首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Annealing control primer system for improving specificity of PCR amplification   总被引:16,自引:0,他引:16  
Hwang IT  Kim YJ  Kim SH  Kwak CI  Gu YY  Chun JY 《BioTechniques》2003,35(6):1180-1184
A novel primer designed to improve the specificity of PCR amplification, called the annealing control primer (ACP), comprises a tripartite structure with a polydeoxyinosine [poly(dI)] linker between the 3' end target core sequence and the 5' end nontarget universal sequence. We show that this ACP linker prevents annealing of the 5' end nontarget sequence to the template and facilitates primer hybridization at the 3' end to the target sequence at specific temperatures, resulting in a dramatic improvement of annealing specificity. The effect of this linker is demonstrated by the incorporation of ACP sequences as primers during the amplification of target nucleotide sequence and as hybridization probes in the genotyping of single nucleotide polymorphisms. This is the first report to show that a poly(dI) linker between two different sequences of ACP forms a bubble-like structure and disrupts or destabilizes DNA duplex formation at certain annealing temperatures.  相似文献   

3.
4.
Edwards D  Coghill J  Batley J  Holdsworth M  Edwards KJ 《BioTechniques》2002,32(5):1090-2, 1094, 1096-7
The amplification of transposon insertionflanking sequences is the basis of a variety of techniques usedfor the detection and characterization of specific transposon insertion events. We have developed a method for the efficient size determination and quantification of amplified genomic sequences thatflank Mutator (Mu) transposon insertions in maize. Using this detection method, we have been able to optimize Mu insertion site amplification and to assess amplification from increasingly complex templates representing increasing numbers of Mu-active maize plants. This detection method should be applicablefor the characterization of transposon or transgene insertion events in a wide variety of organisms.  相似文献   

5.
A novel mapping method based on touchdown PCR was developed for identifying a transposon insertion site in genomic DNA using a hybrid consensus-degenerate primer in combination with a specific primer that anneals to the transposon. The method was tested using Xanthomonas citri transposon mutants. PCR products contained adjacent DNA regions that belonged to both X. citri genomic DNA and the transposon. Products were directly sequenced from PCRs using only the specific primer. Different PCR conditions were tested, and the optimized reaction parameters that increased product yields and specificity are described. Best results were obtained with the HIB17 hybrid primer, which is a 25-mer oligonucleotide having degenerate bases at 6 different positions within the last 12 bases at the 3' end. An X. citri mutants library was produced by random transposition using the EZ::TN transposon, and we identified the insertion sites within the genome of 90 mutants. Insertions were found within both the chromosomal and the plasmid DNA in these X. citri mutants. Restriction mapping and Southern blot analysis confirmed the insertion sites for eight randomly chosen mutants. This method is a very useful tool for large-scale characterization of mutants in functional genomics studies.  相似文献   

6.
The recent development of yeast artificial chromosome (YAC) vectors has provided a system for cloning fragments that are over ten times larger than those that can be cloned in more established systems. We have developed a method for the rapid isolation of terminal sequences from YAC clones. The YAC clone is digested with a range of restriction enzymes, a common linker is ligated to the DNA fragments and terminal sequences are amplified using a vector specific primer and a linker specific primer. Sequence data derived from these terminal specific products can be used to design primers for a further round of screening to isolate overlapping clones. The method also provides a convenient method of generating Sequence Tagged Sites for the mapping of complex genomes.  相似文献   

7.
Whole genome sequencing of several microbes has revealed thousands of genes of unknown function. A large proportion of these genes seem to confer subtle quantitative phenotypes or phenotypes that do not have a plate screen. We report a novel method to monitor such phenotypes, where the fitness of mutants is assessed in mixed cultures under competitive growth conditions, and the abundance of any individual mutant in the pool is followed by means of its unique feature, namely the mutation itself. A mixed population of yeast mutants, obtained through transposon mutagenesis, was subjected to selection. The DNA regions (targets) flanking the transposon, until nearby restriction sites, are then quantitatively amplified by means of a ligation-mediated PCR method, using transposon-specific and adapter-specific primers. The amplified PCR products correspond to mutated regions of the genome and serve as 'mutant DNA fingerprints' that can be displayed on a sequencing gel. The relative intensity of the amplified DNA fragments before and after selection match with the relative abundance of corresponding mutants, thereby revealing the fate of the mutants during selection. Using this method we demonstrate that UBI4, YDJ1 and HSP26 are essential for stress tolerance of yeast during ethanol production. We anticipate that this method will be useful for functional analysis of genes of any microbe amenable to insertional mutagenesis.  相似文献   

8.
A modified Enhancer-Inhibitor transposon system was used to generate a series of mutant lines by single-seed descent such that multiple I insertions occurred per plant. The distribution of original insertions in the population was assessed by isolating transposon-flanking DNA, and a database of insertion sites was created. Approximately three-quarters of the identified insertion sites show similarity to sequences stored in public databases, which demonstrates the power of this regimen of insertional mutagenesis. To isolate insertions in specific genes, we developed three-dimensional pooling and polymerase chain reaction strategies that we then validated by identifying mutants for the regulator genes APETALA1 and SHOOT MERISTEMLESS. The system then was used to identify inserts in a class of uncharacterized genes involved in lipid biosynthesis; one such insertion conferred a fiddlehead mutant phenotype.  相似文献   

9.
Goodman AL  Wu M  Gordon JI 《Nature protocols》2011,6(12):1969-1980
Insertion sequencing (INSeq) is a method for determining the insertion site and relative abundance of large numbers of transposon mutants in a mixed population of isogenic mutants of a sequenced microbial species. INSeq is based on a modified mariner transposon containing MmeI sites at its ends, allowing cleavage at chromosomal sites 16-17 bp from the inserted transposon. Genomic regions adjacent to the transposons are amplified by linear PCR with a biotinylated primer. Products are bound to magnetic beads, digested with MmeI and barcoded with sample-specific linkers appended to each restriction fragment. After limited PCR amplification, fragments are sequenced using a high-throughput instrument. The sequence of each read can be used to map the location of a transposon in the genome. Read count measures the relative abundance of that mutant in the population. Solid-phase library preparation makes this protocol rapid (18 h), easy to scale up, amenable to automation and useful for a variety of samples. A protocol for characterizing libraries of transposon mutant strains clonally arrayed in a multiwell format is provided.  相似文献   

10.
Whole genome sequencing of several microbes has revealed thousands of genes of unknown function. A large proportion of these genes seem to confer subtle quantitative phenotypes or phenotypes that do not have a plate screen. We report a novel method to monitor such phenotypes, where the fitness of mutants is assessed in mixed cultures under competitive growth conditions, and the abundance of any individual mutant in the pool is followed by means of its unique feature, namely the mutation itself. A mixed population of yeast mutants, obtained through transposon mutagenesis, was subjected to selection. The DNA regions (targets) flanking the transposon, until nearby restriction sites, are then quantitatively amplified by means of a ligation-mediated PCR method, using transposon-specific and adapter-specific primers. The amplified PCR products correspond to mutated regions of the genome and serve as ‘mutant DNA fingerprints’ that can be displayed on a sequencing gel. The relative intensity of the amplified DNA fragments before and after selection match with the relative abundance of corresponding mutants, thereby revealing the fate of the mutants during selection. Using this method we demonstrate that UBI4, YDJ1 and HSP26 are essential for stress tolerance of yeast during ethanol production. We anticipate that this method will be useful for functional analysis of genes of any microbe amenable to insertional mutagenesis.  相似文献   

11.
We describe a novel modification of the polymerase chain reaction for efficient in vitro amplification of genomic DNA sequences flanking short stretches of known sequence. The technique utilizes a target enrichment step, based on the selective isolation of biotinylated fragments from the bulk of genomic DNA on streptavidin-containing support. Subsequently, following ligation with a second universal linker primer, the selected fragments can be amplified to amounts suitable for further molecular studies. The procedure has been applied to recover T-DNA flanking sequences in transgenic tomato plants which could subsequently be used to assign the positions of T-DNA to the molecular map of tomato. The method called supported PCR (sPCR) is a simple and efficient alternative to techniques used in the isolation of specific sequences flanking a known DNA segment.  相似文献   

12.
Abstract: Mutants obtained by insertional mutagenesis are widely used for determining gene-phenotype relationships. In Arabidopsis thaliana, several populations mutagenized either by T-DNA or transposon insertion are available for screening for knockout mutants in genes of interest. We have so far screened our Arabidopsis population mutagenized with the Zea mays transposon En-1/Spm for insertion mutations in 718 genes, using PCR on DNA pools. Although successful, this common approach is too time consuming for use in systematic screening of all 25 498 predicted genes of the Arabidopsis genome. We therefore investigated the use of DNA arrays for the direct identification of mutants in our population. All transposon-flanking regions from individual plants are amplified by PCR and subsequently spotted at high density onto nylon membranes. A single hybridization experiment with a gene-specific probe then allows one to identify candidate mutant plants. The efficiency of each separate step was determined and optimized. Screening of filters representing 2880 plants for insertions in 144 genes and subsequent investigation of some of the potential insertion mutants suggest that an overall screening efficiency of 50 % is attained.  相似文献   

13.
A system of transposon mutagenesis for bacteriophage T4   总被引:1,自引:0,他引:1  
We have developed a system of transposon mutagenesis for bacteriophage T4. The transposon is a plasmid derivative of Tn5 which contains the essential T4 gene 24, permitting a direct selection for transposition events into a gene 24-deleted phage. The transposition occurred at a frequency of only 10(-7) per progeny phage, even though a dam- host was used to increase transposition frequency. Phage strains with a transposon insert were distinguished from most pseudorevertants of the gene 24 deletion by plaque hybridization using a transposon-specific probe. Mapping analysis showed that the transposon inserts into a large number of sites in the T4 genome, probably with a preference for certain regions. The transposon insertions in four strains were analysed by DNA sequencing using primers that hybridize to each end of the transposon and read out into the T4 genome. In each case, a 9 bp T4 target sequence had been duplicated and the insertions had occurred exactly at the IS50 ends of the transposon, demonstrating that bona fide transposition had occurred. Finally, the transposon insert strains were screened on the TabG Escherichia coli strain, which inhibits the growth of T4 motA mutants, and a motA transposon insert strain was found.  相似文献   

14.
The laboratory rat is an invaluable animal model for biomedical research. However, mutant rat resource is still limited, and development of methods for large-scale generation of mutants is anticipated. We recently utilized the Sleeping Beauty (SB) transposon system to develop a rapid method for generating insertional mutant rats. Firstly, transgenic rats carrying single transgenes, namely the SB transposon vector and SB transposase, were generated. Secondly, these single transgenic rats were interbred to obtain doubly-transgenic rats carrying both transgenes. The SB transposon was mobilized in the germline of these doubly-transgenic rats, reinserted into another location in the genome and heterozygous mutant rats were obtained in the progeny. Gene insertion events were rapidly and non-invasively identified by the green fluorescence protein (GFP) reporter incorporated in the transposon vector, which utilizes a polyA-trap approach. Mutated genes were confirmed by either linker ligation-mediated PCR or 3′-rapid amplification of cDNA ends (3′RACE). Endogenous expression profile of the mutated gene can also be visualized using the LacZ gene incorporated as a promoter-trap unit in the transposon vector. This method is straightforward, readily applicable to other transposon systems, and will be a valuable mutant rat resource to the biomedical research community.  相似文献   

15.
MegaPlex PCR: a strategy for multiplex amplification   总被引:1,自引:0,他引:1  
'MegaPlex PCR' is a robust technology for highly multiplexed amplification of specific DNA sequences. It uses target-specific pairs of PCR primers that are physically separated by surface immobilization. Initial surface-based amplification cycles are then coupled to efficient solution-phase PCR using one common primer pair. We demonstrate this method by co-amplifying and genotyping 75 unselected human single-nucleotide polymorphism (SNP) loci.  相似文献   

16.
We describe a two-step polymerase chain reaction method that can be used for the amplification of cellular DNA sequences adjacent to an integrated retroviral provirus. The technique involves a partly degenerate, arbitrary primer that will hybridize in the provirus-flanking cellular DNA. By using this primer in combination with a biotinylated provirus-specific primer, a provirus-cellular DNA junction fragment can be isolated from the nonspecific amplification products by using streptavidin-coated magnetic beads. A second amplification employing a nested provirus-specific primer and a biotinylated nondegenerate primer derived from the partly degenerate primer followed by purification with streptavidin-coated beads enhances the specificity and the efficiency of recovery of a fragment(s) containing the unknown flanking sequences. In addition to being relevant in studies of viral integration sites, the method should be generally useful to analyze DNA sequences either upstream or downstream from a known sequence.  相似文献   

17.
We have developed an efficient strategy for cloning of PCR products that contain an unknown region flanked by a known sequence. As with ligation-independent cloning, the strategy is based on homology between sequences present in both the vector and the insert. However, in contrast to ligation-independent cloning, the cloning vector has homology with only one of the two primers used for amplification of the insert. The other side of the linearized cloning vector has homology with a sequence present in the insert, but nested and non-overlapping with the gene-specific primer used for amplification. Since only specific products contain this sequence, but none of the non-specific products, only specific products can be cloned. Cloning is performed using a one-step reaction that only requires incubation for 10 minutes at room temperature in the presence of T4 DNA polymerase to generate single-stranded extensions at the ends of the vector and insert. The reaction mix is then directly transformed into E. coli where the annealed vector-insert complex is repaired and ligated. We have tested this method, which we call quick and clean cloning (QC cloning), for cloning of the variable regions of immunoglobulins expressed in non-Hodgkin lymphoma tumor samples. This method can also be applied to identify the flanking sequence of DNA elements such as T-DNA or transposon insertions, or be used for cloning of any PCR product with high specificity.  相似文献   

18.
19.
While all known natural isolates of C. elegans contain multiple copies of the Tc1 transposon, which are active in the soma, Tc1 transposition is fully silenced in the germline of many strains. We mutagenized one such silenced strain and isolated mutants in which Tc1 had been activated in the germline ("mutators"). Interestingly, many other transposons of unrelated sequence had also become active. Most of these mutants are resistant to RNA interference (RNAi). We found one of the mutated genes, mut-7, to encode a protein with homology to RNaseD. This provides support for the notion that RNAi works by dsRNA-directed, enzymatic RNA degradation. We propose a model in which MUT-7, guided by transposon-derived dsRNA, represses transposition by degrading transposon-specific messengers, thus preventing transposase production and transposition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号