首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cryopreservation of teeth before autotransplantation may create new possibilities in dentistry. The purpose of this study was to examine the effect of a standardised cryopreservation procedure on human periodontal ligament (PDL) cell cultures. Human PDL fibroblasts obtained from immature third molars of 11 patients were cultured and divided into two groups. The experimental group was cryopreserved and cultured after thawing. The control group was cultured without cryopreservation. A comparison was made between cryopreserved and control cells. To evaluate possible differences in the characteristics of the fibroblasts, the cells in both groups were tested for viability (membrane integrity), growth capacity and alkaline phosphatase (ALP) expression. The Wilcoxon test for paired comparison between cryopreserved and non-cryopreserved cells was performed for each characteristic. The results showed that membrane integrity of cells was not influenced by cryopreservation. There was no statistically significant difference in growth capacity between cryopreserved and control cells. Non-cryopreserved cells were slightly stronger positive for ALP, but the difference was not statistically significant. From these experiments it can be concluded that the observed parameters are not influenced by cryopreservation.  相似文献   

2.
The purpose of this study was to evaluate the effects of long-term cryopreservation on the isolated human periodontal ligament cells (PDL) and pulp tissues. In the first part of study, 10 freshly extracted teeth were selected and divided into two groups. In the cryopreserved group, the teeth were frozen for 5 years using a programmed freezer combined with a magnetic field, known as Cells Alive System “CAS”. As for the control group, freshly extracted teeth were used. In each group, extracted PDL tissues were cultured and gene expression and protein concentration of collagen type I, alkaline-phosphatase (ALP) and vascular endothelial growth factor (VEGF) was compared between the two groups. In the second part, pulp tissues were obtained from 10 mature and immature third molars which were freshly extracted or cryopreserved for three months. Expression of VEGF and nerve growth factor (NGF) mRNAs and the protein concentration in the supernatant were investigated. Results indicated that long-term cryopreservation with the use of CAS freezer cannot affect the growth rate and characteristics of PDL cells. There was no significant difference in VEGF expression and VEGF and NGF protein concentration of pulp cells derived from cryopreserved teeth with immature apex and control group with mature root formation. Finally, proper PDL regeneration and appropriate apexogenesis after transplanting magnetically cryopreserved immature tooth was clinically confirmed. These findings demonstrate that teeth banking with the use of magnetic field programmed freezer can be available for future autotransplantation as a treatment modality for replacing missing teeth.  相似文献   

3.
Cryopreservation is used to protect vital periodontal ligaments during the transplantation of teeth. We investigated which gene products implicated in root resorption are upregulated in human periodontal ligament cells by cryopreservation, and whether cryopreservation affects the expression of macrophage-colony stimulating factor (M-CSF) in human periodontal ligament cells. We used customized microarrays to compare gene expression in human periodontal ligament cells cultured from teeth immediately after extraction and from cryopreserved teeth. Based on the result of these assays, we examined M-CSF expression in periodontal ligament cells from the immediately extracted tooth and cryopreserved teeth by real-time PCR, enzyme-linked immunosorbent assay (ELISA), Western blot analysis, and immunofluorescence. We also investigated whether human bone marrow cells differentiate into tartrate-resistant acid phosphatase (TRAP) positive osteoclasts when stimulated with RANKL (Receptor Activator for Nuclear Factor κ B Ligand) together with any secreted M-CSF present in the supernatants of the periodontal ligament cells cultured from the various groups of teeth. M-CSF was twofold higher in the periodontal ligament cells from the rapid freezing teeth than in those from the immediately extracted group (p < 0.05). Cryopreservation increased M-CSF expression in the periodontal ligament cells when analyzed by real time PCR, ELISA, Western blotting, and immunofluorescence (p < 0.05). TRAP positive osteoclasts were formed in response to RANKL and the secreted M-CSF present in the supernatants of all the experimental groups except negative control. These results demonstrate that cryopreservation promotes the production of M-CSF, which plays an important role in root resorption by periodontal ligament cells.  相似文献   

4.
Mechanical stress is thought to regulate the expression of genes in the periodontal ligament (PDL) cells. Using a microarray approach, we recently identified a regulator of G-protein signaling 2 (RGS2) as an up-regulated gene in the PDL cells under compressive force. The RGS protein family is known to turn off G-protein signaling. G-protein signaling involves the production of cAMP, which is thought to be one of the biological mediators in response to mechanical stress. Here, we investigated the role of RGS2 in the PDL cells under mechanical stress. PDL cells derived from the ligament tissues of human premolar teeth were cultured in collagen gels and subjected to static compressive force. Compressive force application time-dependently enhanced RGS2 expression and intracellular cAMP levels. To examine the interrelationship between RGS2 and cAMP, the PDL cells were treated with 2',5'-dideoxyadenosine (DDA), an inhibitor of adenyl cyclase, or antisense S-oligonucleotide (S-ODN) to RGS2 under compressive force. DDA dose-dependently inhibited RGS2 stimulated by compressive force. Blockage of RGS2 by antisense S-ODN elevated the cAMP levels compared with controls. These results indicate that cAMP stimulates RGS2 expression, which in turn leads to a decrease in the cAMP production by inactivating the G-protein signaling in the mechanically stressed PDL cells.  相似文献   

5.
6.
Oh YH  Che ZM  Hong JC  Lee EJ  Lee SJ  Kim J 《Cryobiology》2005,51(3):322-329
This study was aimed at evaluating whether cryopreserved teeth can be used for future transplantation by examining the viability and differentiation capability of periodontal ligament (PDL) cells and measuring the hardness of dental hard tissue. Fifty-four teeth were divided into two groups, control and frozen teeth. A MTT assay and a TUNEL assay were performed for the examination of the viability and apoptotic death of PDL cells. Immunohistochemical staining for alkaline phosphatase was performed to observe whether the differentiation capability of PDL cells was maintained by the freezing and thawing procedure. Hardness was measured to detect whether dental hard tissue was affected by the freezing conditions. The MTT and TUNEL assays showed no significant difference in the viability of PDL cells between the two groups. The differentiation capability of PDL cells was maintained in frozen teeth as evidenced by alkaline phosphatase staining. The hardness of frozen teeth was not changed, but a longitudinal fracture was found in 25% of the frozen group. The viability and differentiation capability of PDL cells were maintained in a frozen environment; however, it is thought that a new cryopreservation method preventing fracture of dental hard tissue should be developed for clinical application.  相似文献   

7.
The purpose of this study was to establish a long-term tooth cryopreservation method that can be used for tooth autotransplantation. Human periodontal ligament (PDL) cells were frozen in 10% dimethyl sulfoxide (Me2SO) using a programmed freezer with a magnetic field. Cells were cryopreserved for 7 days at −150 °C. Immediately after thawing, the number of surviving cells was counted and the cells were cultured; cultured cells were examined after 48 h. Results indicated that a 0.01 mT of a magnetic field, a 15-min hold-time, and a plunging temperature of −30 °C led to the greatest survival rate of PDL cells. Based on these findings, whole teeth were cryopreserved under the same conditions for 1 year. The organ culture revealed that the PDL cells of cryopreserved tooth with a magnetic field could proliferate as much as a fresh tooth, although the cells did not appear in the cryopreserved tooth without a magnetic field. Histological examination and the transmission electron microscopic image of cryopreserved tooth with a magnetic field did not show any destruction of cryopreserved cells. In contrast, severe cell damage was seen in cells frozen without a magnetic field. These results indicated that a magnetic field programmed freezer is available for tooth cryopreservation.  相似文献   

8.
9.
10.
11.
12.
Cyclin L1 (CCNL1) and tissue inhibitor of matrix metalloproteinase-1 (TIMP1) are candidate genes involved in several types of cancer. However, the expression of CCNL1 and the relationship between CCNL1 and TIMP1 in breast cancer cells is unknown. Using patients’ breast cancer tissues, the expression of CCNL1 and TIMP1 was measured by cDNA microarray and further confirmed by real-time RT-PCR and western blotting. Overexpression or repression of CCNL1 and TIMP1, individually or together, was performed in breast cancer MDA-MB-231 cells by transient transformation methods to investigate their role in breast cancer cell growth. Simultaneously, mRNA and protein expression levels of CCNL1 and TIMP1 were also measured. CCNL1 and TIMP1 expression was significantly elevated in breast cancer tissues compared with that in peri-breast cancer tissues of patients by cDNA microarray and these results were further confirmed by real-time RT-PCR and western blotting. Interestingly, in vitro experiments showed a stimulatory effect of TIMP1 and an inhibitory effect of CCNL1 on growth of MDA-MB-231 cells. Co-expression or co-repression of these two genes did not affect cell growth. Overexpression of CCNL1 and TIMP1 individually induced overexpression of each other. These data demonstrate that there is a fine balance between CCNL1 and TIMP1, which may contribute to breast cancer development.  相似文献   

13.
细胞周期蛋白E2基因的过度表达与胃腺癌细胞迁徙的关系   总被引:3,自引:0,他引:3  
从基因芯片筛选出差异表达的基因中一个细胞周期蛋白 (cyclin)E2基因 ,深入研究周期蛋白E2在高转移性胃腺癌细胞系RF 4 8细胞中的生物学作用 .首先通过合成硫代磷酸化修饰的反义、正义和错配寡核苷酸片段 ,使用半定量RT PCR和Western印迹方法分别检测被 3种寡核苷酸转染的RF 4 8细胞在 1~ 5d内周期蛋白E2基因及它可能调控下游靶基因之一FGFR基因和蛋白质的表达 ,检测寡核苷酸转染的RF 4 8细胞周期和凋亡细胞 ,观察寡核苷酸转染RF 4 8细胞的软琼脂集落形成、运动能力和体外侵袭能力 .结果表明 ,修饰的反义寡核苷酸在有效地抑制RF 4 8细胞中周期蛋白E2表达上调后 ,RF 4 8细胞的迁徙能力被显著降低 ,其增殖、运动能力没有变化 .周期蛋白E2基因的主要作用并不是促细胞分裂 ,也与细胞的增殖、运动能力无关 ,周期蛋白E2基因的过度表达与胃腺癌的迁徙性存在相关性 ,其触发肿瘤的侵袭性可能通过某种机制调控其下游靶基因之一成纤维细胞生长因子受体 (FGFR)基因的表达来实现的  相似文献   

14.
The cryopreservation of exfoliated deciduous teeth and harvesting of stem cells from them as required would reduce the costs and efforts associated with banking stem cells from primary teeth. The aim of this study was determine whether the viability of pulp stromal cells from deciduous teeth was influenced by the cryopreservation process itself or the period of cryopreservation. In total, 126 deciduous teeth were divided into three groups: (1) fresh, (2) cryopreserved for <3 months (cryo<3), and (3) cryopreserved for 3–9 months (cryo3–9). The viability of the pulp tissues was compared among the three groups by evaluating the outgrowth from pulp tissues and cell activity within those pulp tissues. In addition, the terminal deoxynucleotidyl transferase-mediated dUTP–biotin nick end labeling (TUNEL) assay was performed to compare cell apoptosis within fresh pulp tissue and pulp tissue that had been cryopreserved for 4 months. The outgrowth from and cell activity within the pulp tissues did not differ significantly between the fresh and cryo<3 pulp tissues. However, these parameters were significantly reduced in the cryo3–9 pulp tissue. In TUNEL assay, 4-month cryopreserved pulp tissues has more apoptotic cells than fresh group. In conclusion, it is possible to acquire pulp stromal cells from cryopreserved deciduous teeth. However, as the period of cryopreservation becomes longer, it is difficult to get pulp cells due to reduced cell viability.  相似文献   

15.
16.
Cell cultures from cryopreserved human lung tissue.   总被引:5,自引:0,他引:5  
To assess gene induction in primary human fibroblasts, we have developed a method for cryopreservation of lung biopsies in liquid nitrogen. Fresh biopsies (n = 10) were chopped into 5 x 5 mm pieces and transferred into an ice-cold freezing medium. Biopsies were kept on ice for 15 min, followed by further cooling of the tissue to -70 degrees C. With this method, lung biopsies were preserved for more than 1 year before they were used for generating cell cultures. There was no significant difference in the biological responsiveness of fibroblasts generated from immediately cultured lung biopsies compared with those from cryopreserved tissue. The doubling rate of fibroblasts from fresh tissue was 23.6 +/- 1.1 hr; compared to 23.5 +/- 1.5 hr for fibroblasts generated from cryopreserved tissue. PDGF-BB enhanced de novo synthesis of DNA 100 times, in both the immediately cultured fibroblasts and those generated from cryopreserved biopsies. Macrophages, dendritic cells and endothelial cells could also be recovered from cryopreserved lung tissue. This method permits long-term storage of lung tissue and the possibility of establishing primary cell lines from the same tissue at later times without appreciable changes in their cellular biological characteristics.  相似文献   

17.
The purpose of the present study was to examine the role of human heme oxygenase (human HO-1) in cell cycle progression following exposure to heme or human HO-1 gene transfer and to identify target genes associated with human HO-1-meditated increases in cell cycle progression using cDNA microarray technology. Heme-induced robust human HO-1 expression in quiescent human microvessel endothelial cells cultured in 1% FBS and the levels of human HO-1 expression progressively declined without a change in the cell cyclin. To identify genes regulated by human HO-1 in the cell cycle, human endothelial cells were transduced with a retroviral vector encoded with human HO-1 gene or an empty vector. Transgene expression and functionality of the recombinant protein were assessed by Western blotting, enzyme activity, carbon monoxide, cGMP production, and cell cycle analysis. Human cDNA gene array and quantitative real-time RT-PCR were used to identify both known and novel differentially expressed genes in cells overexpressing human HO-1. Major findings were upregulation of several genes associated with cell cycle progression, including cyclin E and D; downregulation of cyclin-dependent kinase inhibitors p21 and p27, cyclin-dependent kinases 2, 5, and 6, and monocyte chemoattractant protein-1; and upregulation of growth factors, including vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor I (VEGFRI), endothelial growth factor (EGF) and hepatic-derived growth factor (HDGF). These findings identify an array of gene responses to overexpression of human HO-1 and elucidate new aspects of human HO-1 signaling involved in cell growth.  相似文献   

18.
19.
20.
Heat shock proteins (HSPs) are molecular chaperones that maintain intracellular protein homeostasis and ensure survival of cells. Continuous orthodontic force on the tooth is considered to be a type of physical stress loaded to the periodontal ligament (PDL). However, little is known about the role of HSPs during tooth movement. This study was performed to examine the expression of HSPs in the PDL during tooth movement using laser microdissection, microarray analysis, real-time RT-PCR and immunohistochemistry. Gene expression of HSPA1A in the pressure zone of the PDL was higher during 6 h of tooth movement than in the control group. Expression of HSPA1A decreased with time. HSPA1A was also detected in the pressure zone of the PDL at the protein level 24 h after the initial tissue change. These results strongly suggest that expression of HSPA1A in the PDL during early stages of tooth movement is a critical factor for tissue reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号