首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The activities of 30 different lysosomal enzymes were determined in vitro in the presence of the sulphated glycosaminoglycans, heparin and chondroitin sulphate, all the enzymes being measured on a density-gradient-purified lysosomal fraction. 2. Each enzyme was studied as a function of the pH of the incubation medium. In general the presence of sulphated glycosaminoglycans induced a strong pH-dependent inhibition of lysosomal enzymes at pH values lower than 5.0, with full activity at higher pH values. However, in the particular case of lysozyme and phospholipase A2 the heparin-induced inhibition was maintained in the pH range 4.0-7.0. 3. For certain enzymes, such as acid beta-glycerophosphatase, alpha-galactosidase, acid lipase, lysozyme and phospholipase A2, the pH-dependent behaviour obtained in the presence of heparin was quite different to that obtained with chondroitin sulphate, suggesting the existence of physicochemical characteristic factors playing a role in the intermolecular interaction for each of the sulphated glycosaminoglycans studied. 4. Except in the particular case of peroxidase activity, in all other lysosomal enzymes measured the glycosaminoglycan-enzyme complex formation was a temperature-and time-independent phenomenon. 5. The effects of the ionic strength and pH on this intermolecular interaction reinforce the concept of an electrostatic reversible interaction between anionic groups of the glycosaminoglycans and cationic groups on the enzyme molecule. 6. As leucocytic primary lysosomes have a very acid intragranular pH and large amounts of chondroitin sulphate, we propose that this glycosaminoglycan might act as molecular regulator of leucocytic activity, by inhibiting lysosomal enzymes when the intragranular pH is below the pI of lysosomal enzymes. This fact, plus the intravacuolar pH changes described during the phagocytic process, might explain the unresponsiveness of lysosomal enzymes against each other existing in primary lysosomes as well as its full activation at pH values occurring in secondary lysosomes during the phagocytic process.  相似文献   

2.
Significant differences occur between the interaction of several sulphated glycosaminoglycans with a particular lysosomal protein, leading to inhibition in the case of lysosomal enzymes. The order of strength of inhibition at pH4 was: heparin greater than chondroitin 4-sulphate = chondroitin 6-sulphate greater than dermatan sulphate.  相似文献   

3.
Glycosaminoglycans synthesized in polymorphonuclear (PMN) leucocytes isolated from blood (peripheral PMN leucocytes) and in those induced intraperitoneally by the injection of caseinate (peritoneal PMN leucocytes) were compared. Both peripheral and peritoneal PMN leucocytes were incubated in medium containing [35S]sulphate and [3H]glucosamine. Each sample obtained after incubation was separated into cell, cell-surface and medium fractions by trypsin digestion and centrifugation. The glycosaminoglycans secreted from peripheral and peritoneal PMN leucocytes were decreased in size by alkali treatment, indicating that they existed in the form of proteoglycans. Descending paper chromatography of the unsaturated disaccharides obtained by the digestion of glycosaminoglycans with chondroitinase AC and chondroitinase ABC identified the labelled glycosaminoglycans of both the cell and the medium fractions in peripheral PMN leucocytes as 55-58% chondroitin 4-sulphate, 16-19% chondroitin 6-sulphate, 16-19% dermatan sulphate and 6-8% heparan sulphate. Oversulphated chondroitin sulphate and oversulphated dermatan sulphate were found only in the medium fraction. In peritoneal PMN leucocytes there is a difference in the composition of glycosaminoglycans between the cell and the medium fractions; the cell fraction was composed of 60% chondroitin 4-sulphate, 5.5% chondroitin 6-sulphate, 16.8% dermatan sulphate and 13.9% heparan sulphate, whereas the medium fraction consisted of 24.5% chondroitin 4-sulphate, 28.2% chondroitin 6-sulphate, 33.7% dermatan sulphate and 10% heparan sulphate. Oversulphated chondroitin sulphate and oversulphated dermatan sulphate were found in the cell, cell-surface and medium fractions. On the basis of enzymic assays with chondro-4-sulphatase and chondro-6-sulphatase, the positions of sulphation in the disulphated disaccharides were identified as 4- and 6-positions of N-acetylgalactosamine. Most of the 35S-labelled glycosaminoglycans synthesized in peripheral PMN leucocytes were retained within cells, whereas those in peritoneal PMN leucocytes were secreted into the culture medium. Moreover, the amount of glycosaminoglycans in peritoneal PMN leucocytes was significantly less than that in peripheral PMN leucocytes. Assay of lysosomal enzymes showed that these activities in peritoneal PMN leucocytes were 2-fold higher than those in peripheral PMN leucocytes.  相似文献   

4.
Confluent monolayer cultures of rabbit corneal endothelial and stromal cells were incubated independently with [35S]sulphate and [3H]glucosamine for 3 days. AFter incubation, labelled glycosaminoglycans were isolated from the growth medium and from a cellular fraction. These glycosaminoglycans were further characterized by DEAE-cellulose column chromatography and by sequential treatment with various glycosamino-glycan-degrading enzymes. Both endothelial and stromal cultures synthesized hyaluronic acid as the principal product. The cell fraction from the stromal cultures, however, had significantly less hyaluronic acid than that from the endothelial cultures. In addition, both types of cells synthesized a variety of sulphated glycosaminoglycans. The relative amounts of each sulphated glycosaminoglycan in the two cell lines were similar, with chondroitin 4-sulphate, chondroitin 6-sulphate and dermatan sulphate as the major components. Heparan sulphate was present in smaller amounts. Keratan sulphate was also identified, but only in very small amounts (1-3%). The presence of dermatan sulphate and the high content of hyaluronic acid are similar to the pattern of glycosaminoglycans seen in regenerating or developing tissues, including cornea.  相似文献   

5.
The glycosaminoglycans of human cultured normal glial and malignant glioma cells were studied. [35S]Sulphate or [3H]glucosamine added to the culture medium was incorporated into glycosaminoglycans; labelled glycosaminoglycans were isolated by DEAE-cellulose chromatography or gel chromatography. A simple procedure was developed for measurement of individual sulphated glycosaminoglycans in cell-culture fluids. In normal cultures the glycosaminoglycans of the pericellular pool (trypsin-susceptible material), the membrane fraction (trypsin-susceptible material of EDTA-detached cells) and the substrate-attached material consisted mainly of heparan sulphate. The intra- and extra-cellular pools showed a predominance of dermatan sulphate. The net production of hyaluronic acid was low. The accumulation of 35S-labelled glycosaminoglycans in the extracellular pool was essentially linear with time up to 72h. The malignant glioma cells differed in most aspects tested. The total production of glycosaminoglycans was much greater owing to a high production of hyaluronic acid and hyaluronic acid was the major cell-surface-associated glycosaminoglycan in these cultures. Among the sulphated glycosaminoglycans chondroitin sulphate, rather than heparan sulphate, was the predominant species of the pericellular pool. This was also true for the membrane fraction and substrate-attached material. Furthermore, the accumulation of extracellular 35S-labelled glycosaminoglycans was initially delayed for several hours and did not become linear with time until after 24 h of incubation. The glioma cells produced little dermatan sulphate and the dermatan sulphate chains differed from those of normal cultures with respect to the distribution of iduronic acid residues. The observed differences between normal glial and malignant glioma cells were not dependent on cell density; rather they were due to the malignant transformation itself.  相似文献   

6.
Articular cartilage from cow and calf femoral condyles was incubated in Tyrodes solution containing [35S]sulphate for different periods up to 80 min. Glycosaminoglycans from the cartilage tissue and incubation medium were fractionated on Cetylpyridinium chloride and ECTEOLA cellulose microcolumns. The incorporation of [35S]sulphate into all individual fractions of chondroitin sulphate and keratan sulphate was found to be linear from 20 to 80 min incubation time. As a rule the total specific activities of keratan sulphate and chondroitin sulphate were similar for both calves and cows. The proteoglycan material recovered from the medium amounted to about 1% of the tissue dry weight and was found to have a higher chondroitin sulphate: keratan sulphate ratio than the corresponding cartilage tissue for both calf and cow. The solubility profiles for the newly synthesised glycosaminoglycans, obtained from determination of the radioactivity in the individual fractions, were compared with those of glycosaminoglycans already present. These curves indicated that newly synthesised chondroitin sulphate had a higher average molecular size than that present in the tissue whereas the newly synthesised keratan sulphate had a smaller average molecular size. These newly synthesised components were also detected in the proteoglycans recovered from the incubation medium.  相似文献   

7.
The D-glucuronosyl (GlcA)- and N-acetyl-D-galactosaminyl (GalNAc)-transferases involved in chondroitin sulphate biosynthesis were studied in a microsomal preparation from chick-embryo chondrocytes. Transfer of GlcA and GalNAc from their UDP derivatives to 3H-labelled oligosaccharides prepared from chondroitin sulphate and hyaluronic acid was assayed by h.p.l.c. of the reaction mixture. Conditions required for maximal activities of the two enzymes were remarkably similar. Activities were stimulated 3.5-6-fold by neutral detergents. Both enzymes were completely inhibited by EDTA and maximally stimulated by MnCl2 or CoCl2. MgCl2 neither stimulated nor inhibited. The GlcA transferase showed a sharp pH optimum between pH5 and 6, whereas the GalNAc transferase gave a broad optimum from pH 5 to 8. At pH 7 under optimal conditions, the GalNAc transferase gave a velocity that was twice that of the GlcA transferase. Oligosaccharides prepared from chondroitin 4-sulphate and hyaluronic acid were almost inactive as acceptors for both enzymes, whereas oligosaccharides from chondroitin 6-sulphate and chondroitin gave similar rates that were 70-80-fold higher than those observed with the endogenous acceptors. Oligosaccharide acceptors with degrees of polymerization of 6 or higher gave similar Km and Vmax. values, but the smaller oligosaccharides were less effective acceptors. These results are discussed in terms of the implications for regulation of the overall rates of the chain-elongation fractions in chondroitin sulphate synthesis in vivo.  相似文献   

8.
The electrostatic interactions that occur in connective tissue between polyanions and proteins have been studied in model systems by a technique involving a fluorescent probe, acridine orange. It was found that collagen bound more strongly than bovine serum albumin to the polyanions studied. At pH 3.0, collagen formed strong complexes of definite stoichiometry with chondroitin-4-sulphate, chondroitin-6-sulphate, heparin and polystyrene sulphonate that were stable in sodium chloride solution of 0.1 M. The complexes of collagen with hyaluronic acid, or carboxymethylcellulose were less stable. The effect of pH variations (3.0–9.0) on the binding was investigated. Critical electrolyte concentrations (NaCl) were determined for complexes of collagen with glycosaminoglycans that dissociated at salt concentrations below that at which collagen precipitates. The values obtained were, 0.1 M for hyaluronic acid, and 0.5 M for chondroitin sulphate.  相似文献   

9.
Articular cartilage from cow and calf femoral condyles was incubated in Tyrodes solution containing [35S]sulphate for different periods up to 80 min. Glycosaminoglycans from the cartilage tissue and incubation medium were fractionated on Cetylpyridinium chloride and ECTEOLA cellulose microcolumns.The incorporation of [35S]sulphate into all individual fractions of chondroitin sulphate and keratan sulphate was found to be linear from 20 to 80 min incubation time. As a rule the total specific activities of keratan sulphate and chondroitin sulphate were similar for both calves and cows.The proteoglycan material recovered from the medium amounted to about 1% of the tissue dry weight and was found to have a higher chondroitin sulphate: keratan sulphate ratio than the corresponding cartilage tissue for both calf and cow.The solubility profiles for the newly synthesised glycosaminoglycans, obtained from determination of the radioactivity in the individual fractions, were compared with those of glycosaminoglycans already present. These curves indicated that newly synthesised chondroitin sulphate had a higher average molecular size than that present in the tissue whereas the newly synthesised keratan sulphate had a smaller average molecular size. These newly synthesised components were also detected in the proteoglycans recovered from the incubation medium.  相似文献   

10.
Incorporation of [35S]]sulphate, [3H]glucose and [3H]serine into glycosaminoglycans and proteoglycans of embryonic-chicken sternum was measured in vitro in incubation medium containing 4-methylumbelliferyl beta-D-xyloside or p-nitrophenyl beta-D-xyloside at low concentrations, and in the absence of inhibitors of protein synthesis. Incorporation of sulphate was decreased by 80% in incubations in which 1mM-4-methylumbelliferyl beta-xyloside or 2.5 mM-p-nitrophenyl beta-xyloside was present; under these conditions, serum factors stimulated incorporation to only a small extent. When the concentration of the xyloside was decreased tenfold, incorporation of sulphate was inhibited by 60-70%, but when normal human serum or L-3,3',5-tri-iodothyronine or both were also added to the incubation medium, incorporation was markedly stimulated. Experiments in which [35S]sulphate and [3H]glucose were incorporated simultaneously, and enzymic analysis of glycosaminoglycans formed in such experiments, indicated that chondroitin sulphate formed in the presence of 0.1 mM-4-methylumbelliferyl beta-xyloside contained 30-40% less sulphate than did chondrotin sulphate synthesized in the absence of xylosides. Similar experiments, with [3H]serine instead of [3H]glucose, suggested also a 20-30% decrease in chain length of the chondroitin sulphate; this was confirmed by direct gel filtration of labelled glycosaminoglycans on a calibrated column. Incorporation of [3H]glucose or [3H]serine was stimulated by serum and tri-iodothyronine in parallel with incorporation of sulphate. The changes seen in the total chondroitin sulphate were mirrored in the major proteoglycan fraction, purified by isopycnic centrifugation of salt-extracted proteoglycans. The labelling pattern of chondroitin sulphate from this proteoglycan indicated that decreased sulphation of chondroitin sulphate was largely due to the inferior ability of short polysaccharide chains to accept sulphate, with some direct interference with transfer of sulphate to all chains. The results also suggested that the action of serum factors on synthesis of proteochondroitin sulphate is exercised at the level of either protein synthesis or transport to the sites of initiation of polysaccharide synthesis.  相似文献   

11.
Kinetics of chloroquine and daunorubicin (DNR) uptake by cultured L cells (subline LSM) has been studied. With their constant concentrations in the medium the uptake of both chloroquine and DNR was characterized as a two phase process. Within 1.5-2 hours, these cells accumulated as much as 90 per cent of the total chloroquine and DNR amounts taken up during the whole incubation period. The segregation and accumulation of these substances took place in lysosomes. Chloroquine and DNR concentrations within lysosomes exceed those in the medium by 1100 and 5000 times, respectively. The chloroquine and DNR accumulation in lysosomes inhibited activities of some lysosomal hydrolases tested: cathepsins B and D, N-acetyl-beta, D-glucosaminidase and acid phosphatase. Unlike, the activity of acid lipase was not affected by chloroquine, and was sufficiently stimulated (by 55%) by DNR. The mechanism of inhibition of lysosomal enzymes by chloroquine and DNR is not yet known, although some suggestions are made. Possible consequences of lysosomal activity inhibition for cell metabolism are discussed in addition to a possible role of lysosomotropic agents as regulators of lysosomal functional activity.  相似文献   

12.
Sulphated glycosaminoglycans have been analysed in cloned bovine aortic endothelial cells cultured on collagen gels after incubation with [3H]glucosamine and Na2(35)SO4. Radioactive products were analysed in the culture medium, in sequential collagenase and trypsin extracts of the cell monolayer and the associated extracellular matrix, and in the remaining viable cells. Heparan sulphate and chondroitin sulphate were found in each compartment: the heparan sulphate had a low degree of sulphation (approximately 0.4 N-sulphate and 0.2 O-sulphate groups per disaccharide unit on average). In the nitrous acid scission products of heparan sulphate, O-sulphated substituents were confined to disaccharide and tetrasaccharide fragments, indicating that local regions of the chain (which might be susceptible to excission by the platelet endoglycosidase) are highly sulphated. Only minor structural differences in heparan sulphate were observed between the various compartments. In contrast the chondroitin sulphate found in the collagenase extract had a higher iduronic acid content than corresponding material in the trypsin extract and the culture medium, indicating that collagenase and trypsin may extract glycosaminoglycans from different regions of the extracellular and pericellular matrix.  相似文献   

13.
Summary Histochemical analysis of urea-unmasked glycosaminoglycans has been performed in connective tissues of the rat and mouse skin by means of combined staining and enzyme digestion procedures. The staining procedures used were Alcian Blue pH 1.0, Alcian Blue pH 2.5, Aldehyde Fuchsin, periodic acid-Schiff (PAS), Alcian Blue pH 2.5-PAS, high iron diamine and low iron diamine methods. The digestive enzymes employed wereStreptomyces and testicular hyaluronidases, chondroitinases ABC and AC and keratanase. The results obtained indicated that the major components of the glycosaminoglycans in the connective tissues of the skin were hyaluronic acid, dermatan sulphate and chondroitin sulphate A and/or C, whereas the tissues were devoid of keratan sulphate.  相似文献   

14.
Carbohydrate recognition by amyloid P component from human serum has been investigated by binding experiments using several glycosaminoglycans, polysaccharides and a series of structurally defined neoglycolipids and natural glycolipids. Two novel classes of carbohydrate ligands have been identified. The first is 6-phosphorylated mannose as found on lysosomal hydrolases, and the second is the 3-sulphated saccharides galactose, N-acetyl-galactosamine and glucuronic acid as found on sulphatide and other acidic glycolipids that occur in neural or kidney tissues or on subpopulations of lymphocytes. Binding to mannose-6-phosphate containing molecules and inhibition of binding by free mannose-6-phosphate and fructose-1-phosphate are features shared with mannose-6-phosphate receptors involved in trafficking of lysosomal enzymes. However, only amyloid P binding is inhibited by galactose-6-phosphate, mannose-1-phosphate and glucose-6-phosphate. These findings strengthen the possibility that amyloid P protein has a central role in amyloidogenic processes: first in formation of focal concentrations of lysosomal enzymes including proteases that generate fibril-forming peptides from amyloidogenic proteins, and second in formation of multicomponent complexes that include sulphoglycolipids as well as glycosaminoglycans. The evidence that binding to all of the acidic ligands involves the same polypeptide domain on amyloid P protein, and inhibition data using diffusible, phosphorylated monosaccharides, is potentially important leads to novel drug designs aimed at preventing or even reversing amyloid deposition processes without interference with essential lysosomal trafficking pathways.  相似文献   

15.
Chondroitin 4-sulphate, chondroitin 6-sulphate, dermatan sulphate and keratan sulphate were N-deacetylated by treatment with hydrazine and then cleaved with HNO2 at pH 4.0, and the resulting products were reduced with NaB3H4. This reaction sequence cleaved the glycosaminoglycans at their N-acetyl-D-glucosamine or N-acetyl-D-galactosamine residues, which were converted into 3H-labelled 2,5-anhydro-D-mannitol (AManR) or 2,5-anhydro-D-talitol (ATalR) residues respectively. The end-labelled disaccharides, composed of D-glucuronic acid (GlcA), L-iduronic acid (IdoA) or D-galactose (Gal) and one of the anhydrohexitols, were identified as follows: both chondroitin 4-sulphate and chondroitin 6-sulphate gave GlcA----ATalR(4-SO4), GlcA----ATalR(6-SO4), IdoA----ATalR (4-SO4) and GlcA(2-SO4)----ATalR(6-SO4); dermatan sulphate gave IdoA----ATalR(4-SO4), GlcA----ATalR(4-SO4), GlcA----ATalR(6-SO4)----IdoA(2-SO4)ATalR(4-SO4) and IdoA----ATalR (4,6-diSO4); keratan sulphate gave Gal(6-SO4)----AManR(6-SO4), Gal----AManR(6-SO4), Gal(6-SO4)----AManR and Gal----AManR. Several additional disaccharides were generated by treatment of the uronic acid-containing disaccharides with hydrazine to epimerize their uronic acid residues at C-5. A number of these disaccharides were found to be substrates for lysosomal sulphatases and glycuronidases. Methods were developed for the separation of all of the disaccharide products by h.p.l.c. The rate of N-deacetylation of chondroitin 4-sulphate by hydrazinolysis was significantly lower than the rate of N-deacetylation of chondroitin 6-sulphate or chondroitin. Dermatan sulphate was N-deacetylated at an intermediate rate. The relative amounts of disaccharides obtained from chondroitin 4-sulphate, chondroitin 6-sulphate and dermatan sulphate under optimum hydrazinolysis/deamination conditions were comparable with the amounts of the corresponding products released from the polymers by chondroitinase treatment.  相似文献   

16.
Peritoneal macrophages from nude mice were found to be functionally similar to 'activated' macrophages from normal mice. The objective of the present study was to characterize the proteoglycans synthesized and secreted in vitro by peritoneal macrophages isolated from nude and normal Balb/c mice and to investigate the relationship between macrophage 'activation' and changes in the proteoglycan patterns. Macrophages obtained by peritoneal lavage were seeded in Petri dishes. After 2 h incubation at 37 degrees C, the adherent cells (macrophages) were exposed to [35S]sulphate for the biosynthetic labelling of proteoglycans. After incubation, the cell and medium fractions were collected and analysed for proteoglycans and glycosaminoglycans. The glycosaminoglycans were identified and characterized by a combination of agarose gel electrophoresis and enzymatic degradation with specific mucopolysaccharidases. It was shown that 3/4 of the total 35S-labelled glycosaminoglycans were in the extracellular compartment after 24-48 h. The macrophages synthesized dermatan sulphate (68%), chondroitin sulphate (7%) and heparan sulphate (25%). Both cell and medium fractions of normal and nude mouse macrophages contained glycosaminoglycans with the same ratios, although the nude mouse macrophages synthesized 2-fold less glycosaminoglycans than the normal mouse macrophages. Lower levels of 35S-proteoglycans were also obtained from in vitro 'activated' macrophages, but the ratios of dermatan sulphate:chondroitin sulphate: heparan sulphate were altered in these cells as compared to the control. Furthermore, all the 35S-macromolecules found in the extracellular compartment of nude and normal control cells were of proteoglycan nature, in contrast to the medium fractions of 'activated' macrophages, which contain both intact proteoglycans and 'free' glycosaminoglycan chains. These results indicate that, at least as regards the proteoglycans and glycosaminoglycans, the nude mouse macrophages are not identical to the 'activated' macrophages from normal mice.  相似文献   

17.
Tilorone, an amphiphilic cationic compound with antiviral activity perturbed the lysosomal system. In cultured fibroblasts tilorone induced storage of sulfated glycosaminoglycans, enhanced secretion of precursor forms of lysosomal enzymes, inhibited intracellular proteolytic maturation of lysosomal enzymes, and inhibited receptor-mediated endocytosis of lysosomal enzymes. In isolated lysosomes tilorone was found to increase pH and to abolish the ATP-dependent acidification. These effects suggest that tilorone acts like a weak base that accumulates in acid compartments of the cells, raises the pH therein and interferes with lysosomal catabolic activity and with receptor-mediated transport of lysosomal enzymes.  相似文献   

18.
Summary The distribution of hyaluronic acid and proteoglycans in bovine thoracic aorta was studied by Alcian Blue staining of frozen tissue sections under controlled electrolyte conditions with and without prior enzymic digestion. Some sections were digested with chondroitinase ABC, testicular hyaluronidase or bacterial collagenase and subsequent staining permitted conclusions to be drawn about the distribution of specific glycosaminoglycans within the tissue. The total glycosaminoglycan content was maximal in the intima and decreased across the arterial wall to the outermost adventitial layer. The content of proteoglycan containing chondroitin sulphate and/or dermatan sulphate chains paralleled this distribution. However, other glycosaminoglycans also contributed significantly to staining, although there was no evidence for any appreciable concentration of heparin or highly sulphated heparan sulphate.Several experiments indicated that proteoglycan containing chondroitin sulphate and/or dermatan sulphate was associated with elastic laminae which were often seen stained along their periphery. Hyaluronic acid was present at significant concentrations in all locations of the aorta and there was evidence for a similar distribution of heparan sulphate which was possibly also present at a high concentration in the endothelium. Staining of sections after treatment with 4m guanidinium chloride confirmed that this extractant removed most of the proteoglycan from the tissue section.  相似文献   

19.
Isoelectric focusing was used to investigate the multiple forms of acid phosphatase, arylsulfatase, beta-glucuronidase, beta-galactosidase and beta-N-acetylhexosaminidase in the following, previously characterized subcellular fractions from rat kidney: a special rough microsomal fraction, enriched up to 9-fold over the homogenate in acid hydrolases; a smooth microsomal fraction; a Golgi membrane fraction enriched about 2.5-fold in acid hydrolases and 10- to 20-fold in several glycosyl transferases; and a lysosomal fraction enriched up to 25-fold in acid hydrolases. The electro-focusing behavior of the hydrolases in these fractions was markedly sensitive to the autolytic changes that occur under acidic conditions, even at 4 degrees C. Autolysis was minimized by extracting fractions in an alkaline medium (0.2% Triton X-100, 0.1 M sodium glycinate buffer, pH 10, 0.1 % p-nitrophenyloxamic acid) and adding p-nitrophenyloxamic acid (0.1 %), AN INHIBITOR OF LYSOSOMAL NEURAMINIDASE AND cathepsin D, to the pH gradient. The enzymes in the lysosomal fraction displayed a characteristic bimodal or trimodal distribution. Arylsulfatase, beta-glucuronidase and beta-N-acetylhexosaminidase occurred in an acidic form with an isoelectric point of 4.4, and a basic form with an isoelectric point of 6.2, 6.7 and 8.0, respectively. Acid phosphatase and beta-galactosidase occurred in an acidic, intermediate and basic form with isoelectric points of about 4. 1, 5.6 and 7.4, respectively. In the special rough microsomal fraction these enzymes were mostly in a basic form with isoelectric points between 7.5 and 9; these were 1-2 units higher than the corresponding basic forms in the lysosomal fraction. Treatment of extracts of the rough microsomal fraction with bacterial neuraminidase raised the isoelectric points of all five hydrolases by 1-2.5 units, indicating the presence of some N-acetylneuraminic acid residues in these basic glycoenzymes. The hydrolases in the Golgi fraction were largely in an acidic form with isoelectric points similar to or lower than those of the corresponding acidic components in the lysosomal fraction. The hydrolases in the smooth microsomal fraction showed isoelectric-focusing patterns intermediate between those in the rough microsomal and the Golgi fractions. These findings support the following scheme for the synthesis, transport and packaging of the lysosomal enzymes. Each hydrolase is synthesized in a restricted portion of the r  相似文献   

20.
It was found that both normal human myometrium and uterine leiomyoma contain several glycosaminoglycans. In contrast to many normal and tumour tissues the amount of hyaluronic acid is very low and the proportional amount of sulphated glycosaminoglycans is distinctly higher. It is of interest that heparan sulphate is the major glycosaminoglycan component both in normal myometrium, and in leiomyoma. The amount of hyaluronic acid in myometrium and in the leiomyoma is very low. No significant change in hyaluronate content was observed during the tumour growth. In contrast to that the amount of some sulphated glycosaminoglycans (heparan sulphate, keratan sulphate, chondroitin sulphates and heparin) distinctly increased. It is suggested that some of the GAGs participate in the creation of a storage depot for biologically active molecules (growth factors, enzymes) which are thereby stabilized and protected. Hydrolytic degradation of some GAGs may result in the release of some cytokines which may promote the tumour growth and stimulate collagen biosynthesis by tumour cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号