首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrostatic pressure and aquatic plant growth: a laboratory study   总被引:1,自引:1,他引:0  
H. M. Dale 《Hydrobiologia》1984,111(3):193-200
A method was tested for growing aquatic vascular plants at elevated hydrostatic pressure so that the influence of other factors will not mask the specific plant-pressure interaction. Eighteen species of submersed vascular plants, belonging to twelve families and several distinct growth forms, were subjected to series of hydrostatic pressures including those well in excess of those encountered by the species when growing at its normal depths in lakes. Under no circumstances was the form of the plant altered even at the highest pressures, equivalent to that at a water depth of 23 m. The removal of confounding extraneous factors depends upon controlling competing algae, on raising the pressure in a series of steps, on maintaining the pressure without fluctuations during the growing period, on suiting the light and temperature conditions to the species and maintaining aquasoil air spaces or allowing them to develop. These preliminary data suggest that the level of hydrostatic pressure in the depth distribution of aquatic plants cannot be either a necessary or a sufficient controlling factor.  相似文献   

2.
Data from different laboratories and theoretical considerations challenge our current view on anticancer immunity. Immune cells are capable of destroying cancer cells under in vitro and in vivo conditions. Therefore, cellular immunity is considered to control cancers through mechanisms that kill cancers. Yet, therapeutic anticancer immune responses rarely delete cancers. If efficient, they rather establish a life with stable disease. This raises the question of whether killing is the sole mechanism by which immune therapy attacks cancers. Here, we show that, besides cancer eradication by cytotoxic lymphocytes, other modes of action are operative and strictly required for cancer control. We show that T helper-1 cells arrest cancer growth by driving cancers into a state of stable or permanent growth arrest, called senescence. Such immune cells establish cytokine-producing walls around developing cancers. When producing interferon-γ and tumor necrosis factor, this cytokine-induced tumor immune-surveillance keeps the cancer cells in a permanently non-proliferating state. Simultaneously, antiangiogenic chemokines cut their connections to the surrounding tissues. This strategy significantly reduces tumor burden and prolongs life of cancer-bearing animals. As human cancers also undergo senescence, the current data suggest tumor-immune surveillance through cytokine-induced senescence, instead of tumor eradication, as the more realistic and primary goal of cancer control.  相似文献   

3.
Cell cytoskeleton and tensegrity   总被引:1,自引:0,他引:1  
Volokh KY  Vilnay O  Belsky M 《Biorheology》2002,39(1-2):63-67
The role of tensegrity architecture of the cytoskeleton in the mechanical behavior of living cells is examined by computational studies. Plane and spatial tensegrity models of the cytoskeleton are considered as well as their non-tensegrity counterparts. Local buckling including deep postbuckling response of the compressed microtubules of the cytoskeleton is considered. The tensioned microfilaments cannot sustain compression. Large deformation of the whole model is accounted and fully nonlinear analysis is performed. It is shown that in the case of local buckling of the microtubules non-tensegrity models exhibit qualitatively the same linear stiffening as their tensegrity counterparts. This result raises the question of experimental validation of the local buckling of microtubules. If the microtubules of real cells are not straight, then tensegrity (in a narrow sense) is not a necessary attribute of the cytoskeleton architecture. If the microtubules are straight then tensegrity is more likely to be the cytoskeletal architecture.  相似文献   

4.
The immune responses of human lymphoid tissue explants or cells isolated from this tissue were studied quantitatively under normal gravity and microgravity. Microgravity was either modeled by solid body suspension in a rotating, oxygenated culture vessel or was actually achieved on the International Space Station (ISS). Our experiments demonstrate that tissues or cells challenged by recall antigen or by polyclonal activator in modeled microgravity lose all their ability to produce antibodies and cytokines and to increase their metabolic activity. In contrast, if the cells were challenged before being exposed to modeled microgravity suspension culture, they maintained their responses. Similarly, in microgravity in the ISS, lymphoid cells did not respond to antigenic or polyclonal challenge, whereas cells challenged prior to the space flight maintained their antibody and cytokine responses in space. Thus, immune activation of cells of lymphoid tissue is severely blunted both in modeled and true microgravity. This suggests that suspension culture via solid body rotation is sufficient to induce the changes in cellular physiology seen in true microgravity. This phenomenon may reflect immune dysfunction observed in astronauts during space flights. If so, the ex vivo system described above can be used to understand cellular and molecular mechanisms of this dysfunction.  相似文献   

5.
As ambient pressure increases, hydrostatic compression of the central nervous system, combined with increasing levels of inspired Po2, Pco2, and N2 partial pressure, has deleterious effects on neuronal function, resulting in O2 toxicity, CO2 toxicity, N2 narcosis, and high-pressure nervous syndrome. The cellular mechanisms responsible for each disorder have been difficult to study by using classic in vitro electrophysiological methods, due to the physical barrier imposed by the sealed pressure chamber and mechanical disturbances during tissue compression. Improved chamber designs and methods have made such experiments feasible in mammalian neurons, especially at ambient pressures <5 atmospheres absolute (ATA). Here we summarize these methods, the physiologically relevant test pressures, potential research applications, and results of previous research, focusing on the significance of electrophysiological studies at <5 ATA. Intracellular recordings and tissue Po2 measurements in slices of rat brain demonstrate how to differentiate the neuronal effects of increased gas pressures from pressure per se. Examples also highlight the use of hyperoxia (相似文献   

6.
Liu J  Zou L  Zheng Y  Zhao Z  Li Y  Yang P  Luo S 《Cell biology international》2007,31(10):1220-1224
This study was to examine the early responses of nuclear factor kappa B (NF-kappaB) to mechanical strains in MG-63. MG-63 cells were subjected to cyclic uniaxial compressive or tensile strain, produced by a four-point bending system, at 1000 microstrain or 4000 microstrain for 5 min, 15 min, 30 min and 1h, respectively. Control cells received the same treatment with no mechanical stress loading. Expression of NF-kappaB (p60) was measured by Western blotting. NF-kappaB responded rapidly to mechanical stimuli in MG-63 cells. NF-kappaB was activated by cyclic uniaxial stretch at 1000 microstrain while it was restrained under a compressive strain environment at 1000 microstrain (P<0.001). The effects reversed for tension and compression at 4000 microstrain (P<0.001). Furthermore, strains at 1000 microstrain affected NF-kappaB expression much easier than those at 4000 microstrain. This indicates that there may be different responding mechanisms or mechanotransduction pathways for different mechanical stimuli.  相似文献   

7.
Adams MA 《Biorheology》2006,43(3-4):537-545
There is a growing literature concerning chondrocyte responses to mechanical loading, but relatively little is known about the mechanical environment these cells experience in a living joint. Calculations indicate that high forces are applied to limb joints whenever the joints are flexed, because flexion can cause body weight to act on long lever arms compared to the joint centre, whereas the muscles which extend the joint act on much shorter lever arms. As a result, joint reaction forces (which compress the cartilage) can rise to 3-6 times body weight during activities such as stair climbing. Articular cartilage tends to spread this load evenly over the joint surface, but is too thin to do this well, and compressive stresses can rise to 10-20 MPa. Within cartilage, matrix stresses vary locally, possibly as a result of variation in composition or undulations in the subchondral bone, and further modifications of stress occur within each chondron. Articular cartilage is a fibrous solid and cells within it are deformed by mechanical loading rather than subjected to a hydrostatic pressure. The mechanical environment of chondrocytes can best be reproduced in vitro by direct compression of the articular surface of cartilage which is supported naturally by adjacent cartilage and subchondral bone.  相似文献   

8.
Subconfluent bovine pulmonary artery endothelial cells on rigid substrates were exposed to 1.5–15 cm H2O sustained hydrostatic pressure for up to 7 days and exhibited elongation, cytoskeletal rearrangement, increased cell proliferation, and bilayering. The role of basic fibroblast growth factor (bFGF) in the mechanism(s) of these endothelial cell responses to sustained hydrostatic pressure was investigated. Evidence that bFGF was released from endothelial cells exposed to sustained hydrostatic pressure or compression was provided by the following experimental results: (1) Cells exposed to control (3 mm H2O) pressure displayed intense nuclear and cytoplasmic bFGF staining by immunocytochemical techniques; this staining was absent in cells exposed to 10 cm H2O for 7 days. (2) Conditioned medium from endothelial cells exposed to 10 cm H2O for 7 days contained at ansferable, growth-promoting activity exhibiting heparin-Sepharose affinity, lability to both heat and freeze/thawing, and neutralization by anti-bovine bFGF. (3) Suramin (0.1 mM), a growth-factor receptor inhibitor, abrogated the proliferative and morphological responses of endothelial cells exposed to sustained hydrostatic pressure. Endothelial cells exposed to elevated hydrostatic pressure demonstrated no detectable decrement in cell viability as assessed by Trypan blue exclusion. The results of the present study indicate that hydrostatic pressure or compression can induce bFGF release from endothelial cells independent of cell injury or death; bFGF is subsequently responsible for the morphological, proliferative, and bilayering responses of endothelial cells to hydrostatic pressure. © 1993 Wiley-Liss, Inc.  相似文献   

9.
10.
All cells experience and respond to external mechanical stimuli including shear stress, compression, and hydrostatic pressure. Cellular responses can include changes in exocytic and endocytic traffic. An excellent system to study how extracellular forces govern membrane trafficking events is the bladder umbrella cell, which lines the inner surface of the mammalian urinary bladder. It is hypothesized that umbrella cells modulate their apical plasma membrane surface area in response to hydrostatic pressure. Understanding the mechanics of this process is hampered by the lack of a suitable model system. We describe a pressure chamber that allows one to increase hydrostatic pressure in a physiological manner while using capacitance to monitor real-time changes in the apical surface area of the umbrella cell. It is demonstrated that application of hydrostatic pressure results in an increase in umbrella cell apical surface area and a change in the morphology of umbrella cells from roughly cuboidal to squamous. This process is dependent on increases in cytoplasmic Ca(2+). This system will be useful in further dissecting the mechanotransduction pathways involved in cell shape change and regulation of exocytic and endocytic traffic in umbrella cells.  相似文献   

11.
Atomic force microscopy (AFM) is a force sensing nanoscopic tool that can be used to undertake a multiscale approach to understand the mechanisms that underlie cell shape change, ranging from the cellular to molecular scale. In this review paper, we discuss the use of AFM to characterize the dramatic shape changes of mitotic cells. AFM-based mechanical assays can be applied to measure the considerable rounding force and hydrostatic pressure generated by mitotic cells. A complementary AFM technique, single-molecule force spectroscopy, is able to quantify the interactions and mechanisms that functionally regulate individual proteins. Future developments of these nanomechanical methods, together with advances in light microscopy imaging and cell biological and genetic tools, should provide further insight into the biochemical, cellular and mechanical processes that govern mitosis and other cell shape change phenomena.  相似文献   

12.
Cells of the terrestrial plant species bromegrass (Bromus inermis L.) are not naturally adapted to withstand the hydrostatic pressures encountered in aquatic environments. However, after treatment with the natural plant growth hormone abscisic acid (75 micromolar), bromegrass cells survived a hydrostatic pressure of 101.3 megapascals, approximating the limits of ocean depth (10,860 m). The increased resistance to hydrostatic pressure from 1 to 7 days of abscisic acid treatment paralleled the induced elevation of cell tolerance to freezing stress.  相似文献   

13.
Lee RB  Wilkins RJ  Razaq S  Urban JP 《Biorheology》2002,39(1-2):133-143
Cartilage is routinely subjected to varying mechanical stresses which are known to affect matrix turnover by a variety of pathways. Here we show that mechanical loads which suppress sulphate incorporation or protein synthesis by articular chondrocytes, also inhibit rates of oxygen uptake and of lactate production. Although the mechanisms have not been definitively identified, it has been shown that high hydrostatic pressures reduce the activity of the glucose transporter GLUT. Furthermore, fluid expression consequent on static loading changes intracellular pH and ionic strength; intracellular changes which would reduce the activity of glycolytic enzymes. Both pathways would thus lead to a fall in rates of glycolysis and a reduction in intracellular ATP, and - since ATP concentrations directly affect sulphation of proteoglycans - a rapid fall in sulphate incorporation. Our results suggest that load-induced changes in matrix synthesis in cartilage can occur by means other than changes in gene expression.  相似文献   

14.
We present the first study of the changes in the assembly and organization of actin filaments and microtubules that occur in epithelial cells subjected to the hydrostatic pressures of the deep sea. Interphase BSC-1 epithelial cells were pressurized at physiological temperature and fixed while under pressure. Changes in cell morphology and cytoskeletal organization were followed over a range of pressures from 1 to 610 atm. At atmospheric pressure, cells were flat and well attached. Exposure of cells to pressures of 290 atm or greater caused cell rounding and retraction from the substrate. This response became more pronounced with increased pressure, but the degree of response varied within the cell population in the pressure range of 290-400 atm. Microtubule assembly was not noticeably affected by pressures up to 290 atm, but by 320 atm, few microtubules remained. Most actin stress fibers completely disappeared by 290 atm. High pressure did not simply induce the overall depolymerization of actin filaments for, concurrent with cell rounding, the number of visible microvilli present on the cell surface increased dramatically. These effects of high pressure were reversible. Cells re-established their typical morphology, microtubule arrays appeared normal, and stress fibers reformed after approximately 1 hour at atmospheric pressure. High pressure may disrupt the normal assembly of microtubules and actin filaments by affecting the cellular regulatory mechanisms that control cytological changes during the transition from interphase into mitosis.  相似文献   

15.
Mechanical forces have a profound effect on cartilage tissue and chondrocyte metabolism. Strenuous loading inhibits the cellular metabolism, while optimal level of loading at correct frequency raises an anabolic response in chondrocytes. In this study, we used Atlas Human Cancer cDNA array to investigate mRNA expression profiles in human chondrosarcoma cells stretched 8% for 6 hours at a frequency of 0.5 Hz. In addition, cultures were exposed to continuous and cyclic (0.5 Hz) 5 MPa hydrostatic pressure. Cyclic stretch had a more profound effect on the gene expression profiles than 5 MPa hydrostatic pressure. Several genes involved with the regulation of cell cycle were increased in stretched cells, as well as mRNAs for PDGF-B, glucose-1-phosphate uridylyltransferase, Tiam1, cdc37 homolog, Gem, integrin alpha6, and matrix metalloproteinase-3. Among down-regulated genes were plakoglobin, TGF-alpha, retinoic acid receptor-alpha and Wnt8b. A smaller number of changes was detected after pressure treatments. Plakoglobin was increased under cyclic and continuous 5 MPa hydrostatic pressure, while mitogen-activated protein kinase-9, proliferating cell nuclear antigen, Rad6, CD9 antigen, integrins alphaE and beta8, and vimentin were decreased. Cyclic and continuous pressurization induces a number of specific changes. In conclusion, a different set of genes were affected by three different types of mechanical stimuli applied on chondrosarcoma cells.  相似文献   

16.
Diverse mechanisms of morphogenesis generate a wide variety of animal forms. In this work, we discuss two ways that the mechanical properties of embryonic tissues could guide one of the earliest morphogenetic movements in animals, gastrulation. First, morphogenetic movements are a function of both the forces generated by cells and the mechanical properties of the tissues. Second, cells could change their behavior in response to their mechanical environment. Theoretical studies of gastrulation indicate that different morphogenetic mechanisms differ in their inherent sensitivity to tissue mechanical properties. Those few empirical studies that have investigated the mechanical properties of amphibian and echinoderm gastrula-stage embryos indicate that there could be high embryo-to-embryo variability in tissue stiffness. Such high embryo-to-embryo variability would imply that gastrulation is fairly robust to variation in tissue stiffness. Cell culture studies demonstrate a wide variety of cellular responses to the mechanical properties of their microenvironment. These responses are likely to be developmentally regulated, and could either increase or decrease the robustness of gastrulation movements depending on which cells express which responses. Hence both passive physical and mechanoregulatory processes will determine how sensitive gastrulation is to tissue mechanics. Addressing these questions is important for understanding the significance of diverse programs of early development, and how genetic or environmental perturbations influence development. We discuss methods for measuring embryo-to-embryo variability in tissue mechanics, and for experimentally perturbing those mechanical properties to determine the sensitivity of gastrulation to tissue mechanics.  相似文献   

17.
18.
One approach to gauge the complexity of the computational problem underlying haptic perception is to determine the number of dimensions needed to describe it. In vision, the number of dimensions can be estimated to be seven. This observation raises the question of what is the number of dimensions needed to describe touch. Only with certain simplified representations of mechanical interactions can this number be estimated, because it is in general infinite. Organisms must be sensitive to considerably reduced subsets of all possible measurements. These reductions are discussed by considering the sensing apparatuses of some animals and the underlying mechanisms of two haptic illusions.  相似文献   

19.
The preferential association of cholesterol and sphingolipids within plasma membranes forms organized compartments termed lipid rafts. Addition of caveolin proteins to this lipid milieu induces the formation of specialized invaginated plasma membrane structures called caveolae. Both lipid rafts and caveolae are purported to function in vesicular transport and cell signaling. We and others have shown that disassembly of rafts and caveolae through depletion of plasma membrane cholesterol mitigates mechanotransduction processes in endothelial cells. Because osteoblasts are subjected to fluid-mechanical forces, we hypothesize that cholesterol-rich plasma membrane microdomains also serve the mechanotransduction process in this cell type. Cultured human fetal osteoblasts were subjected to either sustained hydrostatic pressure or laminar shear stress using a pressure column or parallel-plate apparatus, respectively. We found that sustained hydrostatic pressure induced protein tyrosine phosphorylation, activation of extracellular signal-regulated kinase (ERK)1/2, and enhanced expression of c-fos in both time- and magnitude-dependent manners. Similar responses were observed in cells subjected to laminar shear stress. Both sustained hydrostatic pressure- and shear stress-induced signaling were significantly reduced in osteoblasts pre-exposed to either filipin or methyl--cyclodextrin. These mechanotransduction responses were restored on reconstitution of lipid rafts and caveolae, which suggests that cholesterol-rich plasma membrane microdomains participate in the mechanotransduction process in osteoblasts. In addition, mechanical force-induced phosphoproteins were localized within caveolin-containing membranes. These data support the concept that lipid rafts and caveolae serve a general function as cell surface mechanotransduction sites within the plasma membrane. lipid rafts; caveolae; extracellular signal-regulated kinase  相似文献   

20.
How Do Benthic Organisms Withstand Moving Water?   总被引:4,自引:0,他引:4  
Many aquatic plants and animals spend part of their lives anchoredto the substratum as water flows by. There are a number of mechanismsby which such sessile organisms can affect the magnitude ofthe flow-induced forces they encounter, as well as the distributionand magnitude of the mechanical stresses in their bodies producedby those forces. Furthermore, the mechanical properties of theskeletal tissues of such organisms affect how much they deformand whether or not they will break in response to flow-inducedstresses. There are different mechanisms by which organismscan withstand the water flow characterizing a particular typeof habitat. Biomechanics is a useful tool for studying how theperformance of organisms depends on their structure. Biomechanicalstudies should be accompanied by knowledge of the natural historyand ecology of the organisms in question if they are to leadto insights about how organisms work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号