首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method was utilized to study species‐specific responses of phytoplankton to phosphorus limitation in a nutrient enrichment experiment. A substrate, ELF, produces a fluorescent precipitate at the sites of alkaline phosphatase (AP), which makes it possible to visually detect phosphorus (P) limitation in individual cells of multiple species. Lake water was incubated in the laboratory to induce nitrogen (N) or P limitation. Initially, little or no ELF labeling was observed for any of the phytoplankton species, indicating a general lack of P limitation. This observation was supported by low bulk AP activity in the initial field samples. During the experiment, several chlorophyte taxa (Coelastrum, Eudorina, a solitary spiny coccoid) were driven to P limitation, as evidenced by a high percentage of cells displaying ELF labeling when inorganic N was added. Taxa such as Actinastrum and Dictyosphaerium, on the contrary, were never P limited. Little or no ELF was observed in cyanobacterial species, suggesting that P limitation was not achieved in these organisms. Using traditional bulk AP activity, significantly higher levels of AP activity were observed in treatments with inorganic N additions, compared to those with phosphate additions. ELF labeling generally followed the trend of bulk AP, except in species that did not dominate the biomass. Finally, we noted that all species observed were ELF labeled at least on one occasion, except for fragile flagellates which did not withstand the labeling procedure.  相似文献   

2.
Lake Inba is one of the most eutrophic lakes in Japan. In this study, field sampling and nutrient enrichment bioassays were conducted to determine the seasonal patterns of nutrient limitation for phytoplankton growth in this lake. Phytoplankton biomass increased significantly with the additions of phosphorus (P) on almost all sampling dates, indicating P limitation of phytoplankton growth from spring to autumn. However, nitrogen (N) limitation was also observed during summer (i.e., 19 August). On 10 August, a typhoon struck Lake Inba. After this event, dissolved inorganic nitrogen (DIN) and phosphorus concentrations increased, probably because of increased river discharge. At the same time, phytoplankton growth in the control treatment became relatively high, with the addition of neither P nor N stimulating the growth. However, 10 days after the typhoon, the phytoplankton growth rate in the control treatment decreased, with only the addition of N having a significant positive effect on phytoplankton growth. N limitation during summer is caused by the low concentrations of DIN, as well as changes in the N:P ratio due to allochthonous nutrient loads. These results indicate that a reduction of both P and N input is necessary to control phytoplankton blooms in Lake Inba.  相似文献   

3.
Single‐cell alkaline phosphatase (AP) activity is being increasingly used to characterize phosphorus (P) status of individual species of phytoplankton. As phytoplankton growth rates depend more directly on the internal rather than external P concentrations, we determine the AP activity in the two species of freshwater phytoplankton, Scenedesmus quadricauda (Turpin) Bréb. and Asterionella formosa Hassall, as a function of internal P concentration. AP activity strongly correlated with cellular P, increasing almost linearly with decreasing cellular P in both species. The dynamics of initial responses of AP activity to P limitation, as well as the final levels of AP activity, when cellular P approached minimum quotas, differed in two species. After P addition, cellular P concentrations increased rapidly, but AP activity remained high for several days. The lag in AP activity down‐regulation following an increase in cellular P made it difficult to infer current P status of cells under dynamic P conditions.  相似文献   

4.
Phytoplankton nutrient limitation in Colorado mountain lakes   总被引:12,自引:0,他引:12  
SUMMARY. 1. Limiting nutrients for phytoplankton were studied experimentally in eight mountain lakes of central Colorado between May and November of 1984.
2. Five categories of phytoplankton limitation were identified: no limitation, N limitation, P limitation, concurrent limitation (stimulation only by simultaneous additions of N and P), and reciprocal limitation (stimulation by addition of either N or P). The phytoplankton communities of three lakes were primarily N-limited, one was primarily phosphorus-limited, and four showed primarily combined limitation (concurrent or reciprocal). Switching between categories of limitation was also observed within lakes. Nitrogen was the most frequently limiting nutrient; N, either alone or in combination with P, accounted for 79% of all observed instances of limitation.
3. Nine indices were tested for effectiveness in predicting phytoplankton limitation by N and P. The best indices for discriminating all limitations were ratios of dissolved inorganic N: total P (84% accuracy) and dissolved inorganic N:total dissolved P (80% accuracy). The effectiveness of these indices may be explained by the degree to which they represent N and P fractions actually available to the phytoplankton.  相似文献   

5.
Microbial enzymes play a critical role in organic matter decomposition and enzyme activity can dynamically respond to shifts in inorganic nutrient and substrate availability, reflecting the nutrient and energy limitation of the microbial community. We characterized microbial enzyme response to shifting nitrogen (N) and phosphorus (P) availability across terrestrial and aquatic environments at the Bear Brook Watershed in Maine, the site of a whole-watershed N enrichment experiment. We compared activity of β-1,4-glucosidase (BG); β-1,4-N-acetylglucosaminidase (NAG); acid phosphatase (AP) in soil, leaf litter in terrestrial and stream habitats and stream biofilms in a reference and N enriched watershed, representing whole-ecosystem response to chronic N enrichment. In addition, we used shorter, experimental P enrichments to address potential P limitation under ambient and elevated N availability. We found that BG and NAG activity were not affected by the long-term N enrichment in either habitat. Enhanced P limitation due to N enrichment was evident only in the aquatic habitats with 5- and 8-fold higher treated watershed AP activity in stream biofilms and stream litter, respectively. Acute P additions reduced AP activity and increased BG activity and these effects were also most pronounced in the streams. The stoichiometry of enzyme activity was constrained across ecosystem compartments with regression slopes for lnBG:lnNAG, lnBG:lnAP, and lnNAG:lnAP close to 1, ranging 1.142–1.241. We found that microbial enzyme response to shifting N and P availability varied among watershed compartments, typically with stronger effects in aquatic habitats. This suggests that understanding the response of ecosystem function to disturbance at the watershed scale requires simultaneous consideration of all compartments.  相似文献   

6.
Experiments involving low-dose additions of phosphate, ammonium, nitrate and ADP, one by one and in combination, were performed in small (350 litre) in-situ enclosures in a moderately acid (pH 5.4) lake. Before manipulation, all large filter-feeding animals were removed by filtration. Phytoplankton responded to the nutrient additions only when both phosphorus and nitrogen were added, thus indicating a close balance between phosphorus and nitrogen limitation in the system. Variation of the inorganic nitrogen-source resulted in species-specific responses by phytoplankton. With ammonium as the nitrogen source Merismopedia tenuissima was favoured, regardless of whether this species was dominant in the phytoplankton community at the beginning of the experiment or not. With nitrate as nitrogen source Peridinium inconspicuum, which was never particularly common at the beginning of the experiments, was favoured. No other species of phytoplankton present in the bags was able to outcompete these two species as long as inorganic nutrients were added. With ADP as phosphorus source together with nitrate, a third species, Dictyosphaerium cf. botrytella, was favoured and reached dominance. The zooplankton community remaining in the bags, dominated by rotifers and calanoid nauplii, did not respond to the fertilization-induced increases in the total biomass of phytoplankton.  相似文献   

7.
Nodularia spumigena is one of the dominating species during the extensive cyanobacterial blooms in the Baltic Sea. The blooms coincide with strong light, stable stratification, low ratios of dissolved inorganic nitrogen, and dissolved inorganic phosphorus. The ability of nitrogen fixation, a high tolerance to phosphorus starvation, and different photo-protective strategies (production of mycosporine-like amino acids, MAAs) may give N. spumigena a competitive advantage over other phytoplankton during the blooms. To elucidate the interactive effects of ambient UV radiation and nutrient limitation on the performance of N. spumigena, an outdoor experiment was designed. Two radiation treatments photosynthetic active radiation (PAR) and PAR +UV-A + UV-B (PAB) and three nutrient treatments were established: nutrient replete (NP), nitrogen limited (−N), and phosphorus limited (−P). Variables measured were specific growth rate, heterocyst frequency, cell volume, cell concentrations of MAAs, photosynthetic pigments, particulate carbon (POC), particulate nitrogen (PON), and particulate phosphorus (POP). Ratios of particulate organic matter were calculated: POC/PON, POC/POP, and PON/POP. There was no interactive effect between radiation and nutrient limitation on the specific growth rate of N. spumigena, but there was an overall effect of phosphorus limitation on the variables measured. Interaction effects were observed for some variables; cell size (larger cells in −P PAB compared to other treatments) and the carotenoid canthaxanthin (highest concentration in −N PAR). In addition, significantly less POC and PON (mol cell−1) were found in −P PAR compared to −P PAB, and the opposite radiation effect was observed in −N. Our study shows that despite interactive effects on some of the variables studied, N. spumigena tolerate high ambient UVR also under nutrient limiting conditions and maintain positive growth rate even under severe phosphorus limitation.  相似文献   

8.
The phosphorus (P) deficiency status of phytoplankton communities was measured using the physiological indicator, alkaline phosphatase activity (APA) and nutrient-addition growth bioassays in field sampled from four northeastern Minnesota lakes and the far western arm of Lake Superior. Phosphorus additions generally reduced APA, while other treatments increased activity. Samples receiving nitrogen (N) and P increased APA after a long lag period. P-addition bioassays of Lake Superior were consistent with phytoplankton P limitation and variations in APA indicated potential seasonal and spatial changes in P deficiency status. The results suggest that APA reliably reflected the phytoplankton P status, but may not provide sufficient information when N or NP limitation is present.  相似文献   

9.
10.
Primary production in freshwater ecosystems is often limited by the availability of phosphorus (P), nitrogen (N), or a combination of both (NP co-limitation). While N fixation via heterocystous cyanobacteria can supply additional N, no comparable mechanism for P exists; hence P is commonly considered to be the predominant and ultimate limiting nutrient in freshwater ecosystems. However, N limitation can be maintained if P is supplied in stoichiometric excess of N (including N fixation). The main objective of this study was to examine patterns in nutrient limitation across a series of 21 vernal ponds in Eastern Colorado where high P fluxes are common. Across all ponds, water column dissolved inorganic N steadily decreased throughout the growth season due to biological demand while total dissolved P remained stable. The water column dissolved inorganic N to total dissolved P ratios suggested a transition from NP co-limitation to N limitation across the growth season. Periphyton and phytoplankton %C was strongly correlated with %N while %P was assimilated in excess of %N and %C in many ponds. Similarly, in nutrient addition bottle assays algae responded more strongly to N additions (11 out of 18 water bodies) than P additions (2 out of 18 water bodies) and responded most strongly when N and P were added in concert (12 out of 18 water bodies). Of the ponds that responded to nutrient addition, 92% exhibited some sort of N limitation while less than 8% were limited by P alone. Despite multiple lines of evidence for N limitation or NP co-limitation, N fixation rates were uniformly low across most ponds, most likely due to inhibition by water column nitrate. Within this set of 18 water bodies, N limitation or NP co-limitation is widespread due to the combination high anthropogenic P inputs and constrained N fixation rates.  相似文献   

11.
Algal nutrient enrichment bioassays were conducted between May 1975 and August 1978 using water samples collected from Chautauqua Lake, New York. Photosynthetic fixation rates of natural phytoplankton assemblages were enhanced by additions of phosphorus and nitrogen, although enrichment with other nutrients had no significant stimulatory effect on algal photosynthesis. Whereas phosphorus stimulated in spring and early summer, both nitrogen and phosphorus enhanced photosynthesis in midsummer and fall. Relative to the effect of phosphorus enrichment, enhancement of photosynthesis by nitrogen during the summer and fall was highest in the northern part of the lake. During the period of ice cover, photosynthesis did not appear to be limited by nutrients in that nutrient additions (P, N, Si, C, Fe, trace metals) did not enhance fixation rates. Observed temporal fluctuations in the response of the algae to P and N correlated with changes in the lake water N:P ratio as well as with temporal changes in dissolved orthophosphate and nitrate-nitrite nitrogen. The N:P ratio decreased drastically in the summer and remained at ca. 10 or less through mid-fall, suggesting that N concentrations were inadequate for the non-N-fixing phytoplankton. Studies over 3 yr indicate that states of P and N limitation undergo time-space fluctuations that occur in a cyclic pattern in the surface waters of Chautauqua Lake.  相似文献   

12.
The alkaline phosphatase (AP) characteristics of three algal bloom species in the coastal waters of China [Prorocentrum donghaiense D. Lu, Alexandrium catenella (Whedon et Kof.) Balech, and Skeletonema costatum (Grev.) Cleve] were analyzed in a laboratory batch culture experiment using bulk assay and the single‐cell enzyme‐labeled fluorescence (ELF) method. Results showed that the AP of these three test species shared some common characteristics: AP was inducible in all three species and was expressed by algae under phosphorus (P)–stress conditions; no constitutive AP enzyme was detected in the three test species. Once AP was produced, all three test species gradually released the enzymes into the water, and the algae would reinduce AP production. There were also different specific AP characteristics among the three test species under severe P‐stressed conditions. In P. donghaiense, AP covered most of the cell, and the AP production sites were mainly on the cell surface, although some could be observed inside cells. AP also covered the whole cell of A. catenella, but the AP sites were mainly inside the cell with only some on the cell surface. Only one or two AP sites could be detected in S. costatum, and they were all on the cell surface.  相似文献   

13.
Nutrient limitation of phytoplankton and periphyton growth in upland lakes   总被引:9,自引:0,他引:9  
SUMMARY 1. Thirty small upland lakes in Cumbria, Wales, Scotland and Northern Ireland were visited three times between April and August 2000. On each occasion water chemistry was measured and phytoplankton bioassays were performed in the laboratory to assess growth‐rate and yield limitation by phosphorus and nitrogen. In addition, yield limitation of periphyton growth was investigated twice, in situ, using nutrient‐diffusing substrata. 2. Over the whole season the percentage frequency of P, N and co‐limitation was 24, 13 and 63%, respectively, for phytoplankton rate limitation and 20, 22 and 58%, respectively, for phytoplankton yield limitation. 3. A clear response of periphyton yield to nutrient additions was found in 75% of all cases and of these, co‐limitation was most common (54%). Average percentage frequency for P and N limitation was 26 and 20%, respectively. 4. Phytoplankton and periphyton showed seasonal changes in nutrient limitation within sites. In particular, co‐limitation became progressively more common as the season progressed. 5. The response of phytoplankton growth rate to ammonium and nitrate addition was identical, but ammonium was a slightly better source of nitrogen than nitrate for phytoplankton yield on 7% and for periphyton yield on 10% of the occasions. However, the magnitude of the effect was small. 6. The concentration of dissolved inorganic nitrogen (DIN) and the molar ratio of DIN to total dissolved phosphorus (TDP), appeared to be the main environmental factors controlling the extent of nitrogen or phosphorus limitation at a given site. Nitrogen limitation was more likely than phosphorus limitation where the DIN was <6.5 mmol m?3 and the ratio of DIN : TDP was <53. Co‐limitation was the most likely outcome at a DIN concentration <13 mmol m?3 and at a DIN : TDP molar ratio <250. Above these values phosphorus limitation was most likely. 7. The relatively high frequency of nitrogen limitation and co‐limitation at higher N : P ratios than previously reported, may result from the inability of nitrogen‐fixing cyanobacteria to thrive in these upland lakes where pH and the concentration of phosphorus tended to be low and where flushing rates tended to be high.  相似文献   

14.
The clear, shallow, oligotrophic waters of Florida Bay are characterized by low phytoplankton biomass, yet periodic cyanobacteria and diatom blooms do occur. We hypothesized that allochthonous dissolved organic matter (DOM) was providing a subsidy to the system in the form of bound nutrients. Water from four bay sites was incubated under natural light and dark conditions with enrichments of either DOM ( > 1 kD, 2×DOM) or inorganic nutrients (N+P). Samples were analyzed for bacterial numbers, bacterial production, phytoplankton biomass, phytoplankton community structure, and production, nutrients, and alkaline phosphatase (AP) activity. The influence of 2×DOM enrichment on phytoplankton biomass developed slowly during the incubations and was relatively small compared to nutrient additions. Inorganic nutrient additions resulted in an ephemeral bloom characterized initially as cyanobacterial and brown algae but which changed to dinoflagellate and/or brown algae by day six. The DIN:TP ratio decreased 10-fold in the N+P treatments as the system progressed towards N limitation. This ratio did not change significantly for 2×DOM treatments. In addition, these experiments indicated that both autotrophic and heterotrophic microbial populations in Florida Bay may fluctuate in their limitation by organic and inorganic nutrient availability. Both N+P and 2×DOM enrichments revealed significant and positive response in bioavailability of dissolved organic carbon (BDOC). Potential BDOC ranged from 1.1 to 35.5%, with the most labile forms occurring in Whipray Basin. BDOC at all sites was stimulated by the 2×DOM addition. Except for Duck Key, BDOC at all sites was also stimulated by the addition of N+P. BDOC was lower in the dry season than in the wet season (5.56% vs. 16.86%). This may be explained by the distinct chemical characteristics of the DOM produced at different times of year. Thus, both the heterotrophic and autotrophic microbial communities in Florida Bay are modulated by bioavailability of DOM. This has ramifications for the fate of DOM from the Everglades inputs, implicating DOM bioavailability as a contributing factor in regulating the onset, persistence, and composition of phytoplankton blooms.  相似文献   

15.
1. Two small humic lakes in northern Sweden with concentrations of dissolved organic carbon (DOC) between 15 and 20 mg L–1 were fertilized with inorganic phosphorus (P) and inorganic nitrogen (N), respectively. A third lake was unfertilized and served as a control. In addition to this lake fertilization experiment, data from different regional surveys were used to assess the role of different limiting factors.
2. The P fertilization had no effects on bacterioplankton or phytoplankton, while phytoplankton were significantly stimulated by N fertilization. Inorganic nutrient limitation of bacterioplankton was a function of DOC concentration in water of the investigated region and nutrient-limited bacteria were found only in lakes with DOC concentrations less than around 15 mg L–1
3. The fertilization experiments demonstrated that the DOC-rich experimental lakes contained a bioavailable pool of P that was not utilized to its full potential under natural conditions. The overall mobilization of energy (bacterioplankton plus phytoplankton) in the experimental lakes was restricted by lack of inorganic N.  相似文献   

16.
Alkaline phosphatase (AP) is a potential biomarker for phosphorus (P) limitation in zooplankton. However, knowledge about regulation of AP in this group is limited. In a laboratory acclimation experiment, we investigated changes in body AP concentration for Daphnia magna kept for 6 days at 10, 15, 20 and 25°C and fed algae with 10 different molar C:P ratios (95–660). In the same experiment, we also assessed somatic growth of the animals since phosphorus acquisition is linked to growth processes. Overall, non-linear but significant relationships of AP activity with C:P ratio were observed, but there was a stronger impact of temperature on AP activity than of P limitation. Animals from the lowest temperature treatment had higher normalized AP activity, which suggests the operation of biochemical temperature compensation mechanisms. Body AP activity increased by a factor of 1.67 for every 10°C decrease in temperature. These results demonstrate that temperature strongly influences AP expression. Therefore, using AP as a P limitation marker in zooplankton needs to consider possible confounding effects of temperature. Both temperature and diet affected somatic growth. The temperature effect on somatic growth, expressed as the Q 10 value, responded non-linearly with C:P, with Q 10 ranging between 1.9 for lowest food C:P ratio and 1.4 for the most P-deficient food. The significant interaction between those two variables highlights the importance of studying temperature-dependent changes of growth responses to food quality.  相似文献   

17.
In situ bag experiments were performed during summer and autumn in a small acidic lake, Tibbs Run Lake, West Virginia, USA. The objective was to evaluate phytoplankton responses to pH manipulation and nutrient addition. Increasing the pH from below 4.5 to over 6.3 resulted in great declines in phytoplankton biovolume. There was also a succession from dinoflagellates (Peridinium inconspicuum to small chlorophytes. The trend was more rapid where phosphorus (P) additions were made along with pH enhancement. During summer, P limitation was indicated, while nitrogen (N) appeared to limit production in autumn. In both seasons, nutrient additions greatly altered the phytoplankton composition in high pH treatments, but had no discernable effects at (the natural) low pH. A low pH, P addition treatment in autumn was the single exception. When N was subsequently added, phytoplankton composition changed dramatically, probably because the proceeding P additions caused severe secondary N-limitation. In general, however, the results supported the view that phytoplankton compositional responses to nutrient additions are suppressed in low pH, relative to high pH lake water.  相似文献   

18.
1. In order to evaluate limitation of different phytoplankton groups by inorganic nutrients, multiple nutrient enrichment bioassays using the addition of iron (Fe) and the combined addition of nitrogen and phosphorus (NP) were carried out in the north and the south of Lake Tanganyika during the rainy and dry seasons in 2003 and 2004. 2. Nutrient additions resulted in an increase in phytoplankton growth rate relative to control treatments in all experiments. HPLC pigment data and epifluorescence microscopy counts indicated differential stimulation of the dominant phytoplankton groups. Iron additions mainly stimulated prokaryotic picophytoplankton, while enrichments with nitrogen and phosphorus stimulated green algae and in some cases diatoms. Extended incubation (3 days) indicated co‐limitation of Fe and NP, in particular for picocyanobacteria.  相似文献   

19.
Increases of atmospheric CO2 cause ocean acidification (OA) and global warming, the latter of which can stratify the water column and impede nutrient supply from deep water. Phosphorus (P) is an essential nutrient for phytoplankton to grow. While dissolved inorganic phosphorus (DIP) is the preferred form of P, phytoplankton have evolved alkaline phosphatase (AP) to utilize dissolved organic phosphorus (DOP) when DIP is deficient. Although the function of AP is known to require pH > 7, how OA affects AP activity and hence the capacity of phytoplankton to utilize DOP is poorly understood. Here, we examined the effects of pH conditions (5.5–11) on AP activity from six species of dinoflagellates, an important group of marine phytoplankton. We observed a general pattern that AP activity declined sharply at pH 5.5, peaked between pH 7 and 8, and dropped at pH > 8. However, our data revealed remarkable interspecific variations in optimal pH and niche breadth of pH. Among the species examined, Fugacium kawagutii and Prorocentrum cordatum had an optimal pH at 8, and Alexandrium pacificum, Amphidinium carterae, Effrenium voratum, and Karenia mikimotoi showed an optimal pH of 7. However, whereas A. pacificum and K. mikimotoi had the broadest pH niche for AP (7–10) and F. kawagutii the second (8–10), Am. carterae, E. voratum, and P. cordatum exhibited a narrow pH range. The response of Am. carterae AP to pH changes was verified using purified AP heterologously expressed in Escherichia coli. These results in concert suggest OA will likely differentially impact the capacity of different phytoplankton species to utilize DOP in the projected more acidified and nutrient-limited future ocean.  相似文献   

20.
Bukaveckas  Paul A.  Crain  Angela S. 《Hydrobiologia》2002,481(1-3):19-31
We characterize seasonal and spatial patterns in phytoplankton abundance, production and nutrient limitation in a mesotrophic river impoundment located in the southeastern United States to assess variation arising from inter-annual differences in watershed inputs. Short-term (48 h) in situ nutrient addition experiments were conducted between May and October at three sites located along the longitudinal axis of the lake. Nutrient limitation was detected in 12 of the 18 experiments conducted over 2 years. Phytoplankton responded to additions of phosphorus alone although highest chlorophyll concentrations were observed in enclosures receiving combined (P and N) additions. Growth responses were greatest at downstream sites and in late summer suggesting that those populations experience more severe nutrient limitation. Interannual variation in nutrient limitation and primary production corresponded to differences in the timing of hydrologic inputs. Above average rainfall and discharge in late-summer (July–October) of 1996 coincided with higher in-lake nutrient concentrations, increased production, and minimal nutrient limitation. During the same period in 1995, discharge was lower, nutrient concentrations were lower, and nutrient limitation of phytoplankton production was more pronounced. Our results suggest that nutrient limitation is common in this river impoundment but that modest inter-annual variability in the timing of hydrologic inputs can substantially influence seasonal and spatial patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号