首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Jie Yang  Yue Wang  Yan Gao  Jie Shao  Xue Jun Zhang  Zhi Yao   《Cytokine》2009,46(3):382-391
Estrogens have been associated with risk for epithelial ovarian cancer (OVCA). Both IL-6 and IL-8 are also likely involved in the progression of OVCA. In order to discover the underline molecular mechanism, we investigated the modulation of estrogen and two cytokines in the growth and progression of epithelial OVCA. In these studies, the effect of 17β-estradiol (E2) on the expression levels of IL-6, IL-8 and their receptors was investigated. The effect of IL-6 and IL-8 on activation of estrogen-responsive promoter as well as estrogen receptor (ER)α and ERβ expression was also analyzed. Gene expression profile analysis revealed that CAOV-3 and OVCAR-3 cells, which express ER, IL-6 and IL-8 receptors, are suitable model for this study. We found that E2 not only enhanced IL-6 and IL-8 production via NF-κB signaling pathway, but also modulated their respective receptor expression. Tamoxifen (Txf), an ER antagonist, completely abolished E2-stimulated cell growth and the expression of IL-6 and IL-8. IL-6/IL-8-induced cell proliferation was completely blocked by their specific neutralizing antibodies, which partially inhibited E2-induced cell growth. In the absence of estrogen, both cytokines activated estrogen-responsive promoter, which was completely blocked by Txf, and caused a dose-dependent ERα increase and ERβ decrease. Pretreatment of OVCAR-3 with p38 MAPK, MEK1/2 or ErbB2 MAPK inhibitors, respectively, blocked IL-6-mediated induction of estrogen-responsive promoter while Src inhibitor blocked IL-8-induced activation of estrogen-responsive promoter. These results provide a novel mechanism that estrogens, IL-6 and IL-8 may form a common amplifying signaling cascade to modulate OVCA growth and progression. Estrogen-induced OVCA proliferation is partially occurring via enhanced IL-6 and IL-8 production and modulated their receptors, and IL-6/IL-8 could also promote OVCA growth through an ERα pathway.  相似文献   

3.
4.
We evaluated whether polymorphisms in genes coding molecules linked to the innate and adaptive immune response are associated with susceptibility to Helicobacter pylori infection. IL1B-511C → T, IL1B-31 T → C, IL1RN allele 2, IL2-330 T → G, TNFA-307 G → A, TLR2Arg677Trp, TLR2Arg753Gln, TLR4Asp299Gly, and TLR5392STOP polymorphisms were determined in 541 blood donors. IL2-330 T → G allele carriers had a decreased H. pylori infection risk (OR = 0.63, 95% CI = 0.43–0.93) after adjustment for demographic and environmental factors. Hence, we investigated whether the polymorphism is functional by evaluating IL-2 serum concentration in 150 blood donors and 100 children. IL-2 pro-inflammatory and anti-inflammatory properties were indirectly investigated by determining serum IFN-γ and IL-10/TGF-β levels. The polymorphism was associated with increased mean IL-2 levels in H. pylori-positive adults (2.65 pg/mL vs. 7.78 pg/mL) and children (4.19 pg/mL vs. 8.03 pg/mL). Increased IL-2 was associated with pro-inflammatory activity in adults (IFN-γ = 18.61 pg/mL vs. 25.71 pg/mL), and with anti-inflammatory activity in children (IL-10 = 6.99 vs. 14.17 pg/mL, TGF-β = 45.88 vs. 93.44 pg/mL) (p < 10−3 for all). In conclusion, in the context of H. pylori infection, IL2-330 T → G polymorphism is functional and is associated with decreased risk of infection in adults.  相似文献   

5.
Renal tubular epithelial-myofibroblast transdifferentiation (EMT) plays a central role in the development of renal interstitial fibrosis (RIF). The profibrotic cytokine interleukin (IL)-1 and the IL-1 receptor (IL-1R) also participate in RIF development, and Toll/IL-1R 8 (TIR8), a member of the Toll-like receptor superfamily, has been identified as a negative regulator of IL-1R signaling. However, the functions of TIR8 in IL-1-induced RIF remain unknown. Here, human embryonic kidney epithelial cells (HKC) and unilateral ureteric obstruction (UUO)-induced RIF models on SD rats were used to investigate the functions of TIR8 involving IL-1β-induced EMT. We showed that IL-1β primarily triggers TIR8 expression by activating nuclear factor-κB (NF-κB) in HKC cells. Conversely, high levels of TIR8 in HKC cells repress IL-1β-induced NF-κB activation and inhibit IL-1β-induced EMT. Moreover, in vitro and in vivo findings revealed that TIR8 downregulation facilitated IL-1β-induced NF-κB activation and contributed to TGF-β1-mediated EMT in renal tubular epithelial cells. These results suggested that TIR8 exerts a protective role in IL-1β-mediated EMT and potentially represents a new target for RIF treatment.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00620-8.  相似文献   

6.
In recent years several 15β-hydroxysteroids have emerged pathognomonic of adrenal disorders in human neonates of which 3α,15β,17α-trihydroxy-5β-pregnan-20-one (2) was the first to be identified in the urine of newborn infants affected with congenital adrenal hyperplasia. In this investigation we report the synthesis of the three remaining 3ξ,5ξ-isomers, namely 3α,15β,17α-trihydroxy-5α-pregnan-20-one (3), 3β,15β,17α-trihydroxy-5α-pregnan-20-one (7) and 3β,15β,17α-trihydroxy-5β-pregnan-20-one (8) for their definitive identification in pathological conditions in human neonates. 3β,15β-Diacetoxy-17α-hydroxy-5-pregnen-20-one (11), a product of chemical synthesis was converted to the isomeric 3 and 7, while conversion of 15β,17α-dihydroxy-4-pregnen-3,20-dione (4), a product of microbiological transformation, resulted in the preparation of 8. In brief, selective acetate hydrolysis of 11 gave 15β-acetoxy-3β,17α-dihydroxy-5-pregnen-20-one (12) which on catalytic hydrogenation gave 15β-acetoxy-3β,17α-dihydroxy-5α-pregnan-20-one (13) a common intermediate for the synthesis of the 3β(and α),5α-isomers. Hydrolysis of the 15β-acetate gave 7, whereas oxidation with pyridinium chlorochromate gave 15β-acetoxy-17α-hydroxy-5α-pregnan-3,20-dione (14) which on reduction with -Selectride and hydrolysis of the 15β-acetate gave 3. Finally, hydrogenation of 4 gave 15β,17α-dihydroxy-5β-pregnan-3,20-dione (10) which on reduction with -Selectride gave 8.  相似文献   

7.
8.
Four limonoids, 1-O-deacetyl-6-deoxykhayanolide E (1), 1-O-deacetyl-2α-hydroxykhayanolide E (2), 3-acetyl-khayalactone (3), 11α-acetoxy-2α-hydroxy-6-deoxy-destigloylswietenine acetate (4), along with 12 known limonoids, were isolated from the stems of Khaya ivorensis. Their structures were elucidated on the basis of spectroscopic analysis.  相似文献   

9.
Suspension cultures of Caragana chamlagu (Leguminosae) convert (±)-α-ionone (1) into (±)-3-oxo-α-ionone (3) as the major product and β-ionone (2) into 5,6-epoxy-β-ionone (6) as the sole product. It is interesting to note that the cultured cells of C. chamlagu convert regioselectively the cycloolefinic part of 1 into the corresponding unsaturated carbonyl compound, allylic alcohol and epoxide as the oxidation products, whereas the suspension cultures of Nicotiana tabacum (Solanaceae) convert the unsaturated carbonyl of 1 into the corresponding saturated ketones and alcohols as reduction products.  相似文献   

10.
Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates multiple mitogen-activated protein kinase (MAPK) pathways in response to growth factors, stresses and the pro-inflammatory cytokine, tumor necrosis factor (TNF). MLK3 is required for optimal activation of stress activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling by TNF, however, the mechanism by which MLK3 is recruited and activated by the TNF receptor remains poorly understood. Here we report that both TNF and interleukin-1β (IL-1β) stimulation rapidly activate MLK3 kinase activity. We observed that TNF stimulates an interaction between MLK3 and TNF receptor associated factor (TRAF) 2 and IL-1β stimulates an interaction between MLK3 and TRAF6. RNA interference (RNAi) of traf2 or traf6 dramatically impairs MLK3 activation by TNF indicating that TRAF2 and TRAF6 are critically required for MLK3 activation. We show that TNF also stimulates ubiquitination of MLK3 and MLK3 can be conjugated with lysine 48 (K48)- and lysine 63 (K63)-linked polyubiquitin chains. Our results suggest that K48-linked ubiquitination directs MLK3 for proteosomal degradation while K63-linked ubiquitination is important for MLK3 kinase activity. These results reveal a novel mechanism for MLK3 activation by the pro-inflammatory cytokines TNF and IL-1β.  相似文献   

11.
Objective: To study the effects of GM-CSF and IL-1β, both implicated in tissue damage in arthritis, on articular chondrocyte proliferation and metabolism, and to explore their agonist/antagonist effects. Methods: Chondrocytes were obtained from 1-month-old rats. First-passage monolayers were incubated for 24 h with or without GM-CSF and/or IL-1β, and labeled with 3H-thymidine, 35S–SO4 and 14C-proline. Proteoglycan and collagen synthesis were analyzed by liquid chromatography and SDS–PAGE. Gene expression was measured by RT-PCR. Results: IL-1β exerts potent, and GM-CSF weak, inhibitory effects on DNA synthesis. GM-CSF strongly stimulates, and IL-1β inhibits, proteoglycan and collagen synthesis. IL-1β suppresses the effect of GM-CSF, and increases the release of radioactive molecules from pre-labeled cartilage fragments; GM-CSF decreases the IL-1β-induced effect. Interestingly, both cytokines induce the expression of each other’s gene. Conclusions: IL-1β appears to be a catabolic and anti-anabolic agent for chondrocytes, whereas GM-CSF is mainly anabolic, and blocks the IL-1β-induced catabolic effect. It is postulated that both agents are implicated in inflammation: IL-1β promotes tissue catabolism and destruction, whereas GM-CSF enhances tissue reconstruction.  相似文献   

12.
Cytokine interactions in mesenchymal stem cells from cord blood   总被引:8,自引:0,他引:8  
Liu CH  Hwang SM 《Cytokine》2005,32(6):270-279
We used cytokine protein array to analyze the expression of cytokines from human cord blood-derived mesenchymal stem cells (CB-MSCs). Several cytokines, interleukins (IL), and growth factors, including ENA-78, GM-CSF, GRO, IL-1β, IL-6, IL-8, MCP-1, OSM, VEGF, FGF-4, FGF-7, FGF-9, GCP-2, IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4, IP-10, LIF, MIF, MIP-3α, osteoprotegerin, PARC, PIGF, TGF-β2, TGF-β3, TIMP-1, as well as TIMP-2, were secreted by CB-MSCs, while IL-4, IL-5, IL-7, IL-13, TGF-β1, TNF-α, and TNF-β were not expressed under normal growth conditions. IL-6, IL-8, TIMP-1, and TIMP-2 were the most abundant interleukins expressed by CB-MSCs. A set of growth factors were selected to evaluate their stimulatory effects on the IL6 secretion for CB-MSCs. IL-1β was the most important factor inducing CB-MSC to secret IL-6. The mechanism by which IL-1β promoted IL-6 expression in CB-MSCs was studied. By using various inhibitors of signal transduction, we found that activation of p38 mitogen-activated protein kinases (MAPK) and MAPK kinase (MEK) is essential in the IL-1β stimulated signaling cascade which leads to the increase in IL-6 synthesis. Additionally, continuous supplement of IL-1β in the CB-MSCs culture will facilitate adipogenic maturation of CB-MSCs as evidenced by the presence of oil drops in the CB-MSCs and secretion of leptin, a molecule marker of adipocytes. These results strongly suggest that cytokine induction and signal transduction are important for the differentiation of CB-MSCs.  相似文献   

13.
Elevated plasma levels of homocysteine (Hcy) are associated with the development of coronary artery disease (CAD), peripheral vascular disease, and atherosclerosis. Hyperhomocysteinemia is likely related to the enhanced production of pro-inflammatory cytokines including IL-1β. However, the mechanisms underlying the effects of Hcy in immune cells are not completely understood. Recent studies have established a link between macrophage accumulation, cytokine IL-1β, and the advance of vascular diseases. The purpose of the present study is to investigate the effects of Hcy on IL-1β secretion by murine macrophages. Hcy (100 μM) increases IL-1β synthesis via enhancement of P2X7 expression and NF-ĸB and ERK activation in murine macrophages. In addition, the antioxidant agent N-acetylcysteine (NAC) reduces NF-κB activation, ERK phosphorylation, and IL-1β production in Hcy-exposed macrophages, indicating the importance of ROS in this pro-inflammatory process. In summary, our results show that Hcy may be involved in the synthesis and secretion of IL-1β via NF-ĸB, ERK, and P2X7 stimulation in murine macrophages.  相似文献   

14.
15.
Lee JS  Kim IS  Ryu JS  Yun CY 《Cytokine》2008,42(3):365-371
The house dust mite (Dermatophagoides pteronissinus) plays an important role in the pathogenesis of allergic diseases, including atopic dermatitis, and asthma. Monocyte chemotactic protein 1 (MCP-1/CCL2)/IL-6/IL-8 (CXCL8) plays a pivotal role in mediating the infiltration of various cells into the skin of atopic dermatitis and psoriasis. The aim of this study was to investigate the effect of D. pteronissinus extract (DpE) on expression of MCP-1/IL-6/IL-8 mRNA and protein and the signal transduction in the human monocytic cell line, THP-1. The mRNA and protein expression of MCP-1/CCL2, IL-6, and IL-8 were elevated by DpE in a time and dose-dependent manner in THP-1 cells. The increased expression of MCP-1, IL-6, and IL-8 was not affected by aprotinin (serine protease inhibitor) or E64 (cysteine protease inhibitor). We found that MCP-1 and IL-6 expression due to DpE was related to Src, protein kinase C δ (PKC δ), extracellular-signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) and IL-8 expression was involved in Src family tyrosine kinase, PKC δ, ERK. DpE increased the phosphorylation of ERK and p38 MAPK after 5 min and peaked at 30 min. The activation was significantly blocked by PP2, an inhibitor of Src family tyrosine kinase and rottlerin, an inhibitor of PKC δ (p < 0.01). DpE increases MCP-1, IL-6, and IL-8 expression and transduces its signal via Src family tyrosine kinase, PKC, and ERK in a protease-independent manner. This finding may contribute to the elucidation of the pathogenic mechanism triggered by DpE .  相似文献   

16.
A signature feature of tetrapod pro-opiomelanocortin (POMC) is the presence of three melantropin (MSH) coding regions (α-MSH, β-MSH, γ-MSH). The MSH duplication events occurred early during the radiation of the jawed vertebrates well over 400 million years ago. However, in at least one order of modern bony fish (subdivision Teleostei; order Salmoniformes; i.e. salmon and trout) the γ-MSH sequence has been deleted from POMC. To determine whether the γ-MSH deletion has occurred in other teleost orders, a POMC cDNA was cloned from the pituitary of the neoteleost Oreochromis mossambicus (order Perciformes). In O. mossambicus POMC, the deletion is more extensive and includes the γ-MSH sequence and most of the joining peptide region. Because the salmoniform and perciform teleosts do not share a direct common ancestor, the γ-MSH deletion event must have occurred early in the evolution of the neoteleost fishes. The post-translational processing of O. mossambicus POMC occurs despite the fact that the proteolytic recognition sequence, (R/K)-Xn-(R/K) where n can be 0, 2, 4, or 6, a common feature in mammalian neuropeptide and polypeptide hormone precursors, is not present at several cleavage sites in O. mossambicus POMC. These observations would indicate that either the prohormone convertases in teleost fish use distinct recognition sequences or vertebrate prohormone convertases are capable of recognizing a greater number of primary sequence motifs around proteolytic cleavage sites.  相似文献   

17.
Chondrocyte production of catabolic and inflammatory mediators participating in extracellular matrix degradation has been regarded as a central event in osteoarthritis (OA) development. During OA pathogenesis, interleukin-1β (IL-1β) decreases the mRNA expression and protein levels of transforming growth factor-β receptor type-2 (TGFBR2), thus disrupting transforming growth factor-β signaling and promoting OA development. In the present study, we attempted to identify the differentially expressed genes in OA chondrocytes upon IL-1β treatment, investigate their specific roles in OA development, and reveal the underlying mechanism. As shown by online data analysis and experimental results, TGFBR2 expression was significantly downregulated in IL-1β-treated human primary OA chondrocytes. IL-1β treatment induced degenerative changes in OA chondrocytes, as manifested by increased matrix metalloproteinase 13 and a disintegrin and metalloproteinase with thrombospondin motifs 5 proteins, decreased Aggrecan and Collagen II proteins, and suppressed OA chondrocyte proliferation. These degenerative changes were significantly reversed by TGFBR2 overexpression. miR-302c expression was markedly induced by IL-1β treatment in OA chondrocytes. miR-302c suppressed the expression of TGFBR2 via direct binding to its 3′- untranslated region. Similar to TGFBR2 overexpression, miR-302c inhibition significantly improved IL-1β-induced degenerative changes in OA chondrocytes. Conversely, TGFBR2 silencing enhanced IL-1β-induced degenerative changes and significantly reversed the effects of miR-302c inhibition in response to IL-1β treatment. In conclusion, the miR-302c/TGFBR2 axis could modulate IL-1β-induced degenerative changes in OA chondrocytes and might become a novel target for OA treatment.Electronic supplementary materialThe online version of this article (10.1007/s12079-020-00591-2) contains supplementary material, which is available to authorized users.  相似文献   

18.
19.
BACKGROUND: Overproduction of pro-inflammatory cytokines may play a role in increased morbidity and mortality from neonatal sepsis. Objective of this study was to compare secretion of pro-inflammatory cytokines by the cord blood cells of healthy term neonates to the venous blood cells of healthy adults in vitro after stimulation with common neonatal pathogens. METHOD: Blood samples were cultured in the presence of heat-killed group B beta-hemolytic streptococci (GBS), Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epi). Concentrations of secreted cytokines (interleukine-6, IL-6, tumor necrosis factor-alpha, TNF-alpha, interleukine-1 beta, IL-1beta and interleukine-8, IL-8) were measured after 0, 1, 2 and 4 h of incubation using chemiluminescent immunometric automated assay. RESULTS: Blood samples from 22 neonates and 16 adults were compared. After stimulation by GBS and E. coli, cord blood cells secreted significantly higher levels of IL-6 and IL-8 than blood cells of healthy adults. In cord blood, E. coli induced secretion of higher concentration of IL-6, TNF-alpha, IL-1beta and IL-8 than S. epi, and more IL-6 than GBS; GBS induced more IL-1beta than S.epi. CONCLUSIONS: Response of cord blood to microbial activators is different from that of adult controls. Each isolate of heat-killed bacteria induced different amount of pro-inflammatory cytokines in vitro. This may represent a useful in vitro virulence test.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号