首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sunflower hypocotyls elongate as light quality changes from the normal red to far-red (R/FR) ratio of sunlight to a lower R/FR ratio. This low R/FR ratio-induced elongation significantly increases endogenous concentrations of indole-3-acetic acid (IAA) and also of three gibberellins (GAs): GA20, GA1, and GA8. Of these, it is likely GA1 that drives low R/FR-induced growth. Brassinosteroids are also involved in shoot growth. Here we tested three R/FR ratios: high, normal, and low. Significant hypocotyl elongation occurred with this stepwise reduction in R/FR ratio, but endogenous castasterone concentrations in the hypocotyls remained unchanged. Brassinolide was also applied to the seedlings and significantly increased hypocotyl growth, though one that was uniform across all three R/FR ratios. Applied brassinolide increased hypocotyl elongation while significantly reducing (usually) levels of IAA, GA20, and GA8, but not that of GA1, which remained constant. Given the above, we conclude that endogenous castasterone does not mediate the hypocotyl growth that is induced by enriching FR light, relative to R light. Similarly, we conclude that the hypocotyl growth that is induced by applied brassinolide does not result from an interaction of brassinolide with changes in light quality. The ability of applied brassinolide to influence IAA, GA20, and GA8 content, yet have no significant effect on GA1, is hard to explain. One speculative hypothesis, though, could involve the brassinolide-induced reductions that occurred for endogenous IAA, given IAA’s known ability to differentially influence the expression levels of GA20ox, GA3ox, and GA2ox, key genes in GA biosynthesis.  相似文献   

2.
Elongation of hypocotyls of sunflower can be promoted by gibberellins (GAs) and inhibited by ethylene. The role of these hormones in regulating elongation was investigated by measuring changes in both endogenous GAs and in the metabolism of exogenous [3H]- and [2H2]GA20 in the hypocotyis of sunflower (Helianthus annuus L. cv Delgren 131) seedlings exposed to ethylene. The major biologically active GAs identified by gas chromatography-mass spectrometry were GA1, GA19, GA20, and GA44. In hypocotyls of seedlings exposed to ethylene, the concentration of GA1, known to be directly active in regulating shoot elongation in a number of species, was reduced. Ethylene treatment reduced the metabolism of [3H]GA20 and less [2H2]GA1 was found in the hypocotyls of those seedlings exposed to the higher ethylene concentrations. However, it is not known if the effect of ethylene on GA20 metabolism was direct or indirect. In seedlings treated with exogenous GA1 or GA3, the hypocotyls elongated faster than those of controls, but the GA treatment only partially overcame the inhibitory effect of ethylene on elongation. We conclude that GA content is a factor which may limit elongation in hypocotyls of sunflower, and that while exposure to ethylene results in reduced concentration of GA1 this is not sufficient per se to account for the inhibition of elongation caused by ethylene.  相似文献   

3.
Wild type (WT) tomato seedlings responded to a low red to far-red (R/FR) ratio with increased stem elongation, similar leaflet area expansion and lower shoot ethylene levels. The levels of endogenous growth-active GA1 and its immediate precursor GA20 were decreased by low R/FR ratio, whereas the levels of GA1 catabolite, GA8, increased. To examine the interaction of ethylene with GAs in regulating tomato shoot growth under low R/FR ratio, transgenic (T) seedlings bearing Le-ACS2 and Le-ACS4 antisense mRNA were utilized. Low R/FR ratio increased stem elongation and decreased ethylene levels in T tomato shoots, as it did in WT shoots. However, T stems were significantly taller than the WT stems under low R/FR ratio. Leaflet areas were significantly larger for T, than WT seedlings under both R/FR ratios. Low R/FR ratio did not decrease endogenous levels of GA1 and GA20 in T shoots, but did increase GA8 levels, which were higher than in WT shoots. These results, and hormone/inhibitor application studies, showed that in tomato shoots subjected to low R/FR ratio, GAs play a growth-promotive role in stem elongation, whereas ethylene is growth-inhibitory. Further, these results may imply that decreasing ethylene production under low R/FR ratio causes increases in stem elongation and GA levels.  相似文献   

4.
Sunflower (Helianthus annuus L.) stems showed increased elongation under two types of vegetative shade: canopy shade (low red to far red [R/FR] ratio) and neighbouring proximity shade (FR enrichment). Hypocotyls also elongated more under narrow-band FR light than under narrow-band R light. Ethylene levels were determined in actively elongating 7-day-old hypocotyls and 17-day-old internodes under three R/FR ratios. Ethylene levels were lower in both sunflower hypocotyls and internodes when the R/FR ratio was reduced. Both FR enrichment of normal R/FR ratio and narrow-band FR light with very low light irradiance resulted in reduction in ethylene levels in 7-day-old hypocotyls. Further, in application experiments, sunflower stems grown under low R/FR ratio were more sensitive to ethephon and less sensitive to aminoethoxyvinylglycine (AVG) than stems grown under high R/FR ratio. Low R/FR ratio appears to initiate reduction in ethylene levels in sunflower seedlings, allowing maximum stem elongation. These results, and findings of other authors, suggest that various plant species may have developed different ways of regulating stem elongation and ethylene levels in response to low R/FR ratio.  相似文献   

5.
A reduced red to far-red (R/FR) light ratio and low photosynthetically active radiation (PAR) irradiance are both strong signals for inducing etiolation growth of plant stems. Under natural field conditions, plants can be exposed to either a reduced R/FR ratio or lower PAR, or to a combination of both. We used Helianthus annuus L., the sunflower, to study the effect of reduced R/FR ratio, low PAR or their combination on hypocotyl elongation. To accomplish this, we attempted to uncouple light quality from light irradiance as factors controlling hypocotyl elongation. We measured alterations in the levels of endogenous gibberellins (GAs), cytokinins (CKs) and the auxin indole-3-acetic acid (IAA), and the effect of exogenous hormones on hypocotyl growth. As expected, both reduced R/FR ratio and lower PAR can significantly promote sunflower hypocotyl elongation when given separately. However, providing the reduced R/FR ratio at a low PAR resulted in the greatest hypocotyl growth, and this was accompanied by significantly higher levels of endogenous IAA, GA1, GA8, GA20 and of a wide range of CKs. Providing a reduced R/FR ratio under normal PAR also significantly increased growth and again gave significantly higher levels of endogenous IAA, GAs and CKs. However, only under the de-etiolating influence of a normal R/FR ratio did lowering PAR significantly increase levels of GA1, GA8 and GA20. We thus conclude that light quality (e.g. the R/FR ratio) is the most important component of shade for controlling hypocotyl growth and elevated growth hormone content.  相似文献   

6.
Two important environmental signals, shade light, where the red/far-red (R/FR) light ratio is reduced, and elevated temperatures can each promote shoot growth. We examined their interactions using hypocotyl elongation of young sunflower (Helianthus annuus) seedlings, and we did this in the context of a possible hormonal mechanism for the growth increases that were induced by each environmental signal. Seedlings were subjected to combinations of six different temperatures (10, 15, 20, 25, 30 and 35°C) and four R/FR ratios (normal at 1.2 and reduced at 0.9, 0.6 and 0.3). Hypocotyl length was significantly increased by each of elevated temperature and FR enrichment. The magnitude of elongation induced by FR enrichment (low R/FR ratios) was dependent on temperature, with maximal effects of FR enrichment being seen at 20°C. Hypocotyl tissue concentrations of four endogenous gibberellins (GAs) and abscisic acid (ABA) were measured using the stable isotope dilution method. Hypocotyl ethylene evolution was also assessed. Thus, hypocotyl growth in both normal and shade light is highly dependent on temperature, with the most significant increases in FR-induced growth occurring at 20 and 25°C. A causal involvement of endogenous hormones, especially the GAs, in the growth that is induced by elevated temperatures, as well as in FR-induced growth, is strongly implied, with temperature being the stronger signal.  相似文献   

7.
The role of gibberellins (GAs) during germination and early seedling growth is examined by following the metabolism and transport of radiolabeled GAs in cotyledon, shoot, and root tissues of pea (Pisum sativum L.) using an aseptic culture system. Mature pea seeds have significant endogenous GA20 levels that fall during germination and early seedling growth, a period when the seedling develops the capacity to transport GA20 from the cotyledon to the shoot and root of the seedling. Even though cotyledons at 0–2 days after imbibition have appreciable amounts of GA20, the cotyledons retain the ability to metabolize labeled GA19 to GA20 and express significant levels of PsGA20ox2 message (which encodes a GA biosynthesis enzyme, GA 20-oxidase). The large pool of cotyledonary GA20 likely provides substrate for GA1 synthesis in the cotyledons during germination, as well as for shoots and roots during early seedling growth. The shoots and roots express GA metabolism genes (PsGA3ox genes which encode GA 3-oxidases for synthesis of bioactive GA1, and PsGA2ox genes which encode GA 2-oxidases for deactivation of GAs to GA29 and GA8), and they develop the capacity to metabolize GAs as necessary for seedling establishment. Auxins also show an interesting pattern during early seedling growth, with higher levels of 4-chloro-indole-3-acetic acid (4-Cl-IAA) in mature seeds and higher levels of indole-3-acetic acid (IAA) in young root and shoot tissues. This suggests a changing role for auxins during early seedling development.  相似文献   

8.
The elongation rate of cowpea epicotyls from whole cowpea (Vigna sinensis) seedlings and derooted and debladed plants (explants) increased after the main light period (8-hour duration) was extended with either continuous low intensity tungsten light or brief (5 minutes) far-red (FR) irradiation. This end-of-day FR effect was reversed by red (R) irradiation suggesting the involvement of phytochrome. These results confirm and extend those obtained previously with other species. Localization studies indicate the epicotyl to be the site of the photoreceptor. Treatment of cowpea seedlings with paclobutrazol, a gibberellin (GA) biosynthetic inhibitor, abolished the FR promoted epicotyl elongation, indicating a role for GAs in this process. There was no significant difference in epicotyl elongation rates of R plus FR irradiated explants treated with GA1 or GA20 and R irradiated explants treated with GA1. However, R irradiation inhibited subsequent epicotyl elongation of GA20 treated explants. Moreover, the observation, using GC-MS, that GA1 and GA20 are native GAs in cowpea lends support to the concept that phytochrome may control the conversion of endogenous GA20 to GA1 in cowpea.  相似文献   

9.
The role of gibberellin (GA) and ethylene in submergence-induced petiole elongation was studied in two species of the genus Rumex. Analysis of endogenous GAs in the flooding-tolerant Rumex palustris Sm. and the intolerant Rumex acetosa L. by gas chromatography-mass spectrometry showed for both species the presence of GA1, GA4, GA9, GA19, GA20 and GA53. Gas chromatography-mass spectrometry analysis of R. palustris petiole tissue of submerged plants showed an increase in levels of 13-OH GAs, especially GA1, compared with drained plants. This effect could be mimicked by application of 5 μL L−1 ethylene. In R. acetosa, no differences between levels of GAs in drained or submerged plants were found. In R. palustris, both submergence and ethylene treatment sensitized petioles to exogenous gibberellic acid (GA3). In R. acetosa the effect was opposite, i.e. submergence and ethylene de-sensitized petioles to GA3. Our results demonstrate the dual effect of ethylene in the submergence response related to flooding tolerance, i.e. in the flooding-tolerant R. palustris ethylene causes an increased concentration of and sensitivity to GA with respect to petiole elongation while in the intolerant R. acetosa ethylene reduces growth independent of GAs. Received: 5 November 1996 / Accepted: 8 February 1997  相似文献   

10.
The involvement of gibberellins (GAs) and ethylene in the process of root radial expansion was studied in young seedlings of Carrizo citrange [Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.]. The GA inhibitors cycocel, paclobutrazol, and tetcyclacis enhanced radial expansion of the root tip (up to 2.3-fold) as a result of increases in stele diameter and inner cortex width. The GA deficiency increased cell number and width, and changed the polarity of growth, generating wider and shorter cortical cells in the elongation zone. In the presence or absence of GA inhibitors, GA3 decreased root tip width and reduced all parameters related to radial expansion. The ethylene inhibitors (aminooxyacetic acid; cobalt ions, CoCl2; silver thiosulfate) suppressed swelling induced by GA deficiency, generating thinner cells just as GA3 did. In contrast to GA3, ethylene inhibitors produced longer cells strongly resembling those of the untreated seedlings. Ethylene released by ethephon did not modify root tip width in control plants, while root diameter behind the root tip was increased. In the presence of low and ineffective concentrations of cycocel, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid increased radial expansion of root tips (1.3-fold) and changed the polarity of growth, producing wider and shorter inner cortical cells as GA inhibitors did. These observations imply, first, that ethylene is the hormonal effector of the process of root radial expansion and, second, that the endogenous GAs modulate the promotive response of ethylene. Received: 4 October 1996 / Accepted: 25 December 1996  相似文献   

11.
Four 13-hydroxygibberellins, gibberellin A1 (GA1), 3-epi-GA1,GA19 and GA20 were identified by full-scan GC/MS in extractsof lettuce seedlings (Lactuca sativa L. cv. Grand Rapids). Theresults suggest that the early-13-hydroxylation biosyntheticpathway to GA1 functions in the lettuce seedlings. It was alsofound that GA1 is active per se in the control of hypocotylelongation in lettuce seedlings. To investigate the relationshipbetween control by light of hypocotyl elongation and levelsof endogenous GAs in lettuce, endogenous levels of GAs werequantified by radioimmunoassay in seedlings that had been grownfor 5 days in the dark (5D) and in those that had been grownfor 4 days in the dark and then under white light for 1 day(4D1L). The endogenous level of GA1 in the upper and lower partsof hypocotyls in 5D seedlings was about four times higher thanthat in 4D1L seedlings. The response of explants (hypocotylsegments with cotyledons) from dark-grown seedlings to GA1 isknown to be similar in the dark and under white light when theexplants are treated with inhibitors of the biosynthesis ofGA. Therefore, the above information suggests that the highlevel of GA1 in hypocotyls of dark-grown seedlings is responsiblefor the rapid elongation of hypocotyl, while irradiation bywhite light decreases the endogenous level of GA1 in the hypocotylswith a resultant decrease in the rate of hypocotyl elongation. (Received March 13, 1992; Accepted May 21, 1992)  相似文献   

12.
In the gibberellin (GA) biosynthesis pathway, 20-oxidase catalyzes the oxidation and elimination of carbon-20 to give rise to C19-GAs. All bioactive GAs are C19-GAs. We have overexpressed a cDNA encoding 20-oxidase isolated from Arabidopsis seedlings in transgenic Arabidopsis plants. These transgenic plants display a phenotype that may be attributed to the overproduction of GA. The phenotype includes a longer hypocotyl, lighter-green leaves, increased stem elongation, earlier flowering, and decreased seed dormancy. However, the fertility of the transgenic plants is not affected. Increased levels of endogenous GA1, GA9, and GA20 were detected in seedlings of the transgenic line examined. GA4, which is thought to be the predominantly active GA in Arabidopsis, was not present at increased levels in this line. These results suggest that the overexpression of this 20-oxidase increases the levels of some endogenous GAs in transgenic seedlings, which causes the GA-overproduction phenotype.  相似文献   

13.
The role of gibberellins (GAs) in the regulation of shoot elongation is well established but the phytohormonal control of dry-matter production is poorly understood. In the present study, shoot elongation and dry-matter production were resolved by growing Brassica napus L. seedlings under five light intensities (photon flux densities) ranging from 25 to 500 μmol m−2 s−1. Under low light, plants were tall but produced little dry weight; as light intensity was increased, plants were progressively shorter but had increasing dry weights. Endogenous GAs in stems of 16- and 17-d-old plants were analyzed by gas chromatography-selected ion monitoring with [2H2] internal standards. The contents of GAs increased dramatically with decreasing light intensity: GA1, GA3, GA8 and GA20 were 62, 15, 16 and 32 times higher, respectively, under the lowest versus highest light intensities. Gibberellin A19 was not measured at 25 μmol m−2 s−1 but was 9␣times greater in the 75 compared to 500 μmol m−2 s−1 treatment. Shoot and hypocotyl lengths were closely positively correlated with (log) GA concentration (for example: r 2 = 0.93 for GA1 and hypocotyl length) but shoot dry matter was negatively correlated with GA concentration. The application of gibberellic acid (GA3) produced elongation of plants grown under high light, indication that their low level of endogenous GA was limiting shoot elongation. Although endogenous GA20 showed the greatest influence of light treatment, metabolism of [3H]GA20 and of [3H]GA1 was only slightly influenced by light intensity, suggesting that neither 2β- nor 3β-hydroxylation were points of metabolic regulation. The results of this study indicate that GAs control shoot elongation but are not directly involved in the regulation of shoot dry weight in Brassica. The study also suggests a role of GAs in photomorphogenesis, serving as an intermediate between light condition and shoot elongation response. Received: 18 June 1998 / Accepted: 29 July 1998  相似文献   

14.
We have studied the role of endogenous auxin on adventitious rooting in hypocotyls of derooted sunflower (Helianthus annuus L. var. Dahlgren 131) seedlings. Endogenous free and conjugated indole-3-acetic acid (IAA) were measured in three segments of hypocotyls of equal length (apical, middle, basal) by using gas chromatography-mass spectrometry with [13C6]-IAA as an internal standard. At the time original roots were excised (0 h), the free IAA level in the hypocotyls showed an acropetally decreasing gradient, but conjugated IAA level increased acropetally; i.e. free to total IAA ratio was highest in the basal portion of hypocotyls. The basal portion is the region where most of root primordia were found. Some primordia were seen in this region within 24 h after the roots were excised. The quantity of free IAA in the middle portion of the hypocotyl increased up to 15 h after excision and then decreased. In this middle region there were fewer root primordia, and they could not be seen until 72 h. In the apical portion the amount of free IAA steadily increased and no root primordia were seen by 72 h. Surgical removal of various parts of the hypocotyl tissues caused adventitious root formation in the hypocotyl regions where basipetally transported IAA could accumulate. Reduction in the basipetal flow of auxin by N-1-naphthylphthalamic acid and 2,3,5-tri-iodobenzoic acid resulted in fewer adventitious roots. The fewest root primordia were seen if the major sources of endogenous auxin were removed by decapitation of the cotyledons and apical bud. Exogenous auxins promoted rooting and were able to completely overcome the inhibitory effect of 2,3,5-tri-iodobenzoic acid. Exogenous auxins were only partially able to overcome the inhibitory effect of decapitation. We conclude that in sunflower hypocotyls endogenously produced auxin is necessary for adventitious root formation. The higher concentrations of auxin in the basal portion may be partially responsible for that portion of the hypocotyl producing the greatest number of primordia. In addition to auxins, other factors such as wound ethylene and lowered cytokinin levels caused by excision of the original root system cuttings must also be important.  相似文献   

15.
Two late stages [days 35 and 40 after pollination (DAP)] in zygotic embryo (ZE) development of Brassica napus were utilized to quantify, by the stable isotope-labeled dilution method, levels of “free” and “aglycone” gibberellins (GAs), as well as abscisic acid (ABA), during the programmed dehydration of the seed. GAs from both the early 13 hydroxylation and early non-hydroxylation pathways were present in these ZEs of B napus. Between 35 and 40 DAP endogenous ABA dropped precipitously (almost 30-fold) and this drop in ABA was accompanied by a significant reduction in levels of GA1 and even in levels of the inactive GA catabolites, GA8 and GA29. Levels of GA4 and putative GA85 also dropped appreciably, though not significantly. In contrast, the levels of GA20 and GA9 (the immediate precursors of GA1 and GA4, respectively) did not change in the ZEs during this transition. A fungal-derived cellulase was used to hydrolyze the highly water-soluble fraction, which will contain GA conjugates. Relatively high levels of several GAs (GA9, GA20) were thus quantified after hydrolysis as the aglycones, e.g., 56 and 25 ng/g DW of GA20 and 23 and 5 ng/g DW, of GA9, respectively at DAP 35 and DAP 40. Other GAs found after hydrolysis of the highly water-soluble fraction remained relatively constant between 35 and 40 DAP. An exception was the putative GA85 aglycone, which increased sixfold (free GA85 decreased by ca. half). The transition to the dry seed stage for ZEs of B. napus is thus accompanied not only by the expected reduction in ABA, but also by reduced levels of many “free” GAs, especially the bioactive, 3β-hydroxylated GAs. In contrast, levels of 3-deoxy GAs remain relatively high, implying a partial block in the 3β-hydroxylation “activation” step of GA biosynthesis.  相似文献   

16.
Apical applications of 0.2 μg N6-benzyladenine (BA), a synthetic cytokinin, or 5 μg of gibberellic acid (GA3) significantly enhanced hypocotyl elongation in intact dwarf watermelon seedlings over a 48-h period. Accompanying the increase in hypocotyl length was marked expansion of cotyledons in BA-treated seedlings and inhibition of root growth by both compounds. A study on dry matter partitioning indicated that both growth regulators caused a preferential accumulation of dry matter in hypocotyls at the expense of the roots; however, GA3 elicited a more rapid and greater change than did BA. In comparison to untreated seedlings, BA decreased total translocation of metabolites out of the cotyledons. Water potentials of cotyledons and hypocotyls were determined by allowing organs to equilibrate for 2 h in serial concentrations of polyethylene glycol 4000. Osmotic potentials were determined by thermocouple psychrometry. During periods of rapid growth in cotyledons and hypocotyls of BA-treated seedlings and in hypocotyls of GA-treated seedlings, the osmotic potential increased and the turgor pressure decreased in relation to untreated seedlings, indicating that cell wall extensibility was being increased. Osmotic potentials were lower in hypocotyls of GA-treated than in those of BA-treated seedlings, even though growth rates were higher in GA-treated seedlings, indicating that the latter treatment was generating more osmotically active solutes in hypocotyls.  相似文献   

17.
The effect of the herbicide chlorsulfuron (2-chloro-N-[(4-methoxy - 6 - methyl -1, 3,5 - triazin - 2 - yl)aminocarbonyl]benzenesulfonamide) on ethylene production in light-grown sunflower (Helianthus annuus L.) seedlings was examined. Application of chlorsulfuron to the apex stimulated ethylene production in all tissues examined: cotyledons, hypocotyls, and roots. The greatest stimulation occurred in the upper portion of the hypocotyl adjacent to, and including, the cotyledonary node. Ethylene evolution from hypocotyls excised from treated seedlings was stimulated over control levels 1 day after herbicide application and reached a maximum (approx. 75 x control or 17 nl/g f wt/h) 2 to 3 days after treatment. Labeling and inhibitor studies indicated that the ethylene produced was derived primarily from methionine. Chlorsulfuron treatment stimulated the rate of accumulation of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), as well as the ability of the tissue to convert exogenous ACC to ethylene. Chlorsulfuron had little effect on ethylene production when administered to the hypocotylsin vitro. Removal of the cotyledons from treated seedlings reduced the rate of ethylene evolution from the hypocotyls. These results suggest that stimulation of ethylene production in sunflower hypocotyls by chlorsulfuron is not a wound response but rather is dependent on factors derived from the cotyledons.  相似文献   

18.
19.
Phototropic responses to broadband far red (FR) radiation were investigated in fully de-etiolated seedlings of a long-hypocotyl mutant (lh) of cucumber (Cucumis sativus L.), which is deficient in phytochrome-B, and its near isogenic wild type (WT). Continuous unilateral FR light provided against a background of white light induced negative curvatures (i.e. bending away from the FR light source) in hypocotyls of WT seedlings. This response was fluence-rate dependent and was absent in the lh mutant, even at very high fluence rates of FR. The phototropic effect of FR light on WT seedlings was triggered in the hypocotyls and occurred over a range of fluence rates in which FR was very effective in promoting hypocotyl elongation. FR light had no effect on elongation of lh-mutant hypocotyls. Seedlings grown in the field showed negative phototropic responses to the proximity of neighboring plants that absorbed blue (B) and red light and back-reflected FR radiation. The bending response was significantly larger in WT than in lh seedlings. Responses of WT and lh seedlings to lateral B light were very similar; however, elimination of the lateral B light gradients created by the proximity of plant neighbors abolished the negative curvature only in the case of lh seedlings. More than 40% of the total hypocotyl curvature induced in WT seedlings by the presence of neighboring plants was present after equilibrating the fluence rates of B light received by opposite sides of the hypocotyl. These results suggest that: (a) phytochrome functions as a phototropic sensor in de-etiolated plants, and (b) in patchy canopy environments, young seedlings actively project new leaves into light gaps via stem bending responses elicited by the B-absorbing photoreceptor(s) and phytochrome.  相似文献   

20.
Apical applications of 0.2 g N6-benzyladenine (BA), a synthetic cytokinin, or 5 g of gibberellic acid (GA3) significantly enhanced hypocotyl elongation in intact dwarf watermelon seedlings over a 48-h period. Accompanying the increase in hypocotyl length was marked expansion of cotyledons in BA-treated seedlings and inhibition of root growth by both compounds. A study on dry matter partitioning indicated that both growth regulators caused a preferential accumulation of dry matter in hypocotyls at the expense of the roots; however, GA3 elicited a more rapid and greater change than did BA. In comparison to untreated seedlings, BA decreased total translocation of metabolites out of the cotyledons. Water potentials of cotyledons and hypocotyls were determined by allowing organs to equilibrate for 2 h in serial concentrations of polyethylene glycol 4000. Osmotic potentials were determined by thermocouple psychrometry. During periods of rapid growth in cotyledons and hypocotyls of BA-treated seedlings and in hypocotyls of GA-treated seedlings, the osmotic potential increased and the turgor pressure decreased in relation to untreated seedlings, indicating that cell wall extensibility was being increased. Osmotic potentials were lower in hypocotyls of GA-treated than in those of BA-treated seedlings, even though growth rates were higher in GA-treated seedlings, indicating that the latter treatment was generating more osmotically active solutes in hypocotyls.Scientific Contribution No. 1219 from the New Hampshire Agricultural Experiment Station.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号