首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用解剖学、组织学和组织化学方法,对贝氏高原鳅(Triplophysa bleekeri)消化系统的胚后发育进行观察.结果表明,贝氏高原鳅仔、稚鱼呈线性生长趋势.仔鱼出膜后1~2d为内源性营养阶段,3d进入混合营养阶段,15 d进入外源性营养阶段.初孵仔鱼口凹已经出现,出膜后3d与外界相通,9d口咽腔基本发育完成.8d食道发育基本完成.初孵仔鱼消化道雏形已现,但胃肠未明显分化.出膜后64 d胃小凹处出现胃腺,胃消化功能基本完备.初孵仔鱼肠道已经分化,出膜后27 d肠基本发育完成.初孵仔鱼具有肝前体,出膜后2d肝细胞开始分化,7d肝中出现明显的中央静脉和肝细胞索,肝组织结构与成体差异不大.3d肝前端出现胰组织,4d具有胰雏形,5d完整胰出现,胰腺细胞之间具有大量嗜曙红酶原颗粒物质;9d胰岛出现,胰组织基本发育完成.64 d消化系统各部分组织结构发育基本完成.贝氏高原鳅消化道的形态发育需要很长的时间,出膜后64 d胃肠仅前端膨大,无任何弯曲;85 d胃与食道呈直角弯曲后下行,但胃肠无明显分界;120 d胃弯曲为“Z”形后笔直下行,胃肠仍无明显分界,肝为一整体,未见分叶.1龄幼鱼,消化系统解剖结构与成鱼相似,但肝缺少右叶,肠缺少胃背面的圆环形弯曲.贝氏高原鳅消化系统的胚后发育特点和仔鱼的营养方式可能体现了长江以南地区冬天繁殖鱼类消化系统胚后发育的一般规律和仔鱼的营养趋势.  相似文献   

2.
The process of differentiation of digestive tract structures in the sterlet Acipenser ruthenus (L.) larvae was studied from hatching to the beginning of exogenous feeding [9 dph (day post hatching)] using histological procedures. On the day of hatching the digestive tract was closed and completely filled with nutrients (the yolk platelets) that were successively utilized during development. A liver primordium was present in the ventral region of the yolksac. The pancreas was observed on the 2 dph. At the same time, the mouth opening took place. Glandular and nonglandular stomach and anterior and intermediate intestine developed from the yolksac walls. Gastric glands became visible on the 7 dph. The primary intestine developed into the spiral intestine. At the moment of onset of exogenous feeding the yolk material was completely exhausted and there was not mixed feeding observed in sterlet larvae. The fish started exogenous feeding on the 9 dph, which was accompanied with evacuation of melanin plug. At the end of endogenous feeding the digestive tract of sterlet larvae was developed and functional, so they could properly utilize food.  相似文献   

3.
Organ-body mass relationships were examined for 36 different organs and parts in porgies,Pagrus major, ranging in body mass from 0.0033 to 1200 g. Organs with high metabolic activity, e.g. brain, intestine, pyloric caeca and heart showed negative allometry except during very early stages in the life history. On the other hand, the trunk, which comprised mainly musculature with low metabolic activity, showed positive allometry. These results support our idea that the decline in mass-specific metabolic rate in animals with increasing body mass can be explained, partly at least, by tissues with low metabolic rates becoming heavier in proportion to the whole body with growth.  相似文献   

4.
Despite a long history of rearing Atlantic salmon in hatcheries in Norway, knowledge of molecular and physiological aspects of juvenile development is still limited. To facilitate introduction of alternative feed ingredients and feed additives during early phases, increased knowledge regarding the ontogeny of the digestive apparatus in salmon is needed. In this study, we characterized the development of the gastrointestinal tract and accessory digestive organs for five months following hatch by using histological, biochemical and molecular methods. Furthermore, the effects of a diet containing 16.7% soybean meal (SBM) introduced at start-feeding were investigated, as compared to a fishmeal based control diet. Salmon yolk sac alevins and fry were sampled at 18 time points from hatch until 144 days post hatch (dph). Histomorphological development was investigated at 7, 27, 46, 54 and 144 dph. Ontogenetic expression patterns of genes encoding key digestive enzymes, nutrient transporters, gastrointestinal peptide hormones and T-cell markers were analyzed from 13 time points by qPCR. At 7 dph, the digestive system of Atlantic salmon alevins was morphologically distinct with an early stomach, liver, pancreas, anterior and posterior intestine. About one week before the yolk sac was internalized and exogenous feeding was started, gastric glands and developing pyloric caeca were observed, which coincided with an increase in gene expression of gastric and pancreatic enzymes and nutrient transporters. Thus, the observed organs seemed ready to digest external feed well before the yolk sac was absorbed into the abdominal cavity. In contrast to post-smolt Atlantic salmon, inclusion of SBM did not induce intestinal inflammation in the juveniles. This indicates that SBM can be used in compound feeds for salmon fry from start-feeding to at least 144 dph and/or 4-5 g body weight.  相似文献   

5.
The ontogeny of the digestive tract in Cichlasoma urophthalmus was studied by means of optical microscopy from hatching to 30 days post‐hatching (dph; 855 degree days, dd). The development of the digestive system in this precocial species was a very intense and asynchronous process, which proceeded from both distal ends interiorly. At hatching, the digestive tract consisted of a straight tube with a smooth lumen dorsally attached to the yolk‐sac. The digestive accessory glands were already differentiated and eosinophilic zymogen granules were visible in the exocrine pancreas. At the onset of exogenous feeding between 5 and 6 dph (142.5–171.0 cumulative thermal units, CTU), the buccopharynx, oesophagus, intestine, liver and pancreas were almost completely differentiated, with the exception of the gastric stomach that completed its differentiation between 11 and 14 dph (313.5–399.0 CTU). The development of gastric glands at 14 dph and the differentiation of the stomach in the fundic, cardiac and pyloric regions at 19 dph (541.5 CTU) were the last major events in digestive tract development and designated the onset of the juvenile period. Remnants of yolk were still detected until 16 dph (456.0 CTU), indicating a long period of mixed nutrition that lasted between 10 and 11 days (285.0–313.5 CTU). The results of the organogenesis of larvae complement previous data on the functionality of the digestive system and represent a useful tool for establishing the functional systemic capabilities and physiological requirements of larvae to ensure optimal welfare and growth under aquaculture conditions, which might be useful for improving current larval rearing practices for this cichlid species.  相似文献   

6.
大麻哈鱼卵黄囊期仔鱼异速生长及其生态学意义   总被引:4,自引:0,他引:4  
运用实验生态学的方法, 对大麻哈鱼(Oncorhynchus keta Walbaum)卵黄囊期仔鱼的异速生长及器官优先发育在早期生存和环境适应上的生态学意义进行了研究。结果表明, 大麻哈鱼卵黄囊期仔鱼的感觉、摄食, 呼吸和游泳等器官快速分化, 许多关键器官均存在异速生长现象。在身体各部分中, 头部和尾部为正异速生长, 躯干部为负异速生长, 体高有先增大后减小的趋势; 在头部器官中, 眼径、口宽、吻长和眼后头长均为正异速生长; 在游泳器官中, 胸鳍、腹鳍、背鳍、臀鳍、背鳍基、臀鳍基和尾鳍均为正异速生长, 脂鳍为负异速生长, 其中, 腹鳍在全长25.31 mm、12日龄出现生长拐点, 但拐点前后均为正异速生长。大麻哈鱼卵黄囊期仔鱼感觉、摄食, 呼吸和游泳等器官的快速发育, 使出膜后的仔鱼在最短的时间内获得了与早期生存密切相关的各种能力, 对适应复杂多变的外界环境具有重要的生态学意义。    相似文献   

7.
The European sea bass Dicentrarchus labrax is a marine teleost important in Mediterranean aquaculture. The development of the entire digestive tract of D. labrax , including the pharynx, was investigated from early embryonic development to day 5 post hatching (dph), when the mouth opens. The digestive tract is initialized at stage 12 somites independently from two distinct infoldings of the endodermal sheet. In the pharyngeal region, the anterior infolding forms the pharynx and the first gill slits at stage 25 somites. The other three gill arches and slits are formed between 1 and 5 dph. Posteriorly, in the gut tube region, a posterior infolding forms the foregut, midgut and hindgut. The anus opens before hatching, at stage 28 somites. Associated organs (liver, pancreas and gall bladder) are all discernable from 3 dph. Some aspects of the development of the two independent initial infoldings seem original compared with data in the literature. These results are discussed and compared with embryonic and post-embryonic development patterns in other teleosts.  相似文献   

8.
A scuticociliate strain (B-2), originally isolated from an outbreak in a turbot Scophthalmus maximus (= Psetta maxima) farm in Galicia (northwestern Spain) and maintained in axenic culture, was injected intracoelomically (lethal dose 80 equivalent, LD80) in healthy turbot (50 g). Ciliate-injected fish were kept under controlled conditions in a recirculating seawater system and sampled on Days 1 through 8, 10, 12 and 14 postinfection (PI). Necropsies were conducted and included blood collection from the caudal vein and samples of liver, spleen, heart, digestive tract, kidney, gills, abdominal wall and neurocranium taken for routine histology. Mortality occurred from Day 6 until Day 12 PI and reached 66.7% by the end of the experiment. Presence of ciliates in the coelomic fluid was scarce until Day 4 PI. Parasitaemia was only observed from Day 5 until Day 10 PI and its incidence was always low. Presence of scuticociliates in tissue sections followed a progressive pattern of diffusion, with ciliates showing preference for loose connective tissue and also a clear haematophagous activity. The most severely affected organs were the pancreas and digestive tract. No special tropism for nervous tissues was observed in this study. The inflammatory reaction was variable depending on the tissue. After 3 wk, survivors had apparently managed to extinguish the infection.  相似文献   

9.
It is widely admitted that sexual selection is the responsible force behind genital traits. However, the particular mechanisms of genital evolution are still debated. Recently, studies of genital static allometry in insects have been used to elucidate such mechanisms. Insect genital traits are often reported to show negative allometry (i.e., a slope < 1), which has generated a number of ideas on how genital traits are selected. However, many studies that have inferred selection mechanisms have omitted consideration of the function of genital traits, used unreliable indicators of body size, and only rarely included female genitalia in their analysis. We investigated whether negative allometry operates for genitalia in two damselfly species (Protoneura cara and Ischnura denticollis). Damselflies are suitable for genital allometry tests as their genital function and body size indicators (wing length and head width) are relatively well known and established. First, we show that the aedeagus is used to physically remove sperm from both sperm storage organs (bursa and spermatheca) and that wing length and head width correlate positively with other morphological traits for the two study species. Second, we estimated genital allometry by measuring aedeagal length, vaginal length, bursal volume, and spermathecal volume. Our results indicate no consistent allometric pattern. Allometry for aedeagal length and vaginal width was not the same. Thus, there was no support for a negative allometric relationship. We urge researchers investigating allometry to look directly at how genitalia function rather than inferring function from allometric relationships only.  相似文献   

10.
Mats  Bjourklund 《Journal of Zoology》1994,233(4):657-668
Static nestling, adult and ontogenetic allometry were analysed in three species of finches. Static nestling allometry was very similar across age in early ontogeny and among species and could be approximated by a single matrix of phenotypic variances and covariances. The first eigenvector of this matrix showed negative allometry of bill and tarsus to mass, but positive for wing length to mass. Adult static allometry was also very similar among species, but differed from nestling pattern. In adults the bill had a positive allometry in relation to tarsus and wing, but negative to mass, while tarsus and wing were unrelated to mass. The ontogenetic allometry in each species was very similar to nestling static allometry. Viewed in relation to final size, bill characters grew more slowly than body characters, but for a longer time, which created the difference between adult and nestling allometric patterns. There were differences among species both with regard to elevation and slope of allometric coefficients, suggesting that the differences among species came about by changes in the three fundamental ontogenetic parameters namely growth rate, onset of growth and offset of growth.  相似文献   

11.
Pancreatic development and the relationship of the islets with the pancreatic, hepatic, and bile ducts were studied in the Nile tilapia, Oreochromis niloticus, from hatching to the onset of maturity at 7 months. The number of islets formed during development was counted, using either serial sections or dithizone staining of isolated islets. There was a general increase in islet number with both age and size. Tilapia housed in individual tanks grew more quickly and had more islets than siblings of the same age left in crowded conditions. The pancreas is a compact organ in early development, and at 1 day posthatch (dph) a single principal islet, positive for all hormones tested (insulin, SST-14, SST-28, glucagon, and PYY), is partially surrounded by exocrine pancreas. However, the exocrine pancreas becomes more disseminated in older fish, following blood vessels along the mesenteries and entering the liver to form a hepatopancreas. The epithelium of the pancreatic duct system from the intercalated ducts to the main duct entering the duodenum was positive for glucagon and SST-14 in 8 and 16 dph tilapia. Individual insulin-immunopositive cells were found in one specimen. At this early stage in development, therefore, the pancreatic duct epithelial cells appear to be pluripotent and may give rise to the small islets found near the pancreatic ducts in 16-37 dph tilapia. Glucagon, SST-14, and some PPY-positive enteroendocrine cells were present in the intestine of the 8 dph larva and in the first part of the intestine of the 16 dph juvenile. Glucagon and SST-14-positive inclusions were found in the apical cytoplasm of the mid-gut epithelium of the 16 dph tilapia. These hormones may have been absorbed from the gut lumen, since they are produced in both the pancreatic ducts and the enteroendocrine cells. At least three hepatic ducts join the cystic duct to form the bile duct, which runs alongside the pancreatic duct to the duodenum.  相似文献   

12.
This study evaluated the relationship between body size and digestive tract characteristics of the important predatory freshwater fish Hoplias malabaricus , which is widely distributed in South America. The allometric coefficients were calculated for the mass and standard length ( L S) relationships for two different L S groups: (1) between 20 and 100 mm (characterized as insectivores) and (2) >100 mm (characterized as piscivores). Differential growth measured from the allometric coefficient, b , between the insectivore ( b < 3) and the piscivore ( b > 3) groups was detected. Anterior intestine length and pyloric caeca zone length showed significant differences between groups. Two complementary hypotheses were developed to explain the differential growth: (1) H. malabaricus has a digestive tract adapted to a piscivorous diet, which is independent of its ontogenetic stage of development, and (2) the negative allometry observed in group 1 individuals agrees with a general behavioural strategy, allowing individuals to grow in L S during a shorter period of time.  相似文献   

13.
Oncopeltus fasciatus (Heteroptera : Lygaeidae), the milkweed bug, was bred in captivity. Sampling showed that individuals grow exponentially through their 6 developmental stages with an average linear increase per molt of 42% for the females and 41% for the males. The number of ommatidia per eye grows with negative allometry from an average of 30 in the first instar to 860 in the male and 820 in the female adult. The total number of sensilla on the 2 flagellar segments of an antenna increases with negative allometry during the 5 nymphal stages from a mean of 239 in the first instar to 2462 in the last. At this point, this allometric growth pattern is sharply broken by distinct numerical increase to 7163 on the adult flagellum. The number of teeth composing the foretibial comb, the tool for grooming the distal flagellar segment, grows with negative allometry through all 6 developmental stages. Calculations using previously published data from the migratory locust, Locusta migratoria, revealed the same growth pattern of antennal sensilla: uniform allometric growth during the nymphal development, broken by a conspicuous upward jump to the adult number of sensilla. In the American cockroach, Periplaneta americana, this growth pattern of antennal sensilla holds only for the male; the female continues the nymphal allometric growth into the adult stage. These observations on allometric growth fit three theoretical explanations: 1. Smooth allometric growth is evidence for an aut-adaptation to increasing size. 2. Ex-adaptations to novel ecological niches cause breaks in allometric growth patterns. 3. Chapman's rule, which states that increased mobility correlates with greater olfactory sensitivity, correctly predicts the observed breaks in the allometric growth patterns in the abundance of antennal sensilla.  相似文献   

14.
The growth potential of turbot Scophthalmus maximus larvae and juveniles was studied using nucleic acid‐based indices and protein variables. The experiment was carried out from 4 to 60 days post hatching (dph). A significant increase in instantaneous growth rate during metamorphosis and retarded growth rate during post‐metamorphic phase were observed. Ontogenetic patterns of DNA, RNA and protein all showed developmental stage‐specific traits. The RNA:DNA ratio decreased up to 12 dph, then increased rapidly till 19 dph and fluctuated until 35 dph followed by a decline to the end. The RNA:DNA ratio was positively correlated with growth rate of juveniles during the post‐metamorphic phase, whereas this ratio was not a sensitive indicator of growth during the pre‐metamorphic phase and metamorphosis. The protein:DNA ratio showed a similar tendency to the RNA:DNA ratio. Changes of DNA content and protein:DNA ratio revealed that growth of S. maximus performed mainly by hyperplasia from 4 to 12 dph and hypertrophy until 21 dph during the pre‐metamorphic larval phase. Growth was dominantly hypertrophical from the early‐ to mid‐metamorphosing phase and hyperplastic thereafter. The results show that the DNA content and protein:DNA ratio can evaluate growth rates of larval and juvenile S. maximus on a cellular level.  相似文献   

15.
The effects of food deprivation and environmental salinity (<1, 10 and 20) on survival, fish morphology, organization of the digestive system and body lipid reserves in European eel Anguilla anguilla during the transition from glass eel to elver, were evaluated. Fasted elvers kept in fresh water were able to withstand starvation for >60 days, while those in brackish environments (salinity 10 and 20) reached the level of irreversible starvation at 37 and 35 days, respectively. The high level of lipid reserves contained in liver inclusions and the abdominal cavity (perivisceral deposits) in elvers might explain their long resistance to starvation and differences in fasting tolerance under different salinities. Fasting resulted in a significant reduction of the elvers' condition factor and body depth. There were severe histopathological changes in the digestive system and musculature, such as the alteration of the liver organization, and hepatic glycogen and lipid content, shrinkage of enterocytes and reduction of their height, pancreas degeneration, autolysis of the oesophageal and intestinal mucosa and disarrangement of myofibrils and degeneration of trunk musculature. Degeneration of the oesophageal and intestinal mucosa as a consequence of fasting might have impaired digestive and osmoregulatory functions in feed‐deprived fish, directly affecting the tolerance to starvation and survival. Length of food deprivation was associated with a significant increase in mortality, coefficient of variation, cannibalism and point of no return at high salinities. Mortality was dependent on food deprivation and salinity concentrations. Environmental salinity directly influenced the ability of elvers to withstand starvation; once glass eels metamorphosed into elvers, they tolerated starvation better in fresh water than in brackish environments.  相似文献   

16.
Male genital structures are extremely divergent across species and sexual selection is largely responsible. Many sexually selected traits show positive allometry and have high phenotypic coefficients of variation (CV). Sexually-selected genital traits that come into contact with females during copula may be an exception to this general pattern. We compared the within species size allometry of the genital claspers, mandibular palps, and testes in a comparative study across the Scathophagidae. We additionally compared the levels of phenotypic variation in these traits and in hind tibia length. Within species, claspers typically displayed negative allometry and had low CV, indicative of stabilizing selection. In contrast, testis size was more like sexually selected display traits, typically being positively allometric and having very large CV. Palps tended to be positively allometric or isometric, and intermediate in levels of phenotypic variation, much like leg length. In spite of intraspecific stabilizing selection on the genital claspers, there has been major divergence of these characters across species. Co-ordinating editor. F. Stuefer  相似文献   

17.
Geometric morphometric techniques were used to examine allometric and non-allometric influences on sexual shape dimorphism (SShD) in the ventral cranium (skull base, palate and upper jaw) of four species of lacertid lizards (Podarcis muralis, Podarcis melisellensis, Dalmatolacerta oxycephala, Dinarolacerta mosorensis). These species differ in body shape, ecology and degree of phylogenetic relatedness. The structures of the ventral cranium that were studied are directly involved in the mechanics of feeding and are connected to the jaw musculature; these structures are potentially subject to both sexual and natural selection. Allometry accounted for a considerable degree of cranial shape variation between the sexes. Allometric shape changes between individuals with smaller cranium size and individuals with larger cranium size are mostly related to changes in the skull base showing pronounced negative allometry. The rostral part, however, either scaled isometrically or showed less pronounced negative allometry than the skull base. Non-allometric intersexual shape variation predominantly involved changes related to the jaw adductor muscle chamber, i.e., changes that are associated with biomechanically relevant traits of the jaw system in females and males. Both allometric and non-allometric shape changes appeared to be species-specific. Our results indicate that natural and sexual selection may be involved in the evolution of SShD.  相似文献   

18.
Morphological development, allometric growth and behaviour of hatchery-reared California halibut Paralichthys californicus were studied from hatching to metamorphosis (42 days post hatch, dph) at 187° C. Mean standard length ( L S) of larvae and juveniles increased from 2.1 mm at hatching to 10.5 mm at metamorphosis with the increase in length being approximately linear. Stages of morphological development were described using the alphabetic staging (A–I) used for other flatfish species. Organogenesis and differentiation were more rapid and complex in yolk-sac (hatching, stage A–3 dph, stage B), preflexion (3–19 dph, stages B–C), and flexion larvae (from 20 to 23 dph, stages D–E), as larvae developed most of their sensory, feeding, respiratory and swimming systems. After notochord flexion at 24–25 dph (stage F), most morphological changes were related to the progressive transformation from a bilateral symmetrical larva to an asymmetrical benthic juvenile (42 dph, stages G–I).  相似文献   

19.
The structure of the larval nervous system and the musculature of Phoronis pallida were studied, as well as the remodeling of these systems at metamorphosis. The serotonergic portion of the apical ganglion is a U-shaped field of cell bodies that send projections into a central neuropil. The majority of the serotonergic cells are (at least) bipolar sensory cells, and a few are nonsensory cells. Catecholaminergic cell bodies border the apical ganglion. The second (hood) sense organ develops at competence and is composed of bipolar sensory cells that send projections into a secondary neuropil. Musculature of the competent larva includes circular and longitudinal muscle fibers of the body wall, as well as elevators and depressors of the tentacles and hood. The juvenile nervous system and musculature are developed prior to metamorphosis and are integrated with those of the larva. Components of the juvenile nervous system include a diffuse neural net of serotonergic cell bodies and fibers and longitudinal catecholaminergic fibers. The juvenile body wall musculature consists of longitudinal fibers that overlie circular muscle fibers, except in the cincture regions, where this pattern is reversed. Metamorphosis is initiated by the larval neuromuscular system but is completed by the juvenile neuromuscular system. During metamorphosis, the larval nervous system and the musculature undergo cell death, and the larval tentacles and gut are remodeled into the juvenile arrangement. Although the phoronid nervous system has often been described as deuterostome-like, these data show that several cytological aspects of the larval and juvenile neuromuscular systems also have protostome (lophotrochozoan) characteristics.  相似文献   

20.
眼斑双锯鱼仔稚鱼发育异速生长   总被引:1,自引:0,他引:1  
运用生态学和传统理论生物学的研究方法, 对孵化后眼斑双锯(Amphiprion ocellaris)仔、稚鱼在早期生存和环境适应上的异速生长及器官优先发育生态学意义进行了研究, 以期为眼斑双锯鱼人工繁殖和育苗提供参考资料。以11日龄为眼斑双锯鱼仔、稚鱼的区分时期, 结果表明, 眼斑双锯鱼仔、稚鱼的感觉、摄食和游泳等器官快速分化, 均存在异速生长现象。在头部器官中, 吻长、眼间距、口宽和头高在仔鱼期均为正异速生长, 吻至鳃裂前缘长和眼径为负异速生长。在身体各部位中, 仔鱼期体高、躯干长、尾长、尾柄长、尾柄高和体厚均为正异速生长, 仅头长为负异速生长; 在游泳器官中, 仔鱼期眼斑双锯鱼尾鳍、背鳍、胸鳍、腹鳍和臀鳍均为正异速生长。稚鱼期眼斑双锯鱼头部、躯干及游泳等各器官均为负异速生长。眼斑双锯鱼这些关键器官的异速发育, 对适应环境因子变化具有重要的生态学意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号