首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Several studies indicate that estrogen may enhance the effects of mechanical loading on bone mineral density in elderly women. This stimulating effect of estrogen could be due to increased sensitivity of bone cells to mechanical stress in the presence of estrogen. The present study was performed to determine whether 17beta-estradiol (E2) enhances mechanical stress-induced prostaglandin production and cyclooxygenase (COX)-2 mRNA expression. We subjected bone cells from seven nonosteoporotic women between 56 and 75 yr of age for 1 h to pulsating fluid flow (PFF) in the presence or absence of 10(-11) M E2 and measured prostaglandin production and COX-1 and COX-2 mRNA expression. One hour of PFF stimulated prostaglandin (PGE2) production threefold, PGI2 production twofold, and COX-2, but not COX-1, mRNA expression 2.9-fold. Addition of E2 further enhanced PFF-stimulated PGE2 production by 1.9-fold but did not significantly affect PGI2 production or COX-2 or COX-1 mRNA expression. E2 by itself did not affect any of the parameters measured. These results suggest that estrogen modulates bone cell mechanosensitivity via the prostaglandin synthetic pathway independently of COX mRNA expression.  相似文献   

2.
Mechanical loading-induced fluid flow in the lacuno-canalicular network is a possible signal for bone cell adaptive responses. In an earlier study we found that pulsating fluid flow (PFF, 0.7+/-0.02 Pa, 5 Hz, 0.4 Pa/s) stimulates the production of prostaglandins by neonatal mouse calvarial cells. In addition, mRNA expression of the inducible form of cyclooxygenase (COX-2), but not the constitutive form (COX-1), the major enzymes in prostaglandin production, was increased by PFF. The present study was performed to determine whether human primary bone cells from the iliac crest, respond to mechanical stress in a similar way as neonatal mouse calvarial cells. We subjected bone cells originating from the iliac crest of nine elderly women, between 56 and 80 yr of age, for 1 h to PFF and measured prostaglandin production and COX-1 and COX-2 mRNA expression. One hour PFF treatment stimulated the release of PGE2 by 3.5 fold and PGI2 by 2.2 fold. PFF also increased the expression of COX-2 mRNA by 2.9 fold, but did not change COX-1 mRNA. No correlation was found between donor age and PFF effect, neither on prostaglandin production nor on COX-2 mRNA expression. This study shows that bone cells from the iliac crest of elderly women react to PFF treatment in a similar way as neonatal mouse calvarial cells, namely with increased production of prostaglandins and upregulation of COX-2 mRNA expression. These results suggest that human bone cells from the iliac crest and neonatal mouse calvarial cells share a similar mechanotransduction pathway.  相似文献   

3.
Background aimsFor engineering bone tissue to restore, for example, maxillofacial defects, mechanosensitive cells are needed that are able to conduct bone cell-specific functions, such as bone remodelling. Mechanical loading affects local bone mass and architecture in vivo by initiating a cellular response via loading-induced flow of interstitial fluid. After surgical removal of ectopically impacted third molars, human dental pulp tissue is an easily accessible and interesting source of cells for mineralized tissue engineering. The aim of this study was to determine whether human dental pulp-derived cells (DPC) are responsive to mechanical loading by pulsating fluid flow (PFF) upon stimulation of mineralization in vitro.MethodsHuman DPC were incubated with or without mineralization medium containing differentiation factors for 3 weeks. Cells were subjected to 1-h PFF (0.7 ± 0.3Pa, 5Hz) and the response was quantified by measuring nitric oxide (NO) and prostaglandin E2 (PGE2) production, and gene expression of cyclooxygenase (COX)-1 and COX-2.ResultsWe found that DPC are intrinsically mechanosensitive and, like osteogenic cells, respond to PFF-induced fluid shear stress. PFF stimulated NO and PGE2 production, and up-regulated COX-2 but not COX-1 gene expression. In DPC cultured under mineralizing conditions, the PFF-induced NO, but not PGE2, production was significantly enhanced.ConclusionsThese data suggest that human DPC, like osteogenic cells, acquire responsiveness to pulsating fluid shear stress in mineralizing conditions. Thus DPC might be able to perform bone-like functions during mineralized tissue remodeling in vivo, and therefore provide a promising new tool for mineralized tissue engineering to restore, for example, maxillofacial defects.  相似文献   

4.
Basophils have been erroneously considered as minor relatives of mast cells, due to some phenotypic similarity between them. While recent studies have revealed non-redundant roles for basophils in various immune responses, basophil-derived effector molecules, including lipid mediators, remain poorly characterized, compared to mast cell-derived ones. Here we analyzed and compared eicosanoids produced by mouse basophils and mast cells when stimulated with IgE plus allergens. The production of 5-LOX metabolites such as LTB4 and 5-HETE was detected as early as 0.5 h post-stimulation in both cell types, even though their amounts were much smaller in basophils than in mast cells. In contrast, basophils and mast cells showed distinct time course in the production of COX metabolites, including PGD2, PGE2 and 11-HETE. Their production by mast cells was detected at both 0.5 and 6 h post-stimulation while that by basophils was detectable only at 6 h. Of note, mast cells showed 8–9 times higher levels of COX-1 than did basophils at the resting status. In contrast to unaltered COX-1 expression with or without stimulation, COX-2 expression was up-regulated in both cell types upon activation. Importantly, when activated, basophils expressed 4–5 times higher levels of COX-2 than did mast cells. In accordance with these findings, the late-phase production of the COX metabolites by basophils was completely ablated by COX-2 inhibitor whereas the early-phase production by mast cells was blocked by COX-1 but not COX-2 inhibitor. Thus, the production of COX metabolites is differentially regulated by COX-1 and COX-2 in basophils and mast cells.  相似文献   

5.
Prostaglandins are a class of molecules that mediate cellular inflammatory responses and control cell growth. The oxidative conversion of arachidonic acid to prostaglandin H2 is carried out by two isozymes of cyclooxygenase, COX-1 and COX-2. COX-1 is constitutively expressed, while COX-2 can be transiently induced by external stimuli, such as pro-inflammatory cytokines. Interestingly, COX-2 is overexpressed in numerous cancers, including lung cancer. MicroRNAs (miRNAs) are small RNA molecules that function to regulate gene expression. Previous studies have implicated an important role for miRNAs in human cancer. We demonstrate here that miR-146a expression levels are significantly lower in lung cancer cells as compared with normal lung cells. Conversely, lung cancer cells have higher levels of COX-2 protein and mRNA expression. Introduction of miR-146a can specifically ablate COX-2 protein and the biological activity of COX-2 as measured by prostaglandin production. The regulation of COX-2 by miR-146a is mediated through a single miRNA-binding site present in the 3′ UTR. Therefore, we propose that decreased miR-146a expression contributes to the up-regulation and overexpression of COX-2 in lung cancer cells. Since potential miRNA-mediated regulation is a functional consequence of alternative polyadenylation site choice, understanding the molecular mechanisms that regulate COX-2 mRNA alternative polyadenylation and miRNA targeting will give us key insights into how COX-2 expression is involved in the development of a metastatic condition.  相似文献   

6.
7.
选择性co x 一2 抑制剂在胶质瘤放疗中的研究进展   总被引:1,自引:1,他引:0       下载免费PDF全文
环氧合酶(cyclooxygenase,COX)又名前列腺素内过氧化物合成酶,是前列腺素类似物合成的限速酶。COX-2是其诱导型酶。胶质瘤中COX-2的高表达被认为与肿瘤的侵袭性、预后相关。COX-2在胶质瘤的发生发展过程中发挥重要作用。选择性COX-2抑制剂通过直接和间接的作用机制而成为放射增敏剂。它们通过直接作用肿瘤细胞增强放射反应性,同时间接通过前列腺素影响肿瘤的血管形成抑制肿瘤生长。在体内和体外的研究表明选择性COX-2抑制剂可以增强胶质瘤对放射的反应性.降低恶性胶质瘤患者术后放射的必需照射剂量。而且在提高肿瘤放射敏感性的同时不增加对正常组织的放射损伤,甚至对正常组织有放射保护作用。因此,放疗联合选择性COX-2抑制剂可能成为胶质瘤治疗的新的有效途径。  相似文献   

8.
Cyclooxygenase (COX) is the rate-limiting enzyme for the biosynthesis of prostaglandins in monocytes/macrophages. The COX-1 is constitutively expressed in most tissues and may be involved in cellular homeostasis, whereas the COX-2 is an inducible enzyme that may play an important role in inflammation and mitogenesis. When U937 monocytic cells were incubated with retinoic acid (RA) for 48 h, cell differentiation took place with concomitant increases in prostaglandin E2 (PGE2) production and COX activity. In this study, the mechanism of RA (all-trans- or 9-cis-RA)-induced enhancement of PGE2 biosynthesis in U937 cells was examined. Treatment of cells with all-trans- or 9-cis-RA up to 48 h caused an increase in PGE2 production in a time- and dose-dependent manner. Both RA isomers caused the enhancement of PGE2 production and the up-regulation of COX-1 expression at the protein and mRNA levels. The increase in COX-1 mRNA was found to precede the increase in COX-1 protein expression. Interestingly, the COX-2 protein and COX-2 mRNA were not detected in U937 cells, and their levels remained undetectable during the entire course of RA treatment. We conclude that treatment of U937 cells by RA for 48 h caused the initiation of cell differentiation, which was found to be concomitant with a significant increase in PGE2 production mediated via the up-regulation of COX-1 mRNA and protein expression.  相似文献   

9.
Basic fibroblast growth factor (bFGF) serves as a modulator of survival in breast cancer cells. The mechanisms by which bFGF transduces the anti-apoptotic signal and interacts with COX inhibitors were investigated. bFGF reduced apoptosis in MCF-7 breast cancer cells and up-regulated the expression of mitocondrial Bcl-2, whereas COX inhibitors meloxicam (selective COX-2) and aspirin (non-selective), induced apoptosis. bFGF up-regulated survivin protein expression and induced cdc-2 phosphorylation moderately at early (2-6 h), and substantially at late (24 h), time-points. Survivin mRNA expression was up-regulated only at the later time-point. COX inhibitors prevented up-regulation of survivin protein expression at both 2 and 24 h and prevented early modest increases in cdc-2 phosphorylation. Up-regulation of survivin mRNA was not found to be modulated by the COX-2 inhibitor meloxicam. bFGF regulation of survivin expression was found to be ERK1/2 kinase dependent and bFGF-induced phosphorylation of c-raf was prevented by the COX-2 inhibitor. bFGF was, however, unable to induce COX-2 protein expression or modulate COX-2 activity in MCF-7 cells as evidenced by unaltered PGE(2) production. These results indicate that bFGF regulates survivin expression in MCF-7 breast cancer cells by signaling through an ERK1/2 dependent pathway. COX-2 inhibitors can modulate bFGF-induced survivin expression in a COX-2 independent manner.  相似文献   

10.
11.
Hypergravity induces expression of cyclooxygenase-2 in the heart vessels   总被引:2,自引:0,他引:2  
Cyclooxygenase-2 (COX-2), a rate-limiting enzyme for prostaglandin biosynthesis, is induced by various stimuli including mechanical stress and plays important roles in pathophysiological conditions. For example, gravitational stress has been shown to induce expression of COX-2 in bone tissues, which is essential for bone homeostasis. To investigate whether COX-2 is induced by gravitational loading in other tissues than bone, we exposed mice to hypergravity at 2G and 3G for 4 h. We demonstrate here that COX-2 is induced in the mouse heart vessels by hypergravity. Moreover, hypoxia-inducible factor (HIF)-1alpha and its downstream genes such as inducible nitric oxide synthase, vascular endothelial growth factor, and heme oxygenase-1 were induced in the heart simultaneously, while none of these genes were induced in the COX-2(-/-) mouse heart. Therefore, COX-2 induced in the heart helps protect the heart function against hypoxia under hypergravity condition through HIF-1alpha induction.  相似文献   

12.
We investigated the relative contribution of COX-1 and/or COX-2 to oxidative damage, prostaglandin E2 (PGE2) production and hippocampal CA1 neuronal loss in a model of 5 min transient global cerebral ischemia in gerbils. Our results revealed a biphasic and significant increase in PGE2 levels after 2 and 24-48 h of reperfusion. The late increase in PGE2 levels (24 h) was more potently reduced by the highly selective COX-2 inhibitor rofecoxib (20 mg/kg) relative to the COX-1 inhibitor valeryl salicylate (20 mg/kg). The delayed rise in COX catalytic activity preceded the onset of histopathological changes in the CA1 subfield of the hippocampus. Post-ischemia treatment with rofecoxib (starting 6 h after restoration of blood flow) significantly reduced measures of oxidative damage (glutathione depletion and lipid peroxidation) seen at 48 h after the initial ischemic episode, indicating that the late increase in COX-2 activity is involved in the delayed occurrence of oxidative damage in the hippocampus after global ischemia. Interestingly, either selective inhibition of COX-2 with rofecoxib or inhibition of COX-1 with valeryl salicylate significantly increased the number of healthy neurons in the hippocampal CA1 sector even when the treatment began 6 h after ischemia. These results provide the first evidence that both COX isoforms are involved in the progression of neuronal damage following global cerebral ischemia, and have important implications for the potential therapeutic use of COX inhibitors in cerebral ischemia.  相似文献   

13.
The cyclooxygenase (COX) superfamily of prostaglandin synthase genes encode a constitutively expressed COX-1, an inducible, highly regulated COX-2, and a COX-3 isoform whose RNA is derived through the retention of a highly structured, G + C-rich intron 1 of the COX-1 gene. As generators of oxygen radicals, lipid mediators, and the pharmacological targets of nonsteroidal anti-inflammatory drugs (NSAIDs), COX enzymes potentiate inflammatory neuropathology in Alzheimer's disease (AD) brain. Because COX-2 is elevated in AD and COX-3 is enriched in the mammalian CNS, these studies were undertaken to examine the expression of COX-3 in AD and in [IL-1beta + Abeta42]-triggered human neural (HN) cells in primary culture. The results indicate that while COX-2 remains a major player in propagating inflammmation in AD and in stressed HN cells, COX-3 may play ancillary roles in membrane-based COX signaling or when basal levels of COX-1 or COX-2 expression persist.  相似文献   

14.
Lack of physical activity results in muscle atrophy and bone loss, which can be counteracted by mechanical loading. Similar molecular signaling pathways are involved in the adaptation of muscle and bone mass to mechanical loading. Whether anabolic and metabolic factors regulating muscle mass, i.e., insulin-like growth factor-I isoforms (IGF-I Ea), mechano growth factor (MGF), myostatin, vascular endothelial growth factor (VEGF), or hepatocyte growth factor (HGF), are also produced by osteocytes in bone in response to mechanical loading is largely unknown. Therefore, we investigated whether mechanical loading by pulsating fluid flow (PFF) modulates the mRNA and/or protein levels of muscle anabolic and metabolic factors in MLO-Y4 osteocytes. Unloaded MLO-Y4 osteocytes expressed mRNA of VEGF, HGF, IGF-I Ea, and MGF, but not myostatin. PFF increased mRNA levels of IGF-I Ea (2.1-fold) and MGF (2.0-fold) at a peak shear stress rate of 44Pa/s, but not at 22Pa/s. PFF at 22 Pa/s increased VEGF mRNA levels (1.8- to 2.5-fold) and VEGF protein release (2.0- to 2.9-fold). Inhibition of nitric oxide production decreased (2.0-fold) PFF-induced VEGF protein release. PFF at 22 Pa/s decreased HGF mRNA levels (1.5-fold) but increased HGF protein release (2.3-fold). PFF-induced HGF protein release was nitric oxide dependent. Our data show that mechanically loaded MLO-Y4 osteocytes differentially express anabolic and metabolic factors involved in the adaptive response of muscle to mechanical loading (i.e., IGF-I Ea, MGF, VEGF, and HGF). Similarly to muscle fibers, mechanical loading enhanced expression levels of these growth factors in MLO-Y4 osteocytes. Although in MLO-Y4 osteocytes expression levels of IGF-I Ea and MGF of myostatin were very low or absent, it is known that the activity of osteoblasts and osteoclasts is strongly affected by them. The abundant expression levels of these factors in muscle cells, in combination with low expression in MLO-Y4 osteocytes, provide a possibility that growth factors expressed in muscle could affect signaling in bone cells.  相似文献   

15.
16.
In some cancers cyclooxygenase (COX) inhibition appears to be anti-mitogenic and anti-angiogenic, but the actions of COX-derived prostaglandins in pancreatic cancer (PaCa) are unknown. In this study COX-2 was detected in three of six PaCa cell lines while COX-1 was identified in all cell lines. COX-2 expression correlated with basal and arachidonic acid (AA) stimulated PGE(2) production. PGE(2) production was inhibited by the COX-2 inhibitor nimesulide. In COX-2 expressing cells, exogenous AA and PGE(2) increased VEGF synthesis via the EP(2) receptor. Whereas PGE(2) stimulated intracellular cAMP formation in COX-2 positive and negative cells, 8-bromo cAMP stimulated VEGF production only in COX-2 expressing cells. Stimulating COX-2 expressing PaCa cell lines with AA enhanced migration of endothelial cells, an effect which was inhibited by a COX-2 inhibitor and EP(2) receptor antagonist. These data identify a subset of human PaCa cell lines that express functional COX-2 enzyme. PGE(2) generated by specific COX-2 activity increases VEGF secretion in human PaCa cells through an autocrine mechanism.  相似文献   

17.
18.
19.
20.
Cyclooxygenase (COX), existing as the COX-1 and COX-2 isoforms, converts arachidonic acid to prostaglandin H2, which is then further metabolized to various prostaglandins. Vascular endothelial growth factor (VEGF) has been shown to play important roles in inflammation and is upregulated by the prostaglandin E series through COX-2 in several cell types. Here, we have investigated the effects of VEGF on the COX isoform expressed in human umbilical vein endothelial cells (HUVEC). The signalling mechanism of the COX isoform expressed in endothelial cells activated with VEGF will be also investigated using the tyrosine kinase inhibitor, genistein, and protein kinase C inhibitor, staurosporine. The activity of COX-2 was assessed by measuring the production of 6-keto-prostaglandin F1alpha in the presence of exogenous arachidonic acids (10 microM, 10 min) by enzyme immunoassay. The expression of COX isoform protein was detected by immunoblot using specific antibodies. Untreated HUVEC contained no COX-2 protein. In HUVEC treated with VEGF (0.01-50 ng/ml), COX-2 protein, but not COX-1, and COX activity were increased in a dose-dependent manner. Interestingly, the increased COX-2 protein and activity in response to VEGF (10 ng/ml) was inhibited by the tyrosine kinase inhibitor, genistein (0.05-5 microg/ml), but not by the protein kinase C inhibitor, staurosporine (0.1-10 ng/ml). Thus, the induction of COX-2 by VEGF in endothelial cells was mediated through protein tyrosine kinase, and the uses of specific COX-2 inhibitors in these conditions, in which VEGF was involved, might have a role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号