首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study is to develop novel colon-specific drug delivery systems with pH-sensitive swelling and drug release properties. Methacrylic-type polymeric prodrugs with different content levels of 5-amino salicylic acid (5-ASA) were synthesized by free radical copolymerization of metacrylic acid (MAA), polyethylene glycol monomethacrylate (PEGMA), and a methacrylic derivative of 5-ASA (methacryloyloxyethyl 5-amino salicylate [MOES]). The copolymers were characterized, and the drug content of the copolymers was determined. The effect of copolymer composition on the swelling behavior and hydrolytic degradation was studied in simulated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid (SIF, pH 7.2). The swelling and hydrolytic behavior of the copolymers was dependent on the content of MAA groups and caused a decrease in gel swelling in SGF or an increase in gel swelling in SIF. Drug release studies showed that increasing content of MAA in the copolymer enhances the hydrolysis in SIF but has no effect in SGF. The results suggest that hydrogen-bonded complexes are formed between MAA and PEG pendant groups and that these pH-sensitive systems could be useful for preparation of a controlled-release formulation of 5-ASA.  相似文献   

2.
This study is focused on chimeric advanced drug delivery nanosystems and specifically on pH-sensitive liposomes, combining lipids and pH-responsive amphiphilic block copolymers. Chimeric liposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and two different forms of block copolymers, i.e. poly(n-butylacrylate)-b-poly(acrylic acid) (PnBA-b-PAA) at 70 and 85% content of PAA at six different molar ratios, each form respectively. PAA block exhibits pH-responsiveness, because of the regulative group of –COOH. –COOH is protonated under acidic pH (pKa ca. 4.2), while remains ionized under basic or neutral pH, leading to liposomes repulse and eventually stability. Lipid bilayers were prepared composed of DPPC and PnBA-b-PAA. Experiments were carried out using differential scanning calorimetry (DSC) in order to investigate their thermotropic properties. DSC indicated disappearance of pre-transition at all chimeric lipid bilayers and slight thermotropic changes of the main transition temperature. Chimeric liposomes have been prepared and their physicochemical characteristics have been explored by measuring the size, size distribution and ζ-potential, owned to the presence of pH-responsive polymer. At percentages containing medium to high amounts of the polymer, chimeric liposomes were found to retain their size during the stability studies. These results were well correlated with those indicated in the DSC measurements of lipid bilayers incorporating polymers in order to explain their physicochemical behavior. The incorporation of the appropriate amount of these novel pH-responsive block copolymers affects thus the cooperativity, the liposomal stabilization and imparts pH-responsiveness.  相似文献   

3.
The interaction of bovine alpha-lactalbumin (BLA) with negatively charged phospholipid bilayers was studied by NMR monitored 1H exchange to characterize the conformational transition that enables a water-soluble protein to associate with and partially insert into a membrane. BLA was allowed to exchange in deuterated buffer in the absence (reference) and the presence (membrane-bound) of acidic liposomes at pH 4.5, experimental conditions that allow efficient protein-membrane interaction. After adjusting the pH to 6.0, to dissociate the protein from the membrane, reference and membrane-released samples of BLA were analysed by (F1) band-selective homonuclear decoupled total correlation spectroscopy in the alphaH-NH region. The overall exchange behaviour of the membrane-bound state is molten globule-like, suggesting an overall destabilization of the polypeptide. Nevertheless, the backbone amide protons of residues R10, L12, C77, K94, K98, V99 and W104 show significant protection against solvent exchange in the membrane-bound protein. We propose a mechanism for the association of BLA with negatively charged membranes that includes initial protonation of acidic side-chains at the membrane interface, and formation of an interacting site with the membrane which involves helixes A and C. In the next step these helices would slide away from each other, adopting a parallel orientation to the membrane, and would rotate to maximize the interaction between their hydrophobic residues and the lipid bilayer.  相似文献   

4.
The effect of electrostatic interactions on the conformation and thermal stability of plastocyanin (Pc) was studied by infrared spectroscopy. Association of any of the two redox states of the protein with positively charged membranes at neutral pH does not significantly change the secondary structure of Pc. However, upon membrane binding, the denaturation temperature decreases, regardless of the protein redox state. The extent of destabilization depends on the proportion of positively charged lipid headgroups in the membrane, becoming greater as the surface density of basic phospholipids increases. In contrast, at pH 4.8 the membrane binding-dependent conformational change becomes redox-sensitive. While the secondary structures and thermal stabilities of free and membrane-bound oxidized Pc are similar under acidic conditions, the conformation of the reduced form of the protein drastically rearranges upon membrane association. This rearrangement does not depend on electrostatic interactions to occur, since it is also observed in the presence of uncharged lipid bilayers. The conformational transition, only observed for reduced Pc, involves the exposure of hydrophobic regions that leads to intermolecular interactions at the membrane surface. Membrane-mediated partial unfolding of reduced Pc can be reversed by readjusting the pH to neutrality, in the absence of electrostatic interactions. This redox-dependent behavior might reflect specific structural requirements for the interaction of Pc with its redox partners.  相似文献   

5.
A novel family of amphiphilic temperature- and pH-sensitive poly(organophosphazenes) with varying ratios of ethylene oxide, alkyl chains and free acid units was synthesized by living cationic polymerization. Depending on their composition, these poly(organophosphazenes) exhibited lower critical solution temperatures ranging from 32 to 44 degrees C, which were pH-dependent for copolymers bearing carboxylic acid groups. The alkylated copolymers were then anchored into phospholipid bilayers to obtain stimuli-responsive liposomes that released their content upon a change in temperature or pH. Such polymer/vesicle complexes could find practical applications for site-specific and intracellular drug delivery.  相似文献   

6.
GALA is a pH-responsive, membrane-perturbing peptide designed to fold from a random coil at physiological pH to an amphipathic α-helix under mildly acidic conditions. Because of its pH-activated function, GALA has been sought-after as a component of intracellular drug delivery systems that could actively propel endosomal escape. In this study, we conjugated GALA with lauryl and palmitoyl fatty acid tails as model hydrophobic moieties and examined the physicochemical characteristics and activities of the resulting peptide amphiphiles (PAs). The fatty acid variants of GALA exhibited distinctly different membrane perturbing mechanisms at pH 7.5 and 5.5. At physiological pH, the PAs ruptured liposomes through a surfactant-like mechanism. At pH 5.5, lauryl-GALA was shown to form transmembrane pores with a higher potency as compared to its unmodified peptide counterpart; however, after prolonged exposure it also caused liposome lysis. The lytic activity of fatty acid-conjugated GALA did not impair cell viability. Lauryl-GALA was tolerated well by SJSA-1 osteocarcinoma cells and enhanced cell internalization of the PA was observed. Our findings are discussed with the overarching goal of developing efficient therapeutic delivery systems.  相似文献   

7.
M C Kielian  M Marsh    A Helenius 《The EMBO journal》1986,5(12):3103-3109
The fusogenic properties of Semliki Forest virus (SFV) and its mutants were used to follow the kinetics of acidification during the endocytic uptake of virus by BHK-21 cells. It has previously been shown that the low pH of endocytic vacuoles triggers a conformational change in the SFV spike glycoprotein, activating membrane fusion and initiating virus infection. This conformational alteration was here shown to occur in endosomes and to follow the same time course as the intracellular fusion reaction, demonstrating that fusion occurs rapidly after virus exposure to endosome acidity. The kinetics of endosome acidification were monitored using wild type (wt) SFV and fus-1, an SFV mutant with a lower fusion pH threshold. The results presented here demonstrated that wt and mutant virus were internalized with a t1/2 of 10 min, and that endosomes were acidified to the wt threshold of pH 6.2 with a t1/2 of 15 min. In contrast, endosome pH reached the fus-1 threshold of 5.3 with a much longer t1/2 of 45 min. The subsequent degradation of SFV in lysosomes had a t1/2 of 90 min. It was found that after the initial uptake of virus from the plasma membrane, its transit through the endocytic pathway, exposure to endosome acidity and eventual delivery to lysosomes were markedly asynchronous.  相似文献   

8.
During endocytosis in Chinese hamster ovary (CHO) cells, Semliki Forest virus (SFV) passes through two distinct subpopulations of endosomes before reaching lysosomes. One subpopulation, defined by cell fractionation using free flow electrophoresis as "early endosomes," constitutes the major site of membrane and receptor recycling; while "late endosomes," an electrophoretically distinct endosome subpopulation, are involved in the delivery of endosomal content to lysosomes. In this paper, the pH-sensitive conformational changes of the SFV E1 spike glycoprotein were used to study the acidification of these defined endosome subpopulations in intact wild-type and acidification-defective CHO cells. Different virus strains were used to measure the kinetics at which internalized SFV was delivered to endosomes of pH less than or equal to 6.2 (the pH at which wild-type E1 becomes resistant to trypsin digestion) vs. endosomes of pH less than or equal to 5.3 (the threshold pH for E1 of the SFV mutant fus-1). By correlating the kinetics of acquisition of E1 trypsin resistance with the transfer of SFV among distinct endosome subpopulations defined by cell fractionation, we found that after a brief residence in vesicles of relatively neutral pH, internalized virus encountered pH less than or equal to 6.2 in early endosomes with a t1/2 of 5 min. Although a fraction of the virus reached a pH of less than or equal to 5.3 in early endosomes, most fus-1 SFV did not exhibit the acid-induced conformational change until arrival in late endosomes (t1/2 = 8-10 min). Thus, acidification of both endosome subpopulations was heterogeneous. However, passage of SFV through a less acidic early endosome subpopulation always preceded arrival in the more acidic late endosome subpopulation. In mutant CHO cells with temperature-sensitive defects in endosome acidification in vitro, acidification of both early and late endosomes was found to be impaired at the restrictive temperature (41 degrees C). The acidification defect was also found to be partially penetrant at the permissive temperature, resulting in the inability of any early endosomes in these cells to attain pH less than or equal to 5.3. In vitro studies of endosomes isolated from mutant cells suggested that the acidification defect is most likely in the proton pump itself. In one mutant, this defect resulted in increased sensitivity of the electrogenic H+ pump to fluctuations in the endosomal membrane potential.  相似文献   

9.
Membrane proteins are regulated by the lipid bilayer composition. Specific lipid-protein interactions rarely are involved, which suggests that the regulation is due to changes in some general bilayer property (or properties). The hydrophobic coupling between a membrane-spanning protein and the surrounding bilayer means that protein conformational changes may be associated with a reversible, local bilayer deformation. Lipid bilayers are elastic bodies, and the energetic cost of the bilayer deformation contributes to the total energetic cost of the protein conformational change. The energetics and kinetics of the protein conformational changes therefore will be regulated by the bilayer elasticity, which is determined by the lipid composition. This hydrophobic coupling mechanism has been studied extensively in gramicidin channels, where the channel-bilayer hydrophobic interactions link a "conformational" change (the monomer<-->dimer transition) to an elastic bilayer deformation. Gramicidin channels thus are regulated by the lipid bilayer elastic properties (thickness, monolayer equilibrium curvature, and compression and bending moduli). To investigate whether this hydrophobic coupling mechanism could be a general mechanism regulating membrane protein function, we examined whether voltage-dependent skeletal-muscle sodium channels, expressed in HEK293 cells, are regulated by bilayer elasticity, as monitored using gramicidin A (gA) channels. Nonphysiological amphiphiles (beta-octyl-glucoside, Genapol X-100, Triton X-100, and reduced Triton X-100) that make lipid bilayers less "stiff", as measured using gA channels, shift the voltage dependence of sodium channel inactivation toward more hyperpolarized potentials. At low amphiphile concentration, the magnitude of the shift is linearly correlated to the change in gA channel lifetime. Cholesterol-depletion, which also reduces bilayer stiffness, causes a similar shift in sodium channel inactivation. These results provide strong support for the notion that bilayer-protein hydrophobic coupling allows the bilayer elastic properties to regulate membrane protein function.  相似文献   

10.
Herpesviruses enter cells by membrane fusion either at the plasma membrane or in endosomes, depending on the cell type. Glycoprotein B (gB) is a conserved component of the multiprotein herpesvirus fusion machinery and functions as a fusion protein, with two internal fusion loops, FL1 and FL2. We determined the crystal structures of the ectodomains of two FL1 mutants of herpes simplex virus type 1 (HSV-1) gB to clarify whether their fusion-null phenotypes were due to global or local effects of the mutations on the structure of the gB ectodomain. Each mutant has a single point mutation of a hydrophobic residue in FL1 that eliminates the hydrophobic side chain. We found that neither mutation affected the conformation of FL1, although one mutation slightly altered the conformation of FL2, and we conclude that the fusion-null phenotype is due to the absence of a hydrophobic side chain at the mutated position. Because the ectodomains of the wild-type and the mutant forms of gB crystallized at both low and neutral pH, we were able to determine the effect of pH on gB conformation at the atomic level. For viruses that enter cells by endocytosis, the low pH of the endosome effects major conformational changes in their fusion proteins, thereby promoting fusion of the viral envelope with the endosomal membrane. We show here that upon exposure of gB to low pH, FL2 undergoes a major relocation, probably driven by protonation of a key histidine residue. Relocation of FL2, as well as additional small conformational changes in the gB ectodomain, helps explain previously noted changes in its antigenic and biochemical properties. However, no global pH-dependent changes in gB structure were detected in either the wild-type or the mutant forms of gB. Thus, low pH causes local conformational changes in gB that are very different from the large-scale fusogenic conformational changes in other viral fusion proteins. We propose that these conformational changes, albeit modest, play an important functional role during endocytic entry of HSV.  相似文献   

11.
The effects of ethylene oxide and propylene oxide block copolymers (pluronics) on the permeability of several weak acids and bases through bilayer lipid membranes have been studied by the methods of monitoring (1) pH shifts near planar bilayers, (2) doxorubicin fluorescence quenching inside liposomes, and (3) current transients in the presence of hydrophobic anions. It has been shown that pluronics facilitate the permeation of comparatively large molecules (such as 2-n-undecylmalonic acid and doxorubicin) across lipid bilayers, while the permeation of small solutes (such as ammonium and acetic acid) remains unaffected. Pluronics also accelerate the translocation of large hydrophobic anions (tetraphenylborate). The effect of pluronics correlates with the content of propylene oxide units: it is enhanced when the portion of polypropylene oxide block in the copolymer is increased. The action of the pluronic on lipid membrane permeability differs from the effect of the conventional detergent Triton X-100, which does not affect doxorubicin transport if added at concentrations similar to those used for pluronics. It has been proposed that pluronics accelerate the processes of solute diffusion within lipid bilayers (in a structure-dependent manner) rather than influencing the rate of solute adsorption/desorption on the membrane surface. We suppose that the effect of pluronics on doxorubicin permeation across lipid bilayers along with the known effect on the multidrug resistance protein determines its influence on the therapeutic activity of anthracycline drugs.  相似文献   

12.
X Han  D A Steinhauer  S A Wharton  L K Tamm 《Biochemistry》1999,38(45):15052-15059
The amino-terminal region of the membrane-anchored subunit of influenza virus hemagglutinin, the fusion peptide, is crucial for membrane fusion of this virus. The peptide is extruded from the interior of the protein and inserted into the lipid bilayer of the target membrane upon induction of a conformational change in the protein by low pH. Although the effects of several mutations in this region on the fusion behavior and the biophysical properties of the corresponding peptides have been studied, the structural requirements for an active fusion peptide have still not been defined. To probe the sensitivity of the fusion peptide structure and function to small hydrophobic perturbations in the middle of the hydrophobic region, we have individually replaced the alanine residues in positions 5 and 7 with smaller (glycine) or bulkier (valine) hydrophobic residues and measured the extent of fusion mediated by these hemagglutinin constructs as well as some biophysical properties of the corresponding synthetic peptides in lipid bilayers. We find that position 5 tolerates a smaller and position 7 a larger hydrophobic side chain. All peptides contained segments of alpha-helical (33-45%) and beta-strand (13-16%) conformation as determined by CD and ATR-FTIR spectroscopy. The order parameters of the peptide helices and the lipid hydrocarbon chains were determined from measurements of the dichroism of the respective infrared absorption bands. Order parameters in the range of 0.0-0.6 were found for the helices of these peptides, which indicate that these peptides are most likely aligned with their alpha-helices at oblique angles to the membrane normal. Some (mostly fusogenic) peptides induced significant increases of the order parameter of the lipid hydrocarbon chains, suggesting that the lipid bilayer becomes more ordered in the presence of these peptides, possibly as a result of dehydration at the membrane surface.  相似文献   

13.
The potential biomedical utility of the photoinduced destabilization of liposomes depends in part on the use of green to near infrared light with its inherent therapeutic advantages. The polymerization of bilayers can be sensitized to green light by associating selected amphiphilic cyanine dyes, i.e. the cationic 1,1'-dioctadecyl-3,3,3', 3'-tetramethylindocarbocyanine (DiI), or the corresponding anionic disulfonated DiI (DiI-DS), with the lipid bilayer. The DiI sensitization of the polymerization of 1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine/1,2-bis[10-(2', 4'-hexadienoyloxy)-decanoyl]-sn-glycero-3-phosphocholine liposomes caused liposome destabilization with release of encapsulated aqueous markers. In separate experiments, similar photosensitive liposomes were endocytosed by cultured HeLa cells. Exposure of the cells and liposomes to 550 nm light caused a net movement of the liposome-encapsulated 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) from low pH compartment(s) to higher pH compartment(s). This suggests that photolysis of DiI-labelled liposomes results in delivery of the contents of the endocytosed liposomes to the cytoplasm. The release of HPTS into the cytoplasm appears to require the photoactivated fusion of the labelled liposomes with the endosomal membrane. These studies aid in the design of visible light sensitive liposomes for the delivery of liposome-encapsulated reagents to the cytoplasm.  相似文献   

14.
Fusion mutants of the influenza virus hemagglutinin glycoprotein   总被引:42,自引:0,他引:42  
The influenza virus hemagglutinin (HA) mediates viral entry into cells by a low pH induced membrane-fusion event in endosomal vesicles. Mutant viruses with altered pH dependence for both hemolysis and the HA conformational change required for fusion were selected for their ability to grow in cells treated with amantadine hydrochloride, which raises the endosomal pH. The amino acid sequence and three-dimensional location of 19 substitutions on the HA are reported. The mutations fall into two groups, one that results in the destabilization of the pH 7.0 location of the hydrophobic N-terminal HA2 peptide, and a second that results in the alteration of intersubunit contacts, suggesting a large distortion or disruption of these contacts in the "fusion-active" conformation.  相似文献   

15.
The interaction between ofloxacin, as a model drug of the fluoroquinolone class, and biomembranes was examined as the possible initial step in a transmembrane diffusion process. Dipalmitoylphosphatidylcholine was used for the preparation of biomembrane models. The influence of environmental conditions and protonation on molecular physicochemical behavior, and hence on the membrane interaction, was investigated by differential scanning calorimetry (DSC). This technique has been shown to be very effective in the interpretation of interactions of drug microspeciations with biomembranes. These findings suggest that the interaction occurred owing to ionic and hydrophobic forces showing how the passage through the membrane is mainly favored in the pH interval 6–7.4. It was demonstrated that a pH gradient through model membranes may be responsible for a poorly homogeneous distribution of ofloxacin (or other related fluoroquinolones), which justifies the in vivo accumulation properties of this drug. DSC experiments, which are in agreement with computational data, also showed that the complexing capability of ofloxacin with regard to Mg++ or Ca++ may govern the drug entrance into bacterial cells before the DNA Girase inhibition and could ensure the formation of hydrophobic and more fluid phospholipid domains on the surface of the model membrane. These regions are more permeable with regard to various solutes, as well as ofloxacin, allowing a so-called ‘self-promoted entrance pathway’. The combination of experimental methodologies with computational data allowed a further rationalization of the results and opened new perspectives into the mechanism of action of ofloxacin, namely its interaction with lipid bilayers and drug–divalent cation complex formation, which might be extended to the entire fluoroquinolone class. Ofloxacin accumulation within Escherichia coli ATCC 25922 was measured as a function of time. Also in this example, the environmental conditions influenced ofloxacin penetration and accumulation. The in vitro experiments, reported here, show that a suitable balance of hydrophilic and hydrophobic fluoroquinolone properties needs to occur for there to be increased drug permeation.  相似文献   

16.
Abstract

Proton sensitive large unilamellar vesicles (LUV) were constructed by immobilization of the pH sensitive synthetic polymer poly(2-ethylacrylic acid) onto the outer monolayer. Thiolated poly(2-ethylacrylic acid) (PEAA-SH) was covalently conjugated to the surface of LUVs composed of egg phosphatidylcholine (EPC) and cholesterol (Choi) through the thiol-reactive maleimide lipid MPB-DSPE (N-(4-(p-maleimidophenyl)butyryl)-1,2-distearoyl-sn-glyc-ero-3-phosphoethanolamine). The resulting PEAA- LUVs were shown to be stable at neutral pH (pH 7.0 to 8.0). Under acidic conditions, however, proton-ation of PEAA resulted in interaction with both the membrane it was linked to and the membrane of target vesicles, causing membrane destabilization and release of vesicle contents. Moreover, conjugated PEAA is shown to mediate fusion with target membranes in a pH dependent manner. PEAA-mediated permeabilization and vesicle-vesicle fusion occurred only when the polymer was covalently linked to the LUV surface. Proton dependent fusion of PEAA-LUVs was also observed with erythrocyte ghosts. This pH-dependent release of vesicle contents and fusion of PEAA-LUVs occurred below pH 6.8, which is well within the pH range expected to be encountered inside the endosomes in the endocytic pathway, indicating the potential of PEAA-LUVs as a drug carrier system for intracellular drug delivery.  相似文献   

17.
A novel pH-sensitive liposome formulation containing oleyl alcohol   总被引:12,自引:0,他引:12  
pH-sensitive liposomes are designed to undergo acid-triggered destabilization. First generation pH-sensitive liposomes, based on the cone-shaped lipid dioleoylphosphatidylethanolamine (DOPE), have been shown to lose fusogenicity in the presence of serum. Here, we report the design and evaluation of novel serum-resistant pH-sensitive liposome formulations that are based on the composition of egg phosphatidylcholine (PC), cholesteryl hemisuccinate (CHEMS), oleyl alcohol (OAlc), and Tween-80 (T-80). When loaded with the fluorescent probe calcein, these liposomes exhibited excellent stability at pH 7.4 and underwent rapid destabilization upon acidification as shown by calcein dequenching and particle size increase. Adjusting the mole percentages of T-80 and OAlc in the formulation could regulate the stability and pH-sensitive properties of these liposomes. Liposomes with a higher T-80 content exhibited greater stability but were less sensitive to acid-induced destabilization. Meanwhile, formulations with a higher OAlc content exhibited greater content release in response to low pH. The pH-triggered liposomal destabilization did not produce membrane fusion according to an octadecylrhodamine B chloride (R(18)) lipid-mixing assay. Compared to DOPE-based pH-sensitive liposomes, the above formulations showed much better retention of their pH-sensitive properties in the presence of 10% serum. These liposomes were then evaluated for intracellular delivery of entrapped cytosine-beta-D-arabinofuranoside (araC) in KB human oral cancer cells, which have elevated folate receptor (FR) expression. The FR, which is amplified in many types of human tumors, has been shown to mediate the internalization of folate-derivatized liposomes into an acidic intracellular compartment. FR-targeted OAlc-based pH-sensitive liposomes, entrapping 200 mM araC, showed approximately 17-times greater FR-dependent cytotoxicity in KB cells compared to araC delivered via FR-targeted non-pH-sensitive liposomes. These data indicated that pH-sensitive liposomes based on OAlc, combined with FR-mediated targeting, are promising delivery vehicles for membrane impermeable therapeutic agents.  相似文献   

18.
Drug delivery systems that increase the rate and/or quantity of drug release to the cytoplasm are needed to enhance cytosolic delivery and to circumvent nonproductive cell trafficking routes. We have previously demonstrated that poly(2-ethylacrylic acid) (PEAAc) has pH-dependent hemolytic properties, and more recently, we have found that poly(2-propylacrylic acid) (PPAAc) displays even greater pH-responsive hemolytic activity than PEAAc at the acidic pHs of the early endosome. Thus, these polymers could potentially serve as endosomal releasing agents in immunotoxin therapies. In this paper, we have investigated whether the pH-dependent membrane disruptive activity of PPAAc is retained after binding to a protein. We did this by measuring the hemolytic activity of PPAAc-streptavidin model complexes with different protein to polymer stoichiometries. Biotin was conjugated to amine-terminated PPAAc, which was subsequently bound to streptavidin by biotin complexation. The ability of these samples to disrupt red blood cell membranes was investigated for a range of polymer concentrations, a range of pH values, and two polymer-to-streptavidin ratios of 3:1 and 1:1. The results demonstrate that (a) the PPAAc-streptavidin complex retains the ability to lyse the RBC lipid bilayers at low pHs, such as those existing in endosomes, and (b) the hemolytic ability of the PPAAc-streptavidin complex is similar to that of the free PPAAc.  相似文献   

19.
A synthetic, 26-residue peptide having a strong helix forming potential in the protonated state was designed to interact with lipid bilayers in a pH-dependent way. On the basis of this concept a cluster of four glutamic acid residues was inserted in the central region of the amphipathic peptide to promote helix destabilization by mutual charge repulsion at neutral pH. Protonation of these residues might then bring about both a pH-mediated change in hydrophobicity and conformation forming a membrane-active amphiphilic helix. The sequence GLGTLLTLLEFLLEELLEFLKRKRQQamide produced by the design strategy induced pH-triggered lysis of human erythrocytes. A molecular model correlating the lytic activity to the formation of transmembrane pores which were detected by electron microscopy in erythrocyte membranes is discussed. Circular dichroism studies indicated a self-association of the monomeric random coil form with increasing peptide concentration leading to the apparent induction of strong alpha-helix formation (approximately 100% helicity) in the fully aggregated state. However, no pH-dependent helix-random coil transition was observed, implying that interhelical hydrophobic and ionic interactions not only govern the self-association but also decisively influence the conformational stability of the peptide.  相似文献   

20.
Targeting of a wide variety of proteins to membranes involves specific recognition of phospholipid head groups and insertion into lipid bilayers. For example, proteins that contain FYVE domains are recruited to endosomes through interaction with phosphatidylinositol 3-phosphate (PtdIns(3)P). However, the structural mechanism of membrane docking and insertion by this domain remains unclear. Here, the depth and angle of micelle insertion and the lipid binding properties of the FYVE domain of early endosome antigen 1 are estimated by NMR spectroscopy. Spin label probes incorporated into micelles identify a hydrophobic protuberance that inserts into the micelle core and is surrounded by interfacially active polar residues. A novel proxyl PtdIns(3)P derivative is developed to map the position of the phosphoinositide acyl chains, which are found to align with the membrane insertion element. Dual engagement of the FYVE domain with PtdIns(3)P and dodecylphosphocholine micelles yields a 6-fold enhancement of affinity. The additional interaction of phosphatidylserine with a conserved basic site of the protein further amplifies the micelle binding affinity and dramatically alters the angle of insertion. Thus, the FYVE domain is targeted to endosomes through the synergistic action of stereospecific PtdIns(3)P head group ligation, hydrophobic insertion and electrostatic interactions with acidic phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号