首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 703 毫秒
1.
生物可降解嵌段共聚物在给药载体中的应用   总被引:3,自引:0,他引:3  
生物可降解嵌段聚合物因具有双亲性 ,靶向药物到特定部位等优点大大推动了作为给药载体系统的发展。本文综述了生物可降解嵌段聚合物在表面修饰、水凝胶、胶束、生物大分子载体系统中的应用  相似文献   

2.
脂质纳米粒是由固体脂肪酸或其酯类制成的一类纳米制剂,其生物相容性好、安全性好,所以在药物递送领域受到广泛关注.难溶性药物、多肽及蛋白质药物由于溶解度、跨膜能力以及稳定性等问题,导致口服生物利用度低,而利用脂质纳米粒作为其载体,口服给药后能显著改善药物的生物利用度,这使得脂质纳米粒在口服给药系统中得到了广泛的应用与研究.本文从口服脂质纳米粒的处方、制备工艺、吸收机制以及应用四个方面对其进行了详细的综述.  相似文献   

3.
抗癌药物载体是合成化学在药学领域的新发展,其中纳米粒药物载体材料以独特的结构特点、较大的载药量等优势受到国内外广泛关注。经亲水聚合物修饰后的纳米粒药物载体有较高的生物相溶性,且药物分子能靶向作用于癌细胞,延长药物半衰期,提高生物利用度,具有生物可降解性,消除毒副作用。在抗癌领域显示出研究意义和应用价值。本文就纳米粒药物载体研究进展进行综述述。  相似文献   

4.
目的:考察蛙凝素(Odorranalectin,OL)修饰对聚谷氨酸苄酯-聚乙二醇纳米粒(PBLG-PEG-NPs)材料的Calu-3细胞(人肺腺癌细胞)毒性和细胞摄取作用的影响。方法:碘氧化法制备蛙凝素修饰聚合物材料;以姜黄素(curcumin,Cur)为模型药物,采用乳化溶媒蒸发法制备聚谷氨酸苄酯-聚乙二醇纳米粒(PBLG-PEG-NPs)和蛙凝素修饰聚谷氨酸苄酯-聚乙二醇纳米粒(OL-PBLG-PEG-NPs);MTT法考察三种纳米粒对Calu-3的细胞毒性;采用激光共聚焦显微镜对两种纳米粒的Calu-3细胞摄取作用进行定性观察。结果:给予高浓度(2 mg·mL-1)纳米粒培养Calu-3细胞时,细胞存活率大于75%。蛙凝素修饰纳米粒后其被细胞摄取的量从62.7%增加到了81.2%。结论:OL可用于黏膜给药载体的修饰,OL-PBLG-PEG-NPs细胞毒性低、生物相容性好,有望成为一种鼻腔粘膜给药优良载体。  相似文献   

5.
固体脂质纳米粒(SLN)是20世纪90年代发展起来的一种性能优异的新型纳米粒给药剂型作为一种新型载体,可有效提高包封药物的稳定性、提高病变部位靶向性、低毒性与组织亲和性,为药物的体内递送提供了一种新的方法。本文主要针对固体脂质纳米粒的制备,发展现状,目前存在的问题及解决思路等作以介绍与总结。并在此基础上,介绍了新的脂质纳米粒,纳米脂质载体(nanostructured lipid carriers,NLC)和药脂结合物纳米粒(Lipid drug conjugate nanoparticles,LDC),以及未来固体脂质纳米粒的发展方向。  相似文献   

6.
固体脂质纳米粒的制备及应用研究进展   总被引:6,自引:0,他引:6  
固体脂质纳米粒自1991年出现以来引起了广泛的关注,它综合了传统胶体给药系统如乳剂、脂质体及聚合物纳米粒等的优点,同时避免了它们的许多缺点。本文综述了纳米粒的制备方法及适合工业大生产的方法,介绍了固体脂质纳米粒的理化性质及其研究方法,并讨论了适合于固体脂质纳米粒的不同的给药途径。  相似文献   

7.
目的:肿瘤的多药耐药现象会显著降低肿瘤细胞内药物浓度,本研究通过制备抗肿瘤多药耐药的靶向给药系统来逆转肿瘤的耐药性以提升细胞对药物的敏感性,从而降低该现象对癌症治疗的阻碍。方法:本文使用乳化溶剂挥发法制备以含姜黄素两亲性嵌段共聚物载体、以紫杉醇和磁性粒为核心的抗肿瘤多药耐药纳米粒,使用透射电镜和动态粒径散射仪等对纳米粒进行表征和磁响应性测试后,使用MTT法测定纳米粒对肿瘤耐药细胞MCF-7/ADR的抑制率以探究给药系统的耐药逆转性能。结果:制备的抗肿瘤多耐药纳米粒粒径为105 nm左右,磁响应性良好。所制得载紫杉醇纳米粒包封率为74.74%,载药率为12.40%。纳米粒可以通过磁场和生物素受体介导作用促进肿瘤细胞对粒子的内化,以增加抗癌药物的蓄积。与游离紫杉醇相比,逆转细胞耐药指数达8.5。结论:纳米系统在维持自身稳定性同时,能够凭借协同作用和靶向作用较大程度提升药物对耐药肿瘤细胞的杀伤效果。  相似文献   

8.
非侵入性脑内给药   总被引:1,自引:0,他引:1  
吴少平  孙曼霁 《生命科学》2004,16(5):292-295
血脑屏障使许多具有中枢神经活性的药物无法到达脑部发挥作用,非侵入性脑内给药因对机体无创伤而受到研究者广泛关注。本文介绍了血脑屏障的物质转运系统以及经鼻粘膜、渗透性血脑屏障开放、纳米粒载体和转运载体法等非侵入性脑内给药方法的机制和特点。  相似文献   

9.
目的:介绍纳米粒载体的制备、优点和应用进展,为纳米粒在新的领域的应用提供依据.方法:以纳米粒制备方法和基质材料的不断发展以及各个领域的应用为线索来综述.结果:纳米粒的制备方法有离子交换法、乳化法和自组装法,基质材料有蛋白质和多糖等,纳米粒本身无毒性,能增加所载物的溶解度和生物利用度,提高靶向性及效率,在抗肿瘤治疗、神经系统治疗和药物检测等多方面有广泛的应用.结论:纳米粒作为一种载体,在药物临床研究、药理研究和生物分析等方面都得到了广泛应用,并有可能开发为其他领域的运送体系,有广阔的应用前景.  相似文献   

10.
目的:制备具有pH响应的甲氧基聚乙二醇甲基丙烯酸-2-六亚甲基亚胺乙酯聚合物,测试材料pH功能响应,以及建立聚合物纳米粒载药方法。方法:通过核磁共振氢谱鉴定ATRP(Atom Transfer Radical Polymerization)聚合反应所获得的化合物结构。滴加-搅拌挥发法制备聚乙二醇甲基丙烯酸-2-六亚甲基亚胺乙酯纳米粒,酶标仪测定其载药量和包封率。透射电镜下观察其形态,激光粒度仪分析测定其粒径,包载DiR红外荧光探针检测纳米粒pH响应功能。结果:分别成功合成得到2-溴代异丁酸聚乙二醇单甲醚和甲基丙烯酸-2-六亚甲基亚胺乙酯单体。通过ATRP聚合反应成功合成聚乙二醇甲基丙烯酸-2-六亚甲基亚胺乙酯聚合物材料,并通过核磁氢谱对聚合材料进行鉴定。通过滴加搅拌法制备包载有模型药物香豆素-6的纳米粒,并对纳米粒的形态表征及载药量进行测定。结论:试验结果表明制备得到的聚合物纳米粒尺寸均匀,具有预期的pH响应效果,可以装载模型药物。  相似文献   

11.
Modeling the influence of a technology such as nanoparticle systems on drug delivery is beneficial in rational formulation design. While there are many studies showing drug delivery enhancement by nanoparticles, the literature provides little guidance regarding when nanoparticles are useful for delivery of a given drug. A model was developed predicting intracellular drug concentration in cultured cells dosed with nanoparticles. The model considered drug release from nanoparticles as well as drug and nanoparticle uptake by the cells as the key system processes. Mathematical expressions for these key processes were determined using experiments in which each process occurred in isolation. In these experiments, intracellular delivery of saquinavir, a low solubility drug dosed as a formulation of poly(ethylene oxide)-modified poly(epsilon- caprolactone) (PEO-PCL) nanoparticles, was studied in THP-1 human monocyte/macrophage (Mo/Mac) cells. The model accurately predicted the enhancement in intracellular concentration when drug was administered in nanoparticles compared to aqueous solution. This simple model highlights the importance of relative kinetics of nanoparticle uptake and drug release in determining overall enhancement of intracellular drug concentration when dosing with nanoparticles.  相似文献   

12.
环境敏感型聚合物纳米抗肿瘤药物传递系统能够响应外界环境的微小刺激,引起自身结构的变化,释放出药物,在肿瘤治疗方面具长效低毒、可控及高载药量等优势,已被广泛应用于生物医学领域.本文介绍了聚合物环境响应型纳米药物传输系统的发展近况,并从pH 值敏感型、温度敏感型、氧化还原敏感型、酶敏感型以及其他敏感型给药系统角度,阐述了环境敏感型药物传输系统在抗肿瘤领域的研究现状及未来展望.  相似文献   

13.
Nanoparticle drug formulations have been extensively researched and developed in the field of drug delivery as a means to efficiently deliver insoluble drugs to tumor cells. By mechanisms of the enhanced permeability and retention effect, nanoparticle drug formulations are capable of greatly enhancing the safety, pharmacokinetic profiles and bioavailability of the administered treatment. Here, the progress of various nanoparticle formulations in both research and clinical applications is detailed with a focus on the development of drug/gene delivery systems. Specifically, the unique advantages and disadvantages of polymeric nanoparticles, liposomes, solid lipid nanoparticles, nanocrystals and lipid-coated nanoparticles for targeted drug delivery will be investigated in detail.  相似文献   

14.
Abstract

Topical or transdermal drug delivery is challenging because the skin acts as a natural and protective barrier. Therefore, several methods have been examined to increase the permeation of therapeutic molecules into and through the skin. One approach is to use the nanoparticulate delivery system. Starting with liposomes and other vesicular systems, several other types of nanosized drug carriers have been developed such as solid lipid nanoparticles, nanostructured lipid carriers, polymer-based nanoparticles and magnetic nanoparticles for dermatological applications. This review article discusses how different particulate systems can interact and penetrate into the skin barrier. In this review, the effectiveness of nanoparticles, as well as possible mode of actions of nanoparticles, is presented. In addition to nanoparticles, cell-penetrating peptide (CPP)-mediated drug delivery into the skin and the possible mechanism of CPP-derived delivery into the skin is discussed. Lastly, the effectiveness and possible mechanism of CPP-modified nanocarriers into the skin are addressed.  相似文献   

15.
To improve the performance of nanostructured calcium carbonate in gene delivery, a hydrophilic polysaccharide, alginate, was added to calcium carbonate co-precipitation systems to form alginate/CaCO(3)/DNA nanoparticles. The size and ζ-potential of the nanoparticles were measured by a zetasizer. Due to the existence of alginate chains which retarded the growth of calcium carbonate based co-precipitates, the alginate/CaCO(3)/DNA nanoparticles exhibited a decreased size and enhanced stability in the aqueous solution. To evaluate the gene and drug co-delivery ability, doxorubicin hydrochloride (DOX), a water-soluble anticancer drug, was loaded in the nanoparticles to form alginate/CaCO(3)/DNA/DOX nanoparticles. The in vitro gene transfections mediated by different nanoparticles in 293 T cells and HeLa cells were carried out, using pGL3-Luc as a reporter plasmid. With an appropriate amount of alginate, the gene transfection efficiency of alginate modified nanoparticles could be significantly enhanced as compared with the nanoparticles without alginate modification for the gene delivery systems, as well as the gene and drug co-delivery systems. The study on in vitro cell inhibition effects showed that the cell viability decreased with increasing DOX amount loaded in alginate/CaCO(3)/DNA/DOX nanoparticles. The alginate modification is a useful strategy to improve the calcium carbonate co-precipitation technique for the preparation of gene and drug delivery systems, and the nanoparticles prepared in this study have promising applications in gene and drug delivery.  相似文献   

16.
Yu C  Hu Y  Duan J  Yuan W  Wang C  Xu H  Yang XD 《PloS one》2011,6(9):e24077
MUC1 protein is an attractive target for anticancer drug delivery owing to its overexpression in most adenocarcinomas. In this study, a reported MUC1 protein aptamer is exploited as the targeting agent of a nanoparticle-based drug delivery system. Paclitaxel (PTX) loaded poly (lactic-co-glycolic-acid) (PLGA) nanoparticles were formulated by an emulsion/evaporation method, and MUC1 aptamers (Apt) were conjugated to the particle surface through a DNA spacer. The aptamer conjugated nanoparticles (Apt-NPs) are about 225.3 nm in size with a stable in vitro drug release profile. Using MCF-7 breast cancer cell as a MUC1-overexpressing model, the MUC1 aptamer increased the uptake of nanoparticles into the target cells as measured by flow cytometry. Moreover, the PTX loaded Apt-NPs enhanced in vitro drug delivery and cytotoxicity to MUC1(+) cancer cells, as compared with non-targeted nanoparticles that lack the MUC1 aptamer (P<0.01). The behavior of this novel aptamer-nanoparticle bioconjugates suggests that MUC1 aptamers may have application potential in targeted drug delivery towards MUC1-overexpressing tumors.  相似文献   

17.
Topical or transdermal drug delivery is challenging because the skin acts as a natural and protective barrier. Therefore, several methods have been examined to increase the permeation of therapeutic molecules into and through the skin. One approach is to use the nanoparticulate delivery system. Starting with liposomes and other vesicular systems, several other types of nanosized drug carriers have been developed such as solid lipid nanoparticles, nanostructured lipid carriers, polymer-based nanoparticles and magnetic nanoparticles for dermatological applications. This review article discusses how different particulate systems can interact and penetrate into the skin barrier. In this review, the effectiveness of nanoparticles, as well as possible mode of actions of nanoparticles, is presented. In addition to nanoparticles, cell-penetrating peptide (CPP)-mediated drug delivery into the skin and the possible mechanism of CPP-derived delivery into the skin is discussed. Lastly, the effectiveness and possible mechanism of CPP-modified nanocarriers into the skin are addressed.  相似文献   

18.
With the remarkable development of nanotechnology in recent years, new drug delivery approaches based on the state-of-the-art nanotechnology have been receiving significant attention. Nanoparticles, an evolvement of nanotechnology, are increasingly considered as a potential candidate to carry therapeutic agents safely into a targeted compartment in an organ, particular tissue or cell. These particles are colloidal structures with a diameter smaller than 1,000 nm, and therefore can penetrate through diminutive capillaries into the cell's internal machinery. This innovative delivery technique might be a promising technology to meet the current challenges in drug delivery. When loaded with a gene or drug agent, nanoparticles can become nanopills, which can effectively treat problematical diseases such as cancer. This article summarizes different types of nanoparticles drug delivery systems under investigation and their prospective therapeutic applications. Also, this article presents a closer look at the advances, current challenges, and future direction of nanoparticles drug delivery systems.  相似文献   

19.
The development of new and effective drug delivery systems for cancer treatment represents one of the significant challenges facing biomedical technology in the last decade. Among the different methods of drug delivery, magnetic drug targeting, by enabling specific delivery of chemotherapeutic agents through the use of magnetic nanoparticles and magnetic field gradient, could be a promising approach. Recently, magnetic nanoparticles have attracted additional attention because of their potential as contrast agents for magnetic resonance imaging and heat mediators for cancer therapy. This review summarizes these approaches in the use of magnetic nanoparticles in biomedical applications and novel methods for their optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号