共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aims at the quantification of specific DNA sequences by using fluorescence in situ hybridization (ISH) and digital imaging microscopy. The cytochemical and cytometric aspects of a quantitative ISH procedure were investigated, using human peripheral blood lymphocyte interphase nuclei and probes detecting high copy number target sequences as a model system. These chromosome-specific probes were labeled with biotin, digoxigenin, or fluorescein. Quantification of the fluorescence ISH signals was performed using an epifluorescence microscope equipped with a multi-wavelength illuminator, and a cooled charge coupled device (CCD) camera. Specific image analysis programs were developed for the segmentation and analysis of the images provided by ISH. The fluorescence intensity distributions of the ISH spots showed large internuclear variation (CVs up to 65%) for the probes used. The variation in intensity was found to be independent of the probe, the type of labeling, and the type of immunocytochemical detection used. Variation in intensity was not caused primarily by the immunocytochemical detection method, since directly fluorescein-labeled probes showed similar internuclear variation. Furthermore, it was found that different white blood cell types, which harbor different degrees of compactness of the nuclear chromatin, showed the same variation. The intra-nuclear variation in intensity of the ISH spots on the two chromosome homologs within one nucleus was significantly smaller (approximately 20%) than the inter-nuclear variation, probably due to more constant local hybridization conditions. Due to the relatively small intranuclear variation, copy number polymorphisms of the satellite DNA sequence on chromosome 1 could readily be quantified.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
Telomere analysis by fluorescence in situ hybridization and flow cytometry. 总被引:10,自引:1,他引:10
下载免费PDF全文

M Hultdin E Grnlund K Norrback E Eriksson-Lindstrm T Just G Roos 《Nucleic acids research》1998,26(16):3651-3656
Determination of telomere length is traditionally performed by Southern blotting and densitometry, giving a mean telomere restriction fragment (TRF) value for the total cell population studied. Fluorescence in situ hybridization (FISH) of telomere repeats has been used to calculate telomere length, a method called quantitative (Q)-FISH. We here present a quantitative flow cytometric approach, Q-FISHFCM, for evaluation of telomere length distribution in individual cells based on in situ hybridization using a fluorescein-labeled peptide nucleic acid (PNA) (CCCTAA)3probe and DNA staining with propidium iodide. A simple and rapid protocol with results within 30 h was developed giving high reproducibility. One important feature of the protocol was the use of an internal cell line control, giving an automatic compensation for potential differences in the hybridization steps. This protocol was tested successfully on cell lines and clinical samples from bone marrow, blood, lymph nodes and tonsils. A significant correlation was found between Southern blotting and Q-FISHFCMtelomere length values ( P = 0.002). The mean sub-telomeric DNA length of the tested cell lines and clinical samples was estimated to be 3.2 kbp. With the Q-FISHFCMmethod the fluorescence signal could be determined in different cell cycle phases, indicating that in human cells the vast majority of telomeric DNA is replicated early in S phase. 相似文献
3.
Touji Kimura Jun Kosaka Takako Nomura Teruo Yamada Yukari Miki Koji Takagi Takashi Kogami Junzo Sasaki 《The journal of histochemistry and cytochemistry》2004,52(6):813-820
We performed basic research into quantifying in situ hybridization (ISH) signals in rat testis, a suitable organ for the quantification because germ cells undergo synchronized development and show stage-specific gene expression. In this model experiment, rRNA was selected as the hybridizable RNA in paraffin sections. Specimens fixed with Bouin's fixative and hybridized with digoxygenin-labeled probes could easily be analyzed quantitatively through "posterization" of the images. The amount of rRNA hybridized with the probe was greatest in early primary spermatocytes, followed by pachytene primary spermatocytes, then diplotene spermatocytes, and finally by secondary spermatocytes and spermatids. The amounts reached low levels in metaphase, anaphase, and telophase of meiotic division and early step 1 spermatids, and then slightly increased during spermiogenesis. ISH rRNA staining was a useful parameter for evaluation of the quantitative analysis of mRNA and the levels of hybridizable RNA in tissue sections. 相似文献
4.
Quantification of methanogens by fluorescence in situ hybridization with oligonucleotide probe 总被引:2,自引:0,他引:2
To monitor anaerobic environmental engineering system, new method of quantification for methanogens was tested. It is based on the measurement of specific binding (hybridization) of 16S rRNA-targeted oligonucleotide probe Arc915, performed by fluorescence in situ hybridization (FISH) and quantified by fluorescence spectrometry. Average specific binding of Arc915 probe was 13.4±0.5 amol/cell of autofluorescent methanogens. It was 14.3, 13.3, and 12.9 amol/cell at the log phase, at stationary phase and at the period of cell lysis of batch culture, respectively. Specific binding of Arc915 probe per 1 ml of microbial sludge suspension from anaerobic digester linearly correlated with concentration of autofluorescent cells of methanogens. Coefficient of correlation was 0.95. Specific binding of oligonucleotide probe Arc915 can be used for the comparative estimation of methanogens during anaerobic digestion of organic waste. Specific binding of Arc915 probe was linear function of anaerobic sludge concentration when it was between 1.4 and 14.0 mg/ml. Accuracy of the measurements in this region was from 5 to 12%. 相似文献
5.
Joachimsthal E.L. Ivanov V. Tay S.T.L. Tay J.H. 《World journal of microbiology & biotechnology》2003,19(5):527-533
The use of fluorescence in situ hybridization (FISH) in conjunction with flow cytometry is a popular method of analysing environmental microbial populations. However, false-positive results can be produced if the specificity of oligonucleotide probe binding is not considered. An aim of this research was to evaluate the specificity of labelled oligonucleotide probe binding in FISH by flow cytometry. An excess of unlabelled probe was used to competitively inhibit the specific binding of labelled probe. Comparisons were made between the mean cell fluorescence and the number of fluorescently stained cells in a pure culture of Escherichia coli ATCC 53323. Specific binding of species-specific probes for the detection of E. coli was in the range 47–70% of total binding. A eukaryote probe and a nonsense probe, used as negative controls, had no specific binding with cells of E. coli. The significance of the results obtained is that the enumeration of specifically probe-bound microbial cells by FISH and flow cytometry must be made by an application of labelled and unlabelled probes to distinguish specifically stained cells. This is also a more practical method for the analysis of environmental samples compared to washing of excess non-specifically bound probe, due to the reduction of cell loss from the analysis. 相似文献
6.
Telomere length measurement by fluorescence in situ hybridization and flow cytometry: tips and pitfalls 总被引:13,自引:0,他引:13
BACKGROUND: Telomeres containing noncoding DNA repeats at the end of the chromosomes are essential for chromosomal stability and are implicated in regulating the replication and senescence of cells. The gradual loss of telomere repeats in cells has been linked to aging and tumor development and methods to measure telomere length are of increasing interest. At least three methods for measuring the length of telomere repeats have been described: Southern blot analysis and quantitative fluorescence in situ hybridization using either digital fluorescence microscopy (Q-FISH) or flow cytometry (flow-FISH). Both Southern blot analysis and Q-FISH have specific limitations and are time-consuming, whereas the flow-FISH technique requires relatively few cells (10(5)) and can be completed in a single day. A further advantage of the flow-FISH method is that data on the telomere length from individual cells and subsets of cells (lymphocytes and granulocytes) can be acquired from the same sample. In order to obtain accurate and reproducible results using the flow-FISH technique, we systematically explored the influence of various steps in the protocol on telomere length values and established an acceptable range for the most critical parameters. METHODS: Isolated leukocytes from whole blood are denatured by heat and 70%/75% formamide, then hybridized with or without a telomere-specific fluorescein isothiocyante (FITC)-conjugated peptide nucleic acid probe (PNA). Unbound telomere PNA is washed away, the DNA is counterstained, and telomere fluorescence is measured on a flow cytometer using an argon ion laser (488 nm) to excite FITC. For each sample, duplicates of telomere PNA-stained and unstained tubes are analyzed. RESULTS: Cell counts and flow-FISH telomere length measurements were performed on leukocytes and thymocytes of humans and other species. Leukocyte suspensions were prepared by two red blood cell lysis steps with ammonium chloride. Optimal denaturation of DNA was achieved by heating at 85-87 degrees C for 15 min in a solution containing 70%/75% formamide. Hybridization was performed at room temperature with a 0.3 microg/ml telomere-PNA probe for at least 60-90 min. Unbound telomere-PNA probe was diluted at least 4,000-40,000 times with wash steps containing 70%/75% formamide at room temperature. LDS 751 and DAPI were suitable as DNA counterstains as they did not show significant interference with telomere length measurement. CONCLUSIONS: The use of flow-FISH for telomere length measurements in nucleated blood cells requires tight adherence to an optimized protocol. The method described here can be used to determine rapidly the telomere length in subsets of nucleated blood cells. 相似文献
7.
Tay Tiong-Lee Stephen Ivanov Volodymyr Kim In Soo Feng Lin Tay Joo-Hwa 《World journal of microbiology & biotechnology》2001,17(6):583-589
16S rRNA-targeted oligonucleotide probes for Bacteria (Eub338) and Archaea (Arc915) were used for whole-cell, fluorescence in situ hybridization (FISH) to quantify the ratio of these microbial groups in an anaerobic digester. The quantity of specifically bound (hybridized) probe was measured by fluorescence spectrometry and evaluated by analysing the dissociation curve of the hybrids, by the measurement of the binding with a nonsense probe, and by the competitive inhibition of the binding of the labelled probe by the corresponding unlabelled probe. Specific binding of oligonucleotide probes with the biomass of anaerobes was 40–50% of their total binding. The ratio of Arc915 and Eub338 probes hybridized with rRNAs of the cells in anaerobic sludge was 0.50. Measurement of FISH by fluorescence spectrometry appears to be a suitable method for quantification of the microbial community of anaerobes. 相似文献
8.
Multiple fluorescence in situ hybridization 总被引:18,自引:0,他引:18
P M Nederlof S van der Flier J Wiegant A K Raap H J Tanke J S Ploem M van der Ploeg 《Cytometry》1990,11(1):126-131
A method for multiple fluorescence in situ hybridization is described allowing the simultaneous detection of more than three target sequences with only three fluorescent dyes (FITC, TRITC, AMCA), respectively emitting in the green, red, and blue. This procedure is based on the labeling of (DNA) probes with more than one hapten and visualisation in multiple colors. The possibility to detect multiple targets simultaneously is important for prenatal diagnosis and the detection of numerical and/or structural chromosome aberrations in tumor diagnosis. It may form the basis for an in situ hybridization based chromosome banding technique. 相似文献
9.
Quantification of Leuconostoc populations in mixed dairy starter cultures using fluorescence in situ hybridization 总被引:1,自引:0,他引:1
AIMS: Development of a rapid method to identify and quantify Leuconostoc populations in mesophilic starter cultures. METHODS AND RESULTS: 16S rRNA-targeted oligonucleotide probes were used in a whole cell in situ hybridization assay for the identification of the genus Leuconostoc and an undescribed Leuconostoc ribospecies. The probes were fluorescently labelled and used to quantify the Leuconostoc populations in five different mixed starter cultures. CONCLUSIONS: There was a good correlation between the results obtained using fluorescence in situ hybridization (FISH) with that of standard plate counting methods. SIGNIFICANCE AND IMPACT OF THE STUDY: To develop a FISH method capable of identifying and quantifying the Leuconostoc population in starter cultures within 1 day. 相似文献
10.
Characterization of Robertsonian translocations by using fluorescence in situ hybridization.
下载免费PDF全文

Fluorescence in situ hybridization with five biotin-labeled probes (three alphoid probes, a probe specific for beta-satellite sequences in all acrocentric chromosomes, and an rDNA probe) was used to characterize 30 different Robertsonian translocations, including three t(13;13); one t(15;15), four t(21;21), three t(13;14), two t(13;15), two (13;21), two t(13;22), one t(14;15), eight t(14;21), two t(14;22), and two t(21;22). Of 8 de novo homologous translocations, only one t(13;13) chromosome was interpreted as dicentric, while 19 of 22 nonhomologous Robertsonian translocations were dicentric. The three monocentric nonhomologous translocations included both of the t(13;21) and one t(21;22). Two of 26 translocations studied using the beta-satellite probe showed a positive signal, while rDNA was undetectable in 10 cases studied. These results indicate that most homologous Robertsonian translocations appear monocentric, while the bulk of nonhomologous translocations show two alphoid signals. A majority of the breakpoints localized using this analysis seem to be distal to the centromere and just proximal to the beta-satellite and nuclear-organizing regions. 相似文献
11.
12.
When fluorescence in situ hybridization (FISH) analyses are performed with complex environmental samples, difficulties related to the presence of microbial cell aggregates and nonuniform background fluorescence are often encountered. The objective of this study was to develop a robust and automated quantitative FISH method for complex environmental samples, such as manure and soil. The method and duration of sample dispersion were optimized to reduce the interference of cell aggregates. An automated image analysis program that detects cells from 4',6'-diamidino-2-phenylindole (DAPI) micrographs and extracts the maximum and mean fluorescence intensities for each cell from corresponding FISH images was developed with the software Visilog. Intensity thresholds were not consistent even for duplicate analyses, so alternative ways of classifying signals were investigated. In the resulting method, the intensity data were divided into clusters using fuzzy c-means clustering, and the resulting clusters were classified as target (positive) or nontarget (negative). A manual quality control confirmed this classification. With this method, 50.4, 72.1, and 64.9% of the cells in two swine manure samples and one soil sample, respectively, were positive as determined with a 16S rRNA-targeted bacterial probe (S-D-Bact-0338-a-A-18). Manual counting resulted in corresponding values of 52.3, 70.6, and 61.5%, respectively. In two swine manure samples and one soil sample 21.6, 12.3, and 2.5% of the cells were positive with an archaeal probe (S-D-Arch-0915-a-A-20), respectively. Manual counting resulted in corresponding values of 22.4, 14.0, and 2.9%, respectively. This automated method should facilitate quantitative analysis of FISH images for a variety of complex environmental samples. 相似文献
13.
Advances in fluorescence in situ hybridization 总被引:14,自引:0,他引:14
The techniques of in situ hybridization (ISH) are widely applied for analyzing the genetic make-up and RNA expression patterns of individual cells. This review focusses on a number of advances made over the last 5 years in the fluorescence ISH (FISH) field, i.e., Fiber-FISH, Multi-colour chromosome painting, Comparative Genomic Hybridization, Tyramide Signal Amplification and FISH with Polypeptide Nucleic Acid and Padlock probes. 相似文献
14.
Chromera velia is evolutionarily the closest free-living and photosynthetic organism to the medically important obligatory parasitic apicomplexans that cause diseases including malaria and toxoplasmosis. In this study, a novel oligonucleotide probe targeting C.?velia's small subunit ribosomal RNA was designed. To enable usage of this probe as a detection tool, a fluorescence in situ hybridization (FISH) protocol was optimized. The results obtained showed that when used in combination, the C.?velia CV1 probe and optimized FISH protocol enabled efficient detection of C.?velia in culture. This new technique will allow a better understanding of the ecological role of C.?velia within the coral microhabitat. 相似文献
15.
Delineation of DNA replication time zones by fluorescence in situ hybridization. 总被引:16,自引:0,他引:16
下载免费PDF全文

Fluorescence in situ hybridization has been used to visualize specific genomic DNA sequences in interphase nuclei. In normal diploid cells, unreplicated DNA segments give singlet hybridization signals while replicated loci are characterized by doublets. The distribution of these two patterns in unsynchronized cell populations can be used to determine the S phase replication time of any DNA sequence. The validity of this approach was established by analyzing genes whose replication profiles in expressing and non-expressing cells had been determined previously by conventional methods. Using this technique it has been possible to map the replication timing topography of the DNA within and flanking the cystic fibrosis (CF) gene locus on chromosome 7. The gene itself is located within a defined time zone which is approximately 500 kb in length and is under developmental control. It is early replicating in cells which express CF but late replicating in other cell types. These time zones probably represent basic units of chromosome structure. 相似文献
16.
Mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene have been found to be a cause of Rett syndrome (RTT). Mutation screening was based on various techniques including denaturing gradient gel electrophoresis, single-strand conformation polymorphism analysis, heteroduplex analysis, DNA sequencing and recently Southern Blot analysis. Mutation detection was achieved in 80% of typical RTT with a high prevalence of recurrent mutations. In order to provide further insights into the spectrum of MECP2 rearrangements in patients without any point mutation or small deletion/insertion in the coding region MECP2 gene, we screened 25 classical RTT females using fluorescence in situ hybridization analysis. No deletion were found in our group, suggesting that MECP2 gross rearrangements are a rare cause of Rett syndrome. 相似文献
17.
Clinical applications of fluorescence in situ hybridization 总被引:10,自引:0,他引:10
D C Tkachuk D Pinkel W L Kuo H U Weier J W Gray 《Genetic analysis, techniques and applications》1991,8(2):67-74
We review here the application of fluorescence in situ hybridization with chromosome-specific probes to chromosome classification and to detection of changes in chromosome number or structure associated with genetic disease. Information is presented on probe types that are available for disease detection. We discuss the application of these probes to detection of numerical aberrations important for prenatal diagnosis and to detection and characterization of numerical and structural aberrations in metaphase spreads and in interphase nuclei to facilitate tumor diagnosis. 相似文献
18.
Poppert S Essig A Marre R Wagner M Horn M 《Applied and environmental microbiology》2002,68(8):4081-4089
Chlamydiae are important pathogens of humans and animals but diagnosis of chlamydial infections is still hampered by inadequate detection methods. Fluorescence in situ hybridization (FISH) using rRNA-targeted oligonucleotide probes is widely used for the investigation of uncultured bacteria in complex microbial communities and has recently also been shown to be a valuable tool for the rapid detection of various bacterial pathogens in clinical specimens. Here we report on the development and evaluation of a hierarchic probe set for the specific detection and differentiation of chlamydiae, particularly C. pneumoniae, C. trachomatis, C. psittaci, and the recently described chlamydia-like bacteria comprising the novel genera Neochlamydia and PARACHLAMYDIA: The specificity of the nine newly developed probes was successfully demonstrated by in situ hybridization of experimentally infected amoebae and HeLa 229 cells, including HeLa 229 cells coinfected with C. pneumoniae and C. trachomatis. FISH reliably stained chlamydial inclusions as early as 12 h postinfection. The sensitivity of FISH was further confirmed by combination with direct fluorescence antibody staining. In contrast to previously established detection methods for chlamydiae, FISH was not susceptible to false-positive results and allows the detection of all recognized chlamydiae in one single step. 相似文献
19.
Bertaux J Gloger U Schmid M Hartmann A Scheu S 《Journal of microbiological methods》2007,69(3):451-460
The use of fluorescence in situ hybridization (FISH) to identify and enumerate soil bacteria has long been hampered by the autofluorescence of soil particles masking the bacterial signals and because the need of counting hundreds of bacteria in order to achieve statistically reliable data is time consuming. Recently, it was demonstrated that Nycodenz facilitates FISH in soil by concentrating bacteria on membrane filters and avoiding autofluorescent soil particles. We present a routine protocol for FISH in soil including the use of Nycodenz. The protocol allows fast and easy enumeration of hundreds of bacteria. We propose the use of silicon grease coated slides to treat in parallel seven samples per hybridization. Further, we developed a semi-automated approach for the enumeration of bacteria by implementing macros concatenating all steps of the image analyzes in the Image J software. Using Nycodenz, software-assisted bacterial counts statistically matched eye-counts of the same images and it was possible to count 880 DAPI stained bacteria per ten images. Fifty-five percent of these bacteria were co-labelled with the FISH probe specific for the Domain Bacteria, in accordance with recent FISH studies of bacterial populations in bulk soil. With a soil slurry protocol used for comparison, soil particles impaired automatic counts of the bacteria and FISH analysis, and only 88 DAPI stained bacteria per ten images could be counted by eye. With the Nycodenz protocol, 5 mM Na(2)EDTA used as an extractant increased the number of bacteria observed by 49%. In contrast, Tween 20 (1% or 5%) had no significant effect and increased the variability between the samples. Overall, the proposed procedure allows to process a high number of samples and to achieve a time efficient FISH characterization of soil bacterial communities. 相似文献