首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
BACKGROUND: Reactive oxygen species (ROS) are mainly produced in mitochondria and are important contributors to many forms of cell death. ROS also function as second messengers within the cell and may constitute a signaling pathway from mitochondria to the cytoplasm and nucleus. The aim of the present study was to develop a protocol to detect changes in intra- and extramitochondrial releases of ROS, which could be used to analyze the role of mitochondria in cell signaling and cell death. METHODS: Fluorescence-based assays were used to measure (a) total production of ROS, (b) intramitochondrial ROS, (c) extramitochondrial hydrogen peroxide, and (d) superoxide outside inverted (inside-out) submitochondrial particles. ROS generation in the samples was increased or decreased by the addition of different substrates, enzymes, and inhibitors of the electron transport chain. RESULTS: The individual assays used were sensitive to increased (e.g., after addition of antimycin A; increased signal) and decreased (ROS scavenging; decreased signal) levels of ROS. In combination, the assays provided information about mitochondrial ROS generation and release dynamics from small samples of isolated mitochondria. CONCLUSIONS: The combination of fluorescent techniques described is a useful tool to study the role of ROS in cell death and in cellular redox signaling.  相似文献   

4.
Reactive oxygen species (ROS) were established to play an important role in cellular signaling as second messengers by integrating different pathways. Recently, we showed that EGF initiated a rapid tyrosine phosphorylation of both EGF-receptor and STAT factors with simultaneous increase in the intracellular ROS level. Now, we have investigated the effect of intracellular red-ox state on EGF- and H2O2-induced activation of EGF receptor, STAT1 and STAT3. We demonstrated that the pretreatment of A431 cells with antioxidant N-acetyl-L-cysteine (NAC) partly reduced the level of EGF-induced phosphorylation of proteins under investigation. Besides, H2O2-induced activation of EGF receptor, and STAT factors was fully prevented by NAC pretreatment. The inhibition of ROS generation by DPI declined EGF-dependent activation of EGF receptor and STAT factors to basal level. Our results demonstrate the essential role of cellular red-ox status in the modulation of EGF-mediated activation of receptor and STAT factors. We have postulated that EGF-induced ROS generation is a very important initial event promoting physiological activation of EGF receptor and subsequent STAT factor activation.  相似文献   

5.
Oxidation as a post-translational modification that regulates autophagy   总被引:1,自引:0,他引:1  
The toxicity associated with accumulation of reactive oxygen species (ROS) has led to the evolution of various defense strategies to overcome oxidative stress, including autophagy. This pathway is involved in the removal and degradation of damaged mitochondria and oxidized proteins. At low levels, however, ROS act as signal transducers in various intracellular pathways. In a recent study we described the role of ROS as signaling molecules in starvation-induced autophagy. We showed that starvation stimulates formation of ROS, specifically H(2)O(2), in the mitochondria. Furthermore, we identified the cysteine protease HsAtg4 as a direct target for oxidation by H(2)O(2), and specified a cysteine residue located near the HsAtg4 catalytic site as critical for this regulation. Here we focus on Atg4, the target of regulation, and discuss possible mechanisms for the regulation of this enzyme in the autophagic process.  相似文献   

6.
Mechanical stretch activates a number of signaling pathways in endothelial cells, and it elicits a variety of functional responses including increases in the phosphorylation of focal adhesion kinase (FAK), a nonreceptor tyrosine kinase involved in integrin-mediated signal transduction. Stretch also triggers an increase in the generation of reactive oxygen species (ROS), which may function as second messengers in the signal transduction cascades that activate cellular responses to strain. Mitochondria represent an important source of ROS in the cell, and these organelles may release ROS in response to strain by virtue of their attachment to cytoskeletal proteins. We therefore tested whether cyclic stretch increases FAK phosphorylation at Tyr397 through a mitochondrial ROS signaling pathway in bovine pulmonary artery endothelial cells (BPAEC). Oxidant signaling, measured using 2'7'-dichlorofluorescin (DCFH), increased 152 +/- 16% during 1.5 h of cyclic strain relative to unstrained controls. The mitochondrial inhibitors diphenylene iodonium (5 microM) or rotenone (2 microM) attenuated this increase, whereas L-nitroarginine (100 microM), allopurinol (100 microM), or apocynin (30 microM) had no effect. The antioxidants ebselen (5 microM) and dithiodidiethyldithiocarbamate (1 mM) inhibited the strain-induced increase in oxidant signaling, but Hb (5 microM) had no effect. These results indicate that strain induces oxidant release from mitochondria. Treatment with cytochalasin D (5 microM) abrogated strain-induced DCFH oxidation in BPAEC, indicating that actin filaments were required for stretch-induced mitochondrial ROS generation. Cyclic strain increased FAK phosphorylation at Tyr397, but this was abolished by mitochondrial inhibitors as well as by antioxidants. Strain-induced FAK phosphorylation was abrogated by inhibition of protein kinase C (PKC) with Ro-31-8220 or G?-6976. These findings indicate that mitochondrial oxidants generated in response to endothelial strain trigger FAK phosphorylation through a signaling pathway that involves PKC.  相似文献   

7.
《Autophagy》2013,9(4):371-373
The toxicity associated with accumulation of reactive oxygen species (ROS) has led to the evolution of various defense strategies to overcome oxidative stress, including autophagy. This pathway is involved in the removal and degradation of damaged mitochondria and oxidized proteins. At low levels, however, ROS act as signal transducers in various intracellular pathways. In a recent study we described the role of ROS as signaling molecules in starvation-induced autophagy. We showed that starvation stimulates formation of ROS, specifically H2O2, in the mitochondria. Furthermore, we identified the cysteine protease HsAtg4 as a direct target for oxidation by H2O2, and specified a cysteine residue located near the HsAtg4 catalytic site as critical for this regulation. Here we focus on Atg4, the target of regulation, and discuss possible mechanisms for the regulation of this enzyme in the autophagic process.

Addendum to:

Reactive Oxygen Species Are Essential for Autophagy and Specifically Regulate the Activity of Atg4

R. Scherz-Shouval, E. Shvets, E. Fass, H. Shorer, L. Gil and Z. Elazar

EMBO J 2007; doi: 10.1038/sj.emboj.7601623  相似文献   

8.
Mitochondrial biogenesis and mitochondrial DNA (mtDNA) maintenance depend on coordinated expression of genes in the nucleus and mitochondria. A variety of intracellular and extracellular signals transmitted by hormones and second messengers have to be integrated to provide mammalian cells with a suitable abundance of mitochondria and mtDNA to meet their energy demand. It has been proposed that reactive oxygen species (ROS) and free radicals generated from respiratory chain are involved in the signaling from mitochondria to the nucleus. Increased oxidative stress may contribute to alterations in the abundance of mitochondria as well as the copy number and integrity of mtDNA in human cells in pathological conditions and in aging process. Within a certain level, ROS may induce stress responses by altering expression of specific nuclear genes to uphold the energy metabolism to rescue the cell. Once beyond the threshold, ROS may cause oxidative damage to mtDNA and other components of the affected cells and to elicit apoptosis by induction of mitochondrial membrane permeability transition and release of pro-apoptotic proteins such as cytochrome c. On the basis of recent findings gathered from this and other laboratories, we review the alterations in the abundance of mitochondria and mtDNA copy number of mammalian cells in response to oxidative stress and the signaling pathways that are involved.  相似文献   

9.
Reactive oxygen species (ROS) are implicated in cardiovascular diseases. ROS, such as H2O2, act as second messengers to activate diverse signaling pathways. Although H2O2 activates several tyrosine kinases, including the epidermal growth factor (EGF) receptor, JAK2, and PYK2, in vascular smooth muscle cells (VSMCs), the intracellular mechanism by which ROS activate these tyrosine kinases remains unclear. Here, we identified two distinct signaling pathways required for receptor and nonreceptor tyrosine kinase activation by H2O2 involving a metalloprotease-dependent generation of heparin-binding EGF-like growth factor (HB-EGF) and protein kinase C (PKC)-delta activation, respectively. H2O2-induced EGF receptor tyrosine phosphorylation was inhibited by a metalloprotease inhibitor, whereas the inhibitor had no effect on H2O2-induced JAK2 tyrosine phosphorylation. HB-EGF neutralizing antibody inhibited H2O2-induced EGF receptor phosphorylation. In COS-7 cells expressing an HB-EGF construct tagged with alkaline phosphatase, H2O2 stimulates HB-EGF production through metalloprotease activation. By contrast, dominant negative PKC-delta transfection inhibited H2O2-induced JAK2 phosphorylation but not EGF receptor phosphorylation. Dominant negative PYK2 inhibited H2O2-induced JAK2 activation but not EGF receptor activation, whereas dominant negative PKC-delta inhibited PYK2 activation by H2O2. These data demonstrate the presence of distinct tyrosine kinase activation pathways (PKC-delta/PYK2/JAK2 and metalloprotease/HB-EGF/EGF receptor) utilized by H2O2 in VSMCs, thus providing unique therapeutic targets for cardiovascular diseases.  相似文献   

10.
11.
György Csordás  György Hajnóczky 《BBA》2009,1787(11):1352-217
Mitochondria form junctions with the sarco/endoplasmic reticulum (SR/ER), which support signal transduction and biosynthetic pathways and affect organellar distribution. Recently, these junctions have received attention because of their pivotal role in mediating calcium signal propagation to the mitochondria, which is important for both ATP production and mitochondrial cell death. Many of the SR/ER-mitochondrial calcium transporters and signaling proteins are sensitive to redox regulation and are directly exposed to the reactive oxygen species (ROS) produced in the mitochondria and SR/ER. Although ROS has been emerging as a novel signaling entity, the redox signaling of the SR/ER-mitochondrial interface is yet to be elucidated. We describe here possible mechanisms of the mutual interaction between local Ca2+ and ROS signaling in the control of SR/ER-mitochondrial function.  相似文献   

12.
Reactive oxygen species (ROS) have been proposed to function as second messengers in abscisic acid (ABA) signaling in guard cells. However, the question whether ROS production is indeed required for ABA signal transduction in vivo has not yet been addressed, and the molecular mechanisms mediating ROS production during ABA signaling remain unknown. Here, we report identification of two partially redundant Arabidopsis guard cell-expressed NADPH oxidase catalytic subunit genes, AtrbohD and AtrbohF, in which gene disruption impairs ABA signaling. atrbohD/F double mutations impair ABA-induced stomatal closing, ABA promotion of ROS production, ABA-induced cytosolic Ca(2+) increases and ABA- activation of plasma membrane Ca(2+)-permeable channels in guard cells. Exogenous H(2)O(2) rescues both Ca(2+) channel activation and stomatal closing in atrbohD/F. ABA inhibition of seed germination and root elongation are impaired in atrbohD/F, suggesting more general roles for ROS and NADPH oxidases in ABA signaling. These data provide direct molecular genetic and cell biological evidence that ROS are rate-limiting second messengers in ABA signaling, and that the AtrbohD and AtrbohF NADPH oxidases function in guard cell ABA signal transduction.  相似文献   

13.
Endothelial cell oxidative stress and signal transduction   总被引:3,自引:0,他引:3  
  相似文献   

14.
He J  Duan Y  Hua D  Fan G  Wang L  Liu Y  Chen Z  Han L  Qu LJ  Gong Z 《The Plant cell》2012,24(5):1815-1833
It is well known that abscisic acid (ABA) promotes reactive oxygen species (ROS) production through plasma membrane-associated NADPH oxidases during ABA signaling. However, whether ROS from organelles can act as second messengers in ABA signaling is largely unknown. Here, we identified an ABA overly sensitive mutant, abo6, in a genetic screen for ABA-mediated inhibition of primary root growth. ABO6 encodes a DEXH box RNA helicase that is involved in regulating the splicing of several genes of complex I in mitochondria. The abo6 mutant accumulated more ROS in mitochondria, as established using a mitochondrial superoxide indicator, circularly permuted yellow fluorescent protein. Two dominant-negative mutations in ABA insensitive1 (abi1-1) and abi2-1 greatly reduced ROS production in mitochondria. The ABA sensitivity of abo6 can also be compromised by the atrbohF mutation. ABA-mediated inhibition of seed germination and primary root growth in abo6 was released by the addition of reduced GSH and exogenous auxin to the medium. Expression of auxin-responsive markers ProDR5:GUS (for synthetic auxin response element D1-4 with site-directed mutants in the 5'-end from soybean):β-glucuronidase) and Indole-3-acetic acid inducible2:GUS was greatly reduced by the abo6 mutation. Hence, our results provide molecular evidence for the interplay between ABA and auxin through the production of ROS from mitochondria. This interplay regulates primary root growth and seed germination in Arabidopsis thaliana.  相似文献   

15.
Among putative downstream synaptic targets of β-amyloid (Aβ) are signaling molecules involved in synaptic function, memory formation and cognition, such as the MAP kinases, MKPs, CaMKII, CREB, Fyn, and Tau. Here, we assessed the activation and interaction of signaling pathways upon prolonged exposure to Aβ in model nerve cells expressing nicotinic acetylcholine receptors (nAChRs). Our goal was to characterize the steps underlying sensitization of the nerve cells to neurotoxicity when Aβ-target receptors are present. Of particular focus was the connection of the activated signaling molecules to oxidative stress. Differentiated neuroblastoma cells expressing mouse α4β2-nAChRs were exposed to Aβ1–42 for intervals from 30 min to 3 days. The cells and cell-derived protein extracts were then probed for activation of signaling pathway molecules (ERK, JNK, CaMKII, CREB, MARCKS, Fyn, tau). Our results show substantial, progressive activation of ERK in response to nanomolar Aβ exposure, starting at the earliest time point. Increased ERK activation was followed by JNK activation as well as an increased expression of PHF-tau, paralleled by increased levels of reactive oxygen species (ROS). The impact of prolonged Aβ on the levels of pERK, pJNK, and ROS was attenuated by MEK-selective and JNK-selective inhibitors. In addition, the MEK inhibitor as well as a JNK inhibitor attenuated Aβ-induced nuclear fragmentation, which followed the changes in ROS levels. These results demonstrate that the presence of nAChRs sensitizes neurons to the neurotoxic action of Aβ through the timed activation of discrete intracellular signaling molecules, suggesting pathways involved in the early stages of Alzheimer disease.  相似文献   

16.

Background

Oxidative stress induced by the accumulation of reactive oxygen species (ROS) has a causal role in the development of insulin resistance, whereas ROS themselves function as intracellular second messengers that promote insulin signal transduction. ROS can act both positively and negatively on insulin signaling, but the molecular mechanisms controlling these dual actions of ROS are not fully understood.

Methodology/Principal Findings

Here, we directly treated H4IIEC hepatocytes with hydrogen peroxide (H2O2), a representative membrane-permeable oxidant and the most abundant ROS in cells, to identify the key factors determining whether ROS impair or enhance intracellular insulin signaling. Treatment with high concentrations of H2O2 (25–50 µM) for 3 h reduced insulin-stimulated Akt phosphorylation, and increased the phosphorylation of both JNK and its substrate c-Jun. In contrast, lower concentrations of H2O2 (5–10 µM) enhanced insulin-stimulated phosphorylation of Akt. Moreover, lower concentrations suppressed PTP1B activity, suggesting that JNK and phosphatases such as PTP1B may play roles in determining the thresholds for the diametrical effects of H2O2 on cellular insulin signaling. Pretreatment with antioxidant N-acetyl-L-cysteine (10 mM) canceled the signal-promoting action of low H2O2 (5 µM), and it canceled out further impairment of insulin of insulin signaling induced by high H2O2 (25 µM).

Conclusions/Significance

Our results demonstrate that depending on its concentration, H2O2 can have the positive or negative effect on insulin signal transduction in H4IIEC hepatocytes, suggesting that the concentration of intracellular ROS may be a major factor in determining whether ROS impair or enhance insulin signaling.  相似文献   

17.
18.
Cellular oxygen sensing by mitochondria: old questions, new insight.   总被引:12,自引:0,他引:12  
Hypoxia elicits a variety of adaptive responses at the tissue level, at the cellular level, and at the molecular level. A physiological response to hypoxia requires the existence of an O(2) sensor coupled to a signal transduction system, which in turn activates the functional response. Although much has been learned about the signaling systems activated by hypoxia, no consensus exists regarding the nature of the underlying O(2) sensor or whether multiple sensors exist. Among previously considered mechanisms, heme proteins have been suggested to undergo allosteric modification in response to O(2) binding or release at different PO(2) levels. Other studies suggest that ion channels may change conductance as a function of PO(2), allowing them to signal the onset of hypoxia. Still other studies suggest that NADPH oxidase may decrease its generation of reactive O(2) species (ROS) during hypoxia. Recent data suggest that mitochondria may function as O(2) sensors by increasing their generation of ROS during hypoxia. These oxidant signals appear to act as second messengers in the adaptive responses to hypoxia in a variety of cell types. Such observations contribute to a growing awareness that mitochondria do more than just generate ATP, in that they initiate signaling cascades involved in adaptive responses to hypoxia and that they participate in the control of cell death pathways.  相似文献   

19.
We have previously demonstrated that cyclic ADP-ribose (cADPR) is a calcium signaling messenger in interleukin 8 (IL-8)-induced lymphokine-activated killer (LAK) cells. In this study we examined the possibility that IL-8 activates CD38 to produce another messenger, nicotinic acid adenine dinucleotide phosphate (NAADP), in LAK cells, and we showed that IL-8 induced NAADP formation after cADPR production. These calcium signaling messengers were not produced when LAK cells prepared from CD38 knock-out mice were treated with IL-8, indicating that the synthesis of both NAADP and cADPR is catalyzed by CD38 in LAK cells. Application of cADPR to LAK cells induced NAADP production, whereas NAADP failed to increase intracellular cADPR levels, confirming that the production of cADPR precedes that of NAADP in IL-8-treated LAK cells. Moreover, NAADP increased intracellular Ca2+ signaling as well as cell migration, which was completely blocked by bafilomycin A1, suggesting that NAADP is generated in lysosome-related organelles after cADPR production. IL-8 or exogenous cADPR, but not NAADP, increased intracellular cAMP levels. cGMP analog, 8-(4-chlorophenylthio)-guanosine 3′,5′-cyclic monophosphate, increased both cADPR and NAADP production, whereas the cAMP analog, 8-(4-chlorophenylthio)-cAMP, increased only NAADP production, suggesting that cAMP is essential for IL-8-induced NAADP formation. Furthermore, activation of Rap1, a downstream molecule of Epac, was required for IL-8-induced NAADP formation in LAK cells. Taken together, our data suggest that IL-8-induced NAADP production is mediated by CD38 activation through the actions of cAMP/Epac/protein kinase A/Rap1 in LAK cells and that NAADP plays a key role in Ca2+ signaling of IL-8-induced LAK cell migration.  相似文献   

20.
Enlarged or giant mitochondria have often been documented in aged tissues although their role and underlying mechanism remain unclear. We report here how highly elongated giant mitochondria are formed in and related to the senescent arrest. The mitochondrial morphology was progressively changed to a highly elongated form during deferoxamine (DFO)-induced senescent arrest of Chang cells, accompanied by increase of intracellular ROS level and decrease of mtDNA content. Interestingly, under exposure to subcytotoxic doses of H2O2 (200 microM), about 65% of Chang cells harbored elongated mitochondria with senescent phenotypes whereas ethidium bromide (EtBr) (50 ng/ml) only reformed the cristae structure. Elongated giant mitochondria were also observed in TGF beta1- or H2O2-induced senescent Mv1Lu cells and in old human diploid fibroblasts (HDFs). In all senescent progresses employed in this study Fis1 protein, a mitochondrial fission modulator, was commonly downexpressed. Overexpression of YFP-Fis1 reversed both mitochondrial elongation and appearance of senescent phenotypes induced by DFO, implying its critical involvement in the arrest. Finally, we found that direct induction of mitochondrial elongation by blocking mitochondrial fission process with Fis1-DeltaTM or Drp1-K38A was sufficient to develop senescent phenotypes with increased ROS production. These data suggest that mitochondrial elongation may play an important role as a mediator in stress-induced premature senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号