首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
荚膜是一些细菌所具有的表层结构,与多种疾病有着密切联系。细菌荚膜多糖不仅结构复杂,而且在免疫活性方面发挥着重要的作用。同一种细菌根据其荚膜多糖的抗原性不同可分为不同的血清型,不同血清型细菌荚膜多糖的化学结构也存在差异。以荚膜多糖为基础的疫苗正在积极研究开发当中,对不同致病细菌荚膜多糖具体化学结构的掌握是疫苗得到许可的必备条件之一。本文对致病细菌荚膜多糖的化学结构进行了归纳和总结,以期为荚膜多糖的化学结构研究和疫苗开发提供参考。  相似文献   

2.
Jones C 《Carbohydrate research》2005,340(6):1097-1106
Glycoconjugate vaccines based on the capsular polysaccharides (CPSs) from Staphylococcus aureus serotypes 5 and 8 conjugated to genetically detoxified recombinant exoprotein A (rEPA) from Pseudomonas aeruginosa have been shown, in Phase 3 clinical trials, to elicit a strong bactericidal immune response in end-stage renal disease patients. Such vaccines have the potential to reduce morbidity and mortality due to methicillin-resistant Staphylococcus aureus (MRSA), a major cause of hospital-acquired infection. The serotype 5 and 8 polysaccharides have been fully characterized by NMR spectroscopy and full structural analyses carried out. Published structures were found incorrect and the revised structures of the repeat units of the two polysaccharides are: [carbohydrate structure: see text]. Resonances indicative of the presence of peptidoglycan were observed in the spectra of both CPSs, consistent with reports that the CPS is covalently linked to peptidoglycan.  相似文献   

3.
The extracellular polysaccharides (EPSs) isolated from Porphyridium cruentum were degraded by hermetical-microwave and H2O2 under ultrasonic waves. Six products were obtained with molecular weights of 6.53, 256, 606, 802.6, 903.3 and 1002 kDa. The antitumor and immunomodulatory activities of different-molecular-weight (MW) polysaccharides were evaluated by the S180-tumor-bearing mouse model in vivo and peritoneal macrophage activation in vitro. The degraded EPSs all showed clear immunomodulation to different extents. The MW of the EPSs had a notable effect on their activity. The 6.53-kDa fragment had the strongest immunoenhancing activity. Different doses of EPS all inhibited the growth of the implanted S180 tumor. The tumor inhibition index at high, middle and low doses was 53.3%, 47.5% and 40.5%, respectively. In addition, three different concentrations of EPS significantly increased lymphocyte proliferation, which indicated the unique mechanism of the antitumor effect of EPS.  相似文献   

4.
Extracellular polysaccharides (EPSs) produced by an Erwinia sp associated with a fungal canker disease of Eucalyptus were fractionated into one polysaccharide that was identified with that produced by Erwinia chrysanthemi strains SR260, Ech1, and Ech9, and the other distinctively different from any other EPS produced by E. chrysanthemi strains so far studied. Their structures were determined using a combination of chemical and physical techniques including methylation analysis, low pressure gel-filtration, and anion-exchange chromatographies, high-pH anion-exchange chromatography, mass spectrometry and 1D and 2D 1H NMR spectroscopy. The new polysaccharide, identified as EPS Teranera, has the following structure: [structure: see text] The molecular weights of the polysaccharides range from 3.2-6.2 x 10(5) and their hydrodynamic properties are those of polydisperse, polyanionic biopolymers with pseudoplastic, non-thixotropic flow characteristics in aqueous solutions.  相似文献   

5.
Extracellular polysaccharides (EPSs) produced by an Erwinia spp. associated with a fungal canker disease of Eucalyptus were fractionated into two polysaccharides, one that was identified with that produced by Erwinia stewartii. The other has a similar structure, but with one terminal Glc residue replaced by pyruvic acid to give 4,6-O-[(R)-1-carboxyethylidene)-Galp. Their structures were determined using a combination of chemical and physical techniques including methylation analysis, periodate oxidation, low-pressure gel filtration and anion-exchange chromatographies, high-pH anion-exchange chromatography, mass spectrometry and 1D and 2D 1H NMR spectroscopy. The new polysaccharides, identified as EPS Futululu FF-1 and FF-2, have the following structures:The molecular weights of the polysaccharides range from 1.3-2.1x10(6) and their hydrodynamic properties are those of polydisperse, polyanionic biopolymers with pseudoplastic, non-thixotropic flow characteristics in aqueous solutions.  相似文献   

6.
7.
Exopolysaccharides from lactic acid bacteria: perspectives and challenges   总被引:26,自引:0,他引:26  
Some lactic acid bacteria (LAB) secrete a polysaccharide polymer. This extracellular polysaccharide, or "exopolysaccharide" (EPS), is economically important because it can impart functional effects to foods and confer beneficial health effects. LAB have a "Generally Recognized As Safe" (GRAS) classification and are likely candidates for the production of functional EPSs. Current challenges are to improve the productivity of EPSs from LAB and to produce EPSs of a structure and size that impart the desired functionality. The engineering of improvements in these properties will depend on a deep understanding of the EPS biosynthetic metabolism and of how the structure of EPSs relates to a functional effect when incorporated into a food matrix.  相似文献   

8.
Group 1 capsular polysaccharides (CPSs) of Escherichia coli and some loosely cell-associated exopolysaccharides (EPSs), such as colanic acid, are assembled by a Wzy-dependent polymerization system. In this biosynthesis pathway, Wza, Wzb, and Wzc homologues are required for surface expression of wild-type CPS or EPS. Multimeric complexes of Wza in the outer membrane are believed to provide a channel for polymer export; Wzc is an inner membrane tyrosine autokinase and Wzb is its cognate phosphatase. This study was performed to determine whether the Wza, Wzb, and Wzc proteins for colanic acid expression in E. coli K-12 could function in the E. coli K30 prototype group 1 capsule system. When expressed together, colanic acid Wza, Wzb, and Wzc could complement a wza-wzb-wzc defect in E. coli K30, suggesting conservation in their collective function in Wzy-dependent CPS and EPS systems. Expressed individually, colanic acid Wza and Wzb could also function in K30 CPS expression. In contrast, the structural requirements for Wzc function were more stringent because colanic acid Wzc could restore translocation of K30 CPS to the cell surface only when expressed with its cognate Wza protein. Chimeric colanic acid-K30 Wzc proteins were constructed to further study this interaction. These proteins could restore K30 biosynthesis but were unable to couple synthesis to export. The chimeric protein comprising the periplasmic domain of colanic acid Wzc was functional for effective K30 CPS surface expression only when coexpressed with colanic acid Wza. These data highlight the importance of Wza-Wzc interactions in group 1 CPS assembly.  相似文献   

9.
The temperature-regulated expression of capsular group II polysaccharides of Escherichia coli (B. Jann and K. Jann, (1990) Curr. Top. Microbiol. Immunol. 150: 19-42) depends on an elevated concentration of CMP-KDO, as evidenced by an increased activity of CMP-KDO synthetase. The increase in activity of CMP-KDO synthetase is observed only in cytoplasmic fractions of bacteria which had been grown at 37 degrees C but not after growth at 18 degrees C. The activity of CMP-KDO synthetase thus parallels the activity of the (membrane-associated) system synthesizing capsules of group II in E. coli. No such dependence of capsule expression on CMP-KDO was observed with E. coli with capsules of group I. A number of E. coli strains with capsular polysaccharides, which on the basis of genetic determination and chemical characteristics are considered as group II capsules, show no temperature regulation of their capsules and do not depend on an elevated CMP-KDO concentration for capsule expression. The capsular polysaccharides of these E. coli strains, which possibly represent a new group of E. coli capsules are tentatively classified as group I/II.  相似文献   

10.
Bacterial pathogens and symbionts must suppress or negate host innate immunity. However, pathogens release conserved oligomeric and polymeric molecules or MAMPs (Microbial Associated Molecular Patterns), which elicit host defenses [1], [2] and [3]. Extracellular polysaccharides (EPSs) are key virulence factors in plant and animal pathogenesis, but their precise function in establishing basic compatibility remains unclear [4], [5], [6] and [7]. Here, we show that EPSs suppress MAMP-induced signaling in plants through their polyanionic nature [4] and consequent ability to chelate divalent calcium ions [8]. In plants, Ca2+ ion influx to the cytosol from the apoplast (where bacteria multiply [4], [5] and [9]) is a prerequisite for activation of myriad defenses by MAMPs [10]. We show that EPSs from diverse plant and animal pathogens and symbionts bind calcium. EPS-defective mutants or pure MAMPs, such as the flagellin peptide flg22, elicit calcium influx, expression of host defense genes, and downstream resistance. Furthermore, EPSs, produced by wild-type strains or purified, suppress induced responses but do not block flg22-receptor binding in Arabidopsis cells. EPS production was confirmed in planta, and the amounts in bacterial biofilms greatly exceed those required for binding of apoplastic calcium. These data reveal a novel, fundamental role for bacterial EPS in disease establishment, encouraging novel control strategies.  相似文献   

11.
Microbial exopolysaccharides (EPSs) are used in the food industry for their unique properties as viscosifiers, stabilisers, emulsifiers or gelling agents. In recent years, significant progress in the understanding of the genetics and biochemistry of microbial EPS synthesis by both Gram-negative and Gram-positive bacteria has been made. Biosynthesis pathways have been elucidated, and several of the genes involved have been characterised. This knowledge can now be applied to start EPS engineering or to improve EPS production.  相似文献   

12.
Lactic acid bacteria (LAB) are characterised by their conversion of a large proportion of their carbon feed, fermentable sugars, to lactic acid. However, in addition to lactic acid production, the LAB are able to divert a small proportion of fermentable sugars towards the biosynthesis of exopolysaccharides (EPSs) that are independent of the cell surface and cell wall material. These microbial EPSs when suspended or dissolved in aqueous solution provide thickening and gelling properties, and, as such, there is great interest in using EPSs from food grade microorganisms (such as the LAB that are traditionally used for food fermentations) for use as thickening agents. The current review includes a brief summary of the recent literature describing features of the biosynthetic pathways leading to EPS production. Many aspects of EPS biosynthesis in LAB are still not fully understood and a number of inferences are made regarding the similarity of the pathway to those involved in the synthesis of other cell polysaccharides, e.g., cell wall components. The main body of the review will cover practical aspects concerned with the isolation and characterisation of EPS structures. In the last couple of years, a substantial number of structures have been published and a summary of the common elements of these structures is included as is a suggestion for a system for representing structures. A brief highlight of the attempts that are being made to design ‘tailor’-made polysaccharides using genetic modification and control of metabolic flux is presented.  相似文献   

13.
The polysaccharide capsule of fungal pathogen Cryptococcus neoformans is a critical virulence factor that has historically evaded complete characterization. Cryptococcal polysaccharides are known to either remain attached to the cell as capsular polysaccharides (CPSs) or to be shed into the extracellular space as exopolysaccharides (EPSs). While many studies have examined the properties of EPS, far less is known about CPS. In this work, we detail the development of new physical and enzymatic methods for the isolation of CPS which can be used to explore the architecture of the capsule and isolated capsular material. We show that sonication or Glucanex enzyme cocktail digestion yields soluble CPS preparations, while use of a French pressure cell press or Glucanex digestion followed by cell disruption removed the capsule and produced cell wall–associated polysaccharide aggregates that we call “capsule ghosts”, implying an inherent organization that allows the CPS to exist independent of the cell wall surface. Since sonication and Glucanex digestion were noncytotoxic, it was also possible to observe the cryptococcal cells rebuilding their capsule, revealing the presence of reducing end glycans throughout the capsule. Finally, analysis of dimethyl sulfoxide-extracted and sonicated CPS preparations revealed the conservation of previously identified glucuronoxylomannan motifs only in the sonicated CPS. Together, these observations provide new insights into capsule architecture and synthesis, consistent with a model in which the capsule is assembled from the cell wall outward using smaller polymers, which are then compiled into larger ones.  相似文献   

14.
Bacterial surface polysaccharides fulfill a number of important roles in cell-cell interactions, survival in natural environments, and formation of biofilms. Consequently, the mechanisms involved in regulation of extracellular polysaccharides are predicted to have a significant impact on microbial adaptation. Strains ofEscherichia coli, Klebsiella spp, andErwinia spp produce extracellular polysaccharides which share structural features. There are also similarities in the organization of genes required for synthesis of these cell surface polymers and, in some cases, the mechanism of synthesis may be related. Despite the diverse habitats of these bacteria, the systems which regulate expression of their extracellular polysaccharides appear to share components and mechanisms. Understanding these regulatory processes may lead to novel therapeutic approaches for pathogens, or for control of unwanted biofilm formation in industrial settings.  相似文献   

15.
Carbamoyl phosphate synthetases (CPSs) utilize either glutamine or ammonia for the ATP-dependent generation of carbamoyl phosphate. In glutamine-utilizing CPSs (e.g. the single Escherichia coli CPS and mammalian CPS II), the hydrolysis of glutamine to yield ammonia is catalyzed at a triad-type glutamine amidotransferase domain. Non-glutamine-utilizing CPSs (e.g. rat and human CPS I), lacking the catalytic cysteine residue, can generate carbamoyl phosphate only in the presence of free ammonia. Frog CPS I (fCPS I), unlike mammalian CPS Is, retains most of the glutamine amidotransferase residues conserved in glutamine-utilizing CPSs, including an intact catalytic triad, and could therefore be expected to use glutamine. Our work with native fCPS I provides the first demonstration of the inability of this enzyme to bind/utilize glutamine. To determine why fCPS I is unable to utilize glutamine, we compared sequences of glutamine-using and non-glutamine-using CPSs to identify residues that are present or conservatively substituted in all glutamine-utilizing CPSs but absent in fCPS I. We constructed the site-directed mutants Q273E, L270K, Q273E/N240S, and Q273E/L270K in E. coli CPS and have determined that simultaneous occurrence of the two substitutions, Gln-->Glu and Leu-->Lys, found in the frog CPS I glutamine amidotransferase domain are sufficient to eliminate glutamine utilization by the E. coli enzyme.  相似文献   

16.

Background  

Exopolysaccharides (EPSs) produced by lactic acid bacteria are important for the texture of fermented foods and have received a great deal of interest recently. However, the low production levels of EPSs in combination with the complex media used for growth of the bacteria have caused problems in the accurate analysis of the EPS. The purpose of this study was to find a growth medium for physiological studies of the lactic acid bacterium Streptococcus thermophilus, and to develop a simple method for qualitative and quantitative analysis of EPSs produced in this medium.  相似文献   

17.
Although capsular polysaccharide (CPS) is critical for meningococcal virulence, the molecular basis of alternative complement pathway (AP) regulation by meningococcal CPSs remains unclear. Using serum with only the AP active, the ability of strains to generate C3a (a measure of C3 activation) and subsequently deposit C3 fragments on bacteria was studied in encapsulated group A, B, C, W-135, and Y strains and their isogenic unencapsulated mutants. To eliminate confounding AP regulation by membrane-bound factor H (fH; AP inhibitor) and lipooligosaccharide sialic acid, the meningococcal fH ligands (fHbp and NspA) and lipooligosaccharide sialylation were deleted in all strains. Group A CPS expression did not affect C3a generation or C3 deposition. C3a generated by encapsulated and unencapsulated group B and C strains was similar, but CPS expression was associated with reduced C3 deposition, suggesting that these CPSs blocked C3 deposition on membrane targets. Paradoxically, encapsulated W-135 and Y strains (including the wild-type parent strains) enhanced C3 activation and showed marked C3 deposition as early as 10 min; at this time point C3 was barely activated by the unencapsulated mutants. W-135 and Y CPSs themselves served as a site for C3 deposition; this observation was confirmed using immobilized purified CPSs. Purified CPSs bound to unencapsulated meningococci, simulated findings with naturally encapsulated strains. These data highlight the heterogeneity of AP activation on the various meningococcal serogroups that may contribute to differences in their pathogenic mechanisms.  相似文献   

18.
Mercury is a toxic substance that is widely distributed throughout the hydrosphere, biosphere, and lithosphere. Mine waste environments and mine waters support a wide diversity of microbial life. The microbial ecology of environments where mine waters are polluted with heavy metals is poorly understood. Here, we describe the features of bacteria in mercury-contaminated gold panning ponds in a small-scale gold mine (Geita) near Lake Victoria, Tanzania using energy filtering transmission electron microscopy (EF-TEM) and scanning transmission electron microscopy equipped with energy dispersive X-ray spectroscopy (STEM-EDX). Most bacteria in the panning pond showed thick exopolysaccharides (EPSs), and many clay minerals attached onto the surface of EPSs. The clay minerals and EPSs might act as protective layers for the bacteria against toxic materials. The clay minerals were composed of smectite, halloysite, and kaolinite associated with calcite and goethite. Scanning electron microscopy equipped with energy dispersive X-ray spectroscopy indicated that the bulk soil samples contained abundant Si, Al, K, Ca, and Fe with heavy metals such as Au, Ti, and Ag. The results indicate that Hg pollution from panning ponds is caused by not only volatilization of Hg from Au-Hg amalgams, but Hg is also released into the air as dust mixed with dry fine clays, suggesting high long-term environmental risks. Mercury-resistant bacteria associated with clay minerals may have a significant effect on the weathering processes of the ore during long-term bioremediation. The clay mineral complexes on the surface of bacterial cell walls are a stimulator for Hg-resistant bacterial growth in mud ponds contaminated with the Au-Hg materials.  相似文献   

19.
The role of the exopolysaccharides (EPSs) produced by plant pathogenic bacteria has not completely clarified, they are considered either molecules able to avoid or delay the activation of plant defences, or acting as signal in the plant-pathogen cross-talk. In order to understand whether EPSs are recognized by infected plant cells and are able to induce the activation of plant defence responses, their capability to induce metabolic alteration in tobacco cells has been analysed. The results indicate that several EPSs, even if not chemically related, induce increases in phenylalanine ammonia-lyase, a marker enzyme of defence responses of plants against stress; but others are completely ineffective. The EPSs affecting phenylalanine ammonia-lyase also induce an increase in hydrogen peroxide production. Moreover, they alter the metabolism of ascorbate, another parameter indicative of the presence of stress conditions and the involvement of which in the hypersensitive reaction has been recently reported. The possibility that specific EPSs could act as signals in the plant-pathogenic bacteria interaction is discussed.  相似文献   

20.
Capsular components of Cryptococcus neoformans induce several deleterious effects on T cells. However, it is unknown how the capsular components act on these lymphocytes. The present study characterized cellular and molecular events involved in immunoregulation of splenic CD4(+) T cells by C. neoformans capsular polysaccharides (CPSs). The results showed that CPSs induce proliferation of normal splenic CD4(+) T cells, but not of normal CD8(+) T or B lymphocytes. Such proliferation depended on physical contact between CPSs and viable splenic adherent cells (SAC) and CD40 ligand-induced intracellular signal transduction. The absence of lymphoproliferation after fixation of SAC with paraformaldehyde has discarded the hypothesis of a superantigen-like activation. The evaluation of a cytokine pattern produced by the responding CD4(+) T lymphocytes revealed that CPSs induce a dominant Th2 pattern, with high levels of IL-4 and IL-10 production and undetectable inflammatory cytokines, such as TNF-alpha and IFN-gamma. Blockade of CD40 ligand by relevant mAb down-regulated the CPS-induced anti-inflammatory cytokine production and abolished the enhancement of fungus growth in cocultures of SAC and CD4(+) T lymphocytes. Our findings suggest that CPSs induce proliferation and differentiation of normal CD4(+) T cells into a Th2 phenotype, which could favor parasite growth and thus important deleterious effects to the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号