer. These data indicate a potent priming of LCMV-specific IEL in situ after systemic LCMV infection and suggest that cytotoxic IEL markedly contribute to the elimination of virus-infected cells in the intestinal mucosa.  相似文献   

11.
Previous studies have analyzed the lymphoid and myeloid foci within the gingival mucosa in health and chronic periodontitis (CP); however, the principal APCs responsible for the formation and organizational structure of these foci in CP have not been defined. We show that in human CP tissues, CD1a(+) immature Langerhans cells predominantly infiltrate the gingival epithelium, whereas CD83(+) mature dendritic cells (DCs) specifically infiltrate the CD4(+) lymphoid-rich lamina propria. In vivo evidence shows that exacerbation of CP results in increased levels of proinflammatory cytokines that mediate DC activation/maturation, but also of counterregulatory cytokines that may prevent a Th-polarized response. Consistently, in vitro-generated monocyte-derived DCs pulsed with Porphyromonas gingivalis strain 381 or its LPS undergo maturation, up-regulate accessory molecules, and release proinflammatory (IL-1beta, PGE(2)) and Th (IL-10, IL-12) cytokines. Interestingly, the IL-10:IL-12 ratio elicited from P. gingivalis-pulsed DCs was 3-fold higher than that from Escherichia coli-pulsed DCs. This may account for the significantly (p < 0.05) lower proliferation of autologous CD4(+) T cells and reduced release of IFN-gamma elicited by P. gingivalis-pulsed DCs. Taken together, these findings suggest a previously unreported mechanism for the pathophysiology of CP, involving the activation and in situ maturation of DCs by the oral pathogen P. gingivalis, leading to release of counterregulatory cytokines and the formation of T cell-DC foci.  相似文献   

12.
Dendritic cells (DCs) residing in different tissues and exposed to different organisms are likely to have different reactivities to their surrounding environment. Many studies use in vitro generated DCs to examine functions of these cells, but such cells may not truly reflect the nature of DCs and their in situ activities in vivo. We have used magnetic label-based technique to isolate colonic DCs to conduct derailed characterization of these cells. Colonic DCs comprise mainly CD11b+ DCs with few CD8alpha+ DCs or plasmacytoid DCs. Functionally, isolated colonic DCs are able to endocytose and process proteins, undergo maturation, and stimulate T cells to proliferate. Importantly, expression of TLRs by colonic DCs is significantly lower than that of their spleen counterparts; however, they appear to be as, or more, responsive to stimulation by oligodeoxynucleotides containing CpG motif based on their cytokine production. We speculate that colonic DCs have unique reactivities differing from DCs residing in other lymphoid tissues and are adapted for the unique microenvironment of the colonic mucosa and that these cells react uniquely to their environment.  相似文献   

13.
The antiviral response is largely mediated by dendritic cells (DCs), including conventional (c) DCs that function as antigen-presenting cells, and plasmacytoid (p) DCs that produce type I interferons, making them an attractive target for viruses. We find that the Old World arenaviruses lymphocytic choriomeningitis virus clone 13 (LCMV Cl13) and Lassa virus bind pDCs to a greater extent than cDCs. Consistently, LCMV Cl13 targets pDCs early after in?vivo infection of its natural murine host and establishes a productive and robust replication cycle. pDCs coproduce type I interferons and proinflammatory cytokines, with the former being induced in both infected and uninfected pDCs, demonstrating?a dissociation from intrinsic virus replication. TLR7?globally mediates pDC responses, limits pDC viral?load, and promotes rapid innate and adaptive immune cell activation. These early events likely help dictate the outcome of infections with arenaviruses and other DC-replicating viruses and shed light on potential therapeutic targets.  相似文献   

14.
Dendritic cells (DCs) are central players of the immune response. To date, DC-based immunotherapy is explored worldwide in clinical vaccination trials with cancer patients, predominantly with ex vivo-cultured monocyte-derived DCs (moDCs). However, the extensive culture period and compounds required to differentiate them into DCs may negatively affect their immunological potential. Therefore, it is attractive to consider alternative DC sources, such as blood DCs. Two major types of naturally occurring DCs circulate in peripheral blood, myeloid DCs (mDCs) and plasmacytoid (pDCs). These DC subsets express different surface molecules and are suggested to have distinct functions. Besides scavenging pathogens and presenting antigens, DCs secrete cytokines, all of which is vital for both the acquired and the innate immune system. These immunological functions relate to Toll-like receptors (TLRs) expressed by DCs. TLRs recognize pathogen-derived products and subsequently provoke DC maturation, antigen presentation and cytokine secretion. However, not every TLR is expressed on each DC subset nor causes the same effects when activated. Considering the large amount of clinical trials using DC-based immunotherapy for cancer patients and the decisive role of TLRs in DC maturation, this review summarizes TLR expression in different DC subsets in relation to their function. Emphasis will be given to the therapeutic potential of TLR-matured DC subsets for DC-based immunotherapy.  相似文献   

15.
Xia HJ  Ma JP  Zhang GH  Han JB  Wang JH  Zheng YT 《PloS one》2011,6(12):e29036
Non-human primates such as Chinese rhesus macaques (Ch Rhs) provide good animal models for research on human infectious diseases. Similar to humans, there are two principal subsets of dendritic cells (DCs) in the peripheral blood of Ch Rhs: myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). In this study, two-color fluorescence-activated cell sorting (FACS) analyses were used to identify the main DC subsets, namely CD1c(+) mDCs and pDCs from Ch Rhs. Then, the apoptosis and immunophenotype changes of DCs subsets were first described during the acute phase of SIVmac239 infection. Both the DCs subsets showed decreased CD4 expression and enhanced CCR5 expression; in particular, those of pDCs significantly changed at most time points. Interestingly, the plasma viral loads were negatively correlated with CD4 expression, but were positively correlated with CCR5 expression of pDCs. During this period, both CD1c(+) mDCs and pDCs were activated by enhancing expressions of co-stimulatory molecules, accompanied with increase in CCR7. Either CD80 or CD86 expressed on CD1c(+) mDCs and pDCs was positively correlated with the plasma viral loads. Our analysis demonstrates that the pDCs were more prone to apoptosis after infection during the acute phase of SIVmac239 infection, which may be due to their high expressions of CD4 and CCR5. Both DCs subsets activated through elevating the expression of co-stimulatory molecules, which was beneficial in controlling the replication of SIV. However, a mere broad immune activation initiated by activated DCs may lead to tragic AIDS progression.  相似文献   

16.
We have recently identified two groups of plasmacytoid dendritic cells (pDCs) isolated from murine liver based on the expression of CD4 and other cell surface markers uniquely expressed by pDCs. Herein, we describe the identification of both CD4+ and CD4- pDCs that clearly exist in lymph nodes (LNs), spleen, liver, thymus, bone marrow, and lung. Normally, CD4+ pDCs are enriched in LNs. However, after in vivo systemic injection with bacterial CpG, a larger number of CD4- pDCs are recruited to the LNs and local inoculation by CpG drives CD4- pDCs migrating into local sentinel LNs, suggesting that CD4- pDCs are the main subpopulation migrating to the peripheral LNs. Furthermore, although both freshly isolated CD4+ pDCs and CD4- pDCs appear as an immature plasmacytoid cell and develop into a DC morphology following activation, the two subsets have strikingly different immune features, including differences in the production pattern of cytokines stimulated with CpG and in T cell activation.  相似文献   

17.
In this study, we analyzed the phenotypic and physiological consequences of the interaction of plasmacytoid dendritic cells (pDCs) with human immunodeficiency virus type 1 (HIV-1). pDCs are one cellular target of HIV-1 and respond to the virus by producing alpha/beta interferon (IFN-alpha/beta) and chemokines. The outcome of this interaction, notably on the function of bystander myeloid DC (CD11c+ DCs), remains unclear. We therefore evaluated the effects of HIV-1 exposure on these two DC subsets under various conditions. Blood-purified pDCs and CD11c+ DCs were exposed in vitro to HIV-1, after which maturation markers, cytokine production, migratory capacity, and CD4 T-cell stimulatory capacity were analyzed. pDCs exposed to different strains of infectious or even chemically inactivated, nonreplicating HIV-1 strongly upregulated the expression of maturation markers, such as CD83 and functional CCR7, analogous to exposure to R-848, a synthetic agonist of toll-like receptor-7 and -8. In addition, HIV-1-activated pDCs produced cytokines (IFN-alpha and tumor necrosis factor alpha), migrated in response to CCL19 and, in coculture, matured CD11c+ DCs, which are not directly activated by HIV. pDCs also acquired the ability to stimulate na?ve CD4+ T cells, albeit less efficiently than CD11c+ DCs. This HIV-1-induced maturation of both DC subsets may explain their disappearance from the blood of patients with high viral loads and may have important consequences on HIV-1 cellular transmission and HIV-1-specific T-cell responses.  相似文献   

18.
19.
Dendritic cells (DCs) are central for the induction of T-cell responses needed for chlamydial eradication. Here, we report the activation of two DC subsets: a classical CD11b+ (cDC) and plasmacytoid (pDC) during genital infection with Chlamydia muridarum . Genital infection induced an influx of cDC and pDC into the genital tract and its draining lymph node (iliac lymph nodes, ILN) as well as colocalization with T cells in the ILN. Genital infection with C. muridarum also stimulated high levels of costimulatory molecules on cDC central for the activation of naïve T cells in vivo . In contrast, pDC expressed low levels of most costimulatory molecules in vivo and did not secrete cytokines associated with the production of T helper (Th)1 cells in vitro . However, pDC upregulated inducible costimulatory ligand expression and produced IL-6 and IL-10 in response to chlamydial exposure in vitro . Our findings show that these two DC subsets likely have different functions in vivo . cDCs are prepared for induction of antichlamydial T-cell responses, whereas pDCs have characteristics associated with the differentiation of non-Th1 cell subsets.  相似文献   

20.
Toll-like receptors (TLRs) and retinoic acid-inducible gene I-like helicases (RLHs) are two major machineries recognizing RNA virus infection of innate immune cells. Intracellular signaling for TLRs and RLHs is mediated by their cytoplasmic adaptors, i.e., MyD88 or TRIF and IPS-1, respectively. In the present study, we investigated the contributions of TLRs and RLHs to the cytotoxic T-lymphocyte (CTL) response by using lymphocytoid choriomeningitis virus (LCMV) as a model virus. The generation of virus-specific cytotoxic T lymphocytes was critically dependent on MyD88 but not on IPS-1. Type I interferons (IFNs) are known to be important for the development of the CTL response to LCMV infection. Serum levels of type I IFNs and proinflammatory cytokines were mainly dependent on the presence of MyD88, although IPS-1−/− mice showed a decrease in IFN-α levels but not in IFN-β and proinflammatory cytokine levels. Analysis of Ifna6+/GFP reporter mice revealed that plasmacytoid dendritic cells (DCs) are the major source of IFN-α in LCMV infection. MyD88−/− mice were highly susceptible to LCMV infection in vivo. These results suggest that recognition of LCMV by plasmacytoid DCs via TLRs is responsible for the production of type I IFNs in vivo. Furthermore, the activation of a MyD88-dependent innate mechanism induces a CTL response, which eventually leads to virus elimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号