首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The developmental trajectory of an organism is influenced by the interaction between its genes and the environment in which it develops. For example, the phenotypic traits of a hatchling reptile can be influenced by the organism's genotype, by incubation temperature, and by genetically coded norms of reaction for thermally labile traits. The evolution of parthenogenesis provides a unique opportunity to explore such effects: a hybrid origin of this trait in vertebrates modifies important aspects of the genotype (e.g., heterozygosity, polyploidy) and may thus impact not only on the phenotype generally, but also on the ways in which incubation temperature affects expression of the phenotype. The scarcity of vertebrate parthenogenesis has been attributed to developmental disruptions, but previous work has rarely considered reaction norms of embryogenesis in this respect. We used closely related sexual and asexual races of the Australian gecko Heteronotia binoei, which include those with multiple origins of parthenogenesis, to explore the ways in which reproductive modes (sexual, asexual), incubation temperatures (24, 27, and 30 degrees C), and the interaction between these factors affected hatchling phenotypes. The hatchling traits we considered included incubation period, incidence of deformities, hatchling survivorship, body size and shape, scalation (including fluctuating asymmetry), locomotor performance, and growth rate. Developmental success was slightly reduced (higher proportion of abnormal offspring) in parthenogenetic lineages although there was no major difference in hatching success. Incubation temperature affected a suite of traits including incubation period, tail length, body mass relative to egg mass, labial scale counts, running speed, growth rate, and hatchling survival. Our data also reveal an interaction between reproductive modes and thermal regimes, with the phenotypic traits of parthenogenetic lizards less sensitive to incubation temperature than was the case for their sexual relatives. Thus, the evolution of asexual reproduction in this species complex has modified both mean hatchling viability and the norms of reaction linking hatchling phenotypes to incubation temperature. Discussions on the reasons why parthenogenetic organisms are scarce in nature should take into account interactive effects such as these; future work could usefully try to tease apart the roles of parthenogenesis, its hybrid origin (and thus effects on ploidy and heterozygosity, etc.), and clonal selection in generating these divergent embryonic responses.  相似文献   

2.
Parker SL  Andrews RM 《Oecologia》2007,151(2):218-231
Cold environmental temperature is detrimental to reproduction by oviparous squamate reptiles by prolonging incubation period, negatively affecting embryonic developmental processes, and by killing embryos in eggs directly. Because low soil temperature may prevent successful development of embryos in eggs in nests, the geographic distributions of oviparous species may be influenced by the thermal requirements of embryos. In the present study, we tested the hypothesis that low incubation temperature determines the northern distributional limit of the oviparous lizard Sceloporus undulatus. To compare the effects of incubation temperature on incubation length, egg and hatchling survival, and hatchling phenotypic traits, we incubated eggs of S. undulatus under temperature treatments that simulated the thermal environment that eggs would experience if located in nests within their geographic range at 37°N and north of the species’ present geographic range at latitudes of 44 and 42°N. After hatching, snout–vent length (SVL), mass, tail length, body condition (SVL relative to mass), locomotor performance, and growth rate were measured for each hatchling. Hatchlings were released at a field site to evaluate growth and survival under natural conditions. Incubation at temperatures simulating those of nests at 44°N prolonged incubation and resulted in hatchlings with shorter SVL relative to mass, shorter tails, shorter hind limb span, slower growth, and lower survival than hatchlings from eggs incubated at temperatures simulating those of nests at 37 and 42°N. We also evaluated the association between environmental temperature and the northern distribution of S. undulatus. We predicted that the northernmost distributional limit of S. undulatus would be associated with locations that provide the minimum heat sum (∼495 degree-days) required to complete embryonic development. Based on air and soil temperatures, the predicted northern latitudinal limit of S. undulatus would lie at ∼40.5–41.5°N. Our predicted value closely corresponds to the observed latitudinal limit in the eastern United States of ∼40°N. Our results suggest that soil temperatures at northern latitudes are not warm enough for a sufficient length of time to permit successful incubation of S. undulatus embryos. These results are consistent with the hypothesis that incubation temperature is an important factor limiting the geographic distributions of oviparous reptile species at high latitudes and elevations.  相似文献   

3.
Non-genetic parental effects may largely affect offspring phenotype, and such plasticity is potentially adaptive. Despite its potential importance, little is known about cross-generational effects of temperature, at least partly because parental effects were frequently considered a troublesome nuisance, rather than a target of experimental studies. We here investigate effects of parental, developmental and acclimation temperature on life-history traits in the butterfly Bicyclus anynana. Higher developmental temperatures reduced development times and egg size, increased egg number, but did not affect pupal mass. Between-generation temperature effects on larval time, pupal time, larval growth rate and egg size were qualitatively very similar to effects of developmental temperature, and additionally affected pupal mass but not egg number. Parental effects are important mediators of phenotypic plasticity in B. anynana, and partly yielded antagonistic effects on different components of fitness, which may constrain the evolution of cross-generational adaptive plasticity.  相似文献   

4.
Recent studies have shown that incubation temperatures can profoundly affect the phenotypes of hatchling lizards, but the effects of hydric incubation environments remain controversial. We examined incubation-induced phenotypic variation in Bassiana duperreyi (Gray, 1938; Sauria: Scincidae), an oviparous montane lizard from south-eastern Australia. We incubated eggs from this species in four laboratory treatments, mimicking cool and moist, cool and dry, warm and moist, and warm and dry natural nest-sites, and assessed several morphological and behavioural traits of lizards after hatching. Incubation temperature influenced a lizard's hatching success, incubation period, tail length and antipredator behaviour, whereas variation in hydric conditions did not engender significant phenotypic variation for most traits. However, moisture affected incubation period slightly differently in males and females, and for a given snout-vent length moisture interacted weakly with temperature to affect lizard body mass. Although incubation conditions can substantially affect phenotypic variation among hatchling lizards, the absence of strong hydric effects suggests that hatchling lizards react less plastically to variation in moisture levels than they do to thermal conditions. Thus, our data do not support the generalization that water availability during embryogenesis is more important than temperature in determining the phenotypes of hatchling reptiles.  相似文献   

5.
Temperature effects on ectotherms are widely studied particularly in insects. However, the life-history effects of temperature experienced during a window of embryonic development, that is egg stage, have rarely been considered. We simulated fluctuating temperatures and examined how this affects the operational sex ratio (OSR) of hatching as well as nymph and adult fitness in a leafhopper, Scaphoideus titanus. Specifically, after a warm or cold incubation we compared males and females hatching dynamics with their consequences on the sex ratio in the course of time, body size, weight, and developmental rate of the two populations, all reared on the same posthatching temperature. Males and females eggs respond differently, with females more sensitive to variation in incubation temperature. The different responses of both sexes have consequences on the sex ratio dynamic of hatchings with a weaker protandry after warm incubation. Temperatures experienced by eggs have more complex consequences on posthatching development. Later nymphal instars that hatched from eggs exposed to warm temperature were larger and bigger but developmental rate of the two populations was not affected. Our study demonstrates how incubation temperature could affect operational sex ratio and posthatching development in an insect and how this may be critical for population growth.  相似文献   

6.
Incubation temperature is one of the most studied factors driving phenotypic plasticity in oviparous reptiles. We examined how incubation temperature influenced hatchling morphology, thermal preference and temperature-dependent running speed in the small Australian agamid lizard Amphibolurus muricatus. Hatchlings incubated at 32 °C grew more slowly than those incubated at 25 and 28 °C during their first month after hatching, and tended to be smaller at one month. These differences were no longer significant by three months of age due to selective mortality of the smallest hatchlings. The cooler incubation treatments (25 °C and 28 °C) produced lizards that had deeper and wider heads. Hatchlings from 28 °C had cooler and more stable temperature preferences, and also had lower body temperatures during a 2-h thermoregulatory behaviour trial. Locomotor performance was enhanced at higher body temperatures, but incubation temperature had no measurable effect either independently or in interaction with body temperature. Our study demonstrates that incubation temperature has direct effects on morphology and thermoregulatory behaviour that appears to be independent of any size-dependent effects. We postulate a mechanistic link between these two effects.  相似文献   

7.
Ashmore GM  Janzen FJ 《Oecologia》2003,134(2):182-188
Temperatures experienced during embryonic development elicit well-documented phenotypic variation in embryonic and neonatal animals. Most research, however, has only considered the effects of constant temperatures, even though developmental temperatures in natural settings fluctuate considerably on a daily and seasonal basis. A laboratory study of 15 clutches of smooth softshell turtles (Apalone mutica) was conducted to explicitly examine the influence of thermal variance on phenotypic variation. Holding mean temperature constant and eliminating substrate moisture effects permitted a clear assessment of the impact of thermal variance on hatching success, incubation length, hatchling body size, swimming speed, and righting time. Incubation length and swimming speed varied significantly among temperature treatments. Both traits tended to increase with increasing thermal variance during embryonic development. Clutch significantly affected all traits examined, except righting time, even after accounting for the effects of initial egg mass. These results highlight the importance of accounting for the impact of both thermal mean and variance on phenotypic variation. The findings also strengthen the increasing recognition of maternal clutch effects as critical factors influencing phenotypic variation in neonatal animals.  相似文献   

8.
While recent experimental work on a variety of reptile species has demonstrated that incubation temperature influences hatchling phenotypes, the biological significance of such phenotypic variation remains unclear. Incubation temperature may exert significant long-term phenotypic effects. Alternatively, such influences may be temporary, or negligible relative to effects induced by genetic factors, or by the environmental conditions experienced after hatching. Even if incubation temperature exerts long-term effects on phenotype, this might occur indirectly (by influencing hatching dates) rather than by direct modifications of developmental processes. We quantified the influences of the source population, incubation temperature and rearing environment, on the phenotype of the Australian garden skink (Lampropholis guichenoti) from populations that differ in nest temperature and phenotype. Intcrpopulation differences in the phenotypes of young lizards were found to be a product of all three factors. However, the long-term effects of both population and incubation temperature operated indirectly (through variation in the date of hatching) rather than directly (through genetic or developmental factors). That is, once all temporal effects were removed, the only discernible influence on juvenile phenotypes was their rearing environment. Thus, some of the most important influences on lizard phenotypes may operate via modifications of hatching date.  相似文献   

9.
1. Life-history decisions are strongly affected by environmental conditions. In birds, incubation is energetically expensive and affected significantly by ambient temperature. We reduced energetic constraints for female tree swallows (Tachycineta bicolor) by experimentally heating nests during incubation by an average of 6.9 degrees C to test for changes in incubation behaviour. 2. Females in heated boxes (hereafter 'heated females') increased time spent incubating and maintained higher on-bout and off-bout egg temperatures. This indicates that female energetic constraints, not maximizing developmental conditions of offspring, determine incubation investment. Furthermore, this result suggests that embryonic developmental conditions in unmanipulated nests are suboptimal. 3. We found individual variation in how females responded to experimental heating. Early-laying (i.e. higher phenotypic quality) females with heated nests increased egg temperatures and maintained incubation constancy, while later-laying (lower quality) heated females increased incubation constancy. Changes in egg temperature were due to changes in female behaviour and not due directly to increases in internal nest-box temperatures. 4. Behaviour during the incubation period affected hatching asynchrony. Decreased variation in egg temperature led to lower levels of hatching asynchrony, which was also generally lower in heated nests. 5. Our study finds strong support for the prediction that intermittent incubators set their incubation investment at levels dictated by energetic constraints. Furthermore, females incubating in heated boxes allocated conserved energy primarily to increased egg temperature and increased incubation attentiveness. These results indicate that studies investigating the role of energetics in driving reproductive investment in intermittent incubators should consider egg temperature and individual variation more explicitly.  相似文献   

10.
Viviparity (live bearing) has evolved from egg laying (oviparity) in many lineages of lizards and snakes, apparently in response to occupancy of cold climates. Explanations for this pattern have focused on the idea that behaviorally thermoregulating (sun-basking) pregnant female reptiles can maintain higher incubation temperatures for their embryos than would be available in nests under the soil surface. This is certainly true at very high elevations, where only viviparous species occur. However, comparisons of nest and lizard temperatures at sites close to the upper elevational limit for oviparous reptiles (presumably, the selective environment where the transition from oviparity to viviparity actually occurs) suggest that reproductive mode has less effect on mean incubation temperatures than on the diel distribution of those temperatures. Nests of the oviparous scincid lizard Bassiana duperreyi showed smooth diel cycles of heating and cooling. In contrast, body temperatures of the viviparous scincid Eulamprus heatwolei rose abruptly in the morning, were high and stable during daylight hours, and fell abruptly at night. Laboratory incubation experiments mimicking these patterns showed that developmental rates of eggs and phenotypic traits of hatchling B. duperreyi were sensitive to this type of thermal variance as well as to mean temperature. Hence, diel distributions as well as mean incubation temperatures may have played an important role in the selective forces for viviparity. More generally, variances as well as mean values of abiotic factors may constitute significant selective forces on life-history evolution.  相似文献   

11.
Taxa with large geographic distributions generally encompass diverse macroclimatic conditions, potentially requiring local adaptation and/or phenotypic plasticity to match their phenotypes to differing environments. These eco‐evolutionary processes are of particular interest in organisms with traits that are directly affected by temperature, such as embryonic development in oviparous ectotherms. Here we examine the spatial distribution of fitness‐related early life phenotypes across the range of a widespread vertebrate, the painted turtle (Chrysemys picta). We quantified embryonic and hatchling traits from seven locations (in Idaho, Minnesota, Oregon, Illinois, Nebraska, Kansas, and New Mexico) after incubating eggs under constant conditions across a series of environmentally relevant temperatures. Thermal reaction norms for incubation duration and hatchling mass varied among locations under this common‐garden experiment, indicating genetic differentiation or pre‐ovulatory maternal effects. However, latitude, a commonly used proxy for geographic variation, was not a strong predictor of these geographic differences. Our findings suggest that this macroclimatic proxy may be an unreliable surrogate for microclimatic conditions experienced locally in nests. Instead, complex interactions between abiotic and biotic factors likely drive among‐population phenotypic variation in this system. Understanding spatial variation in key life‐history traits provides an important perspective on adaptation to contemporary and future climatic conditions.  相似文献   

12.
Temperature and photoperiod play major roles in insect ecology. Many insect species have fixed degree‐days for embryogenesis, with minimum and maximum temperature thresholds for egg and larval development and hatching. Often, photoperiodic changes trigger the transfer into the next life‐cycle stadium. However, it is not known whether this distinct pattern also exist in a species with a high level of phenotypic plasticity in life‐history traits. In the present study, eggs of the dragonfly Sympetrum striolatum Charpentier (Odonata: Libellulidae) are reared under different constant and fluctuating temperatures and photoperiodic conditions in several laboratory and field experiments. In general, and as expected, higher temperatures cause faster egg development. However, no general temperature or light‐days for eyespot development and hatching are found. The minimum temperature thresholds are distinguished for survival (2 °C), embryogenesis (6 °C) and larval hatching (above 6 °C). Low winter temperatures synchronize hatching. Above 36 °C, no eyespots are visible and no larvae hatch. In laboratory experiments, light is neither necessary for eyespot development, nor for hatching. By contrast to the laboratory experiments, the field experiment show that naturally changing temperature and photoperiod play a significant role in the seasonal regulation of embryonic development. The post‐eyespot development is more variable and influenced by temperature and photoperiod than the pre‐eyespot development. This developmental plasticity at the end of the embryogenesis might be a general pattern in the Libellulidae, helping them to cope with variation in environmental conditions.  相似文献   

13.
Studies on range limits clarify the factors involved in the extent of species occurrence and shed light on the limits to adaptation. We studied the effects of elevational variation on the thermal dependence of fitness‐related traits (incubation time, hatching rate, and survivorship, size, and condition of hatchlings) to assess the role of incubation requirements in distribution range limits of the alpine endemic Iberolacerta cyreni. We captured gravid females from two core (summit) and two marginal (low‐elevation edge) populations, we incubated their eggs at three temperatures (22, 26, and 30 °C), and we monitored phenotypic effects. Viability of eggs and hatchlings decreased, independently of elevation, as incubation temperature increased. Hatching success and embryo survivorship were lower for clutches from low‐elevation areas than for those from mountain summits, showing that lizards face difficulties thriving at the low‐elevation edge of their range. Such difficulties were partly counterbalanced by faster postnatal growth at lower elevations, leading to increased adult size and higher fecundity. High incubation temperature had detrimental effects also at low‐elevation areas, and no elevational variation in the thermal dependence of hatchling traits was detected. We suggest that temperature effects on egg development and the lack of selective pressures strong enough to foster local adaptation at marginal areas, combined with extended egg retention, may contribute to shape the range limits of these alpine oviparous reptiles.  相似文献   

14.
Varied egg incubation temperatures can result in immediate effects on the phenotype of reptiles, and also latent effects that can augment or contradict effects evident at egg hatching. I examined the effects of incubation temperature on embryonic development, hatching morphology, and subsequent growth in multiple populations of the lizard Anolis carolinensis. Eggs from wild-caught females in four populations were incubated at up to three temperatures, 23.5, 27, and 30 degrees C. Measures of body size were collected immediately after hatching and weekly thereafter, while juveniles were maintained in a common laboratory environment for 8 weeks. Cooler incubation temperatures resulted in longer incubation periods but did not affect conversion of egg mass to hatchling mass. Incubation temperature did not affect hatchling mass or snout vent length (SVL), but did affect subsequent growth in both mass and SVL, which varied by population. Cooler incubation temperatures generally resulted in greater overall growth over 8 weeks of housing all juveniles in a common environment. In A. carolinensis, egg incubation temperature had latent effects on juvenile growth despite the absence of any detected immediate effects on hatchling phenotype. Therefore, the total impact and evolutionary importance of developmental environment should not be assessed or assumed based solely on the phenotype of reptiles at birth or hatching.  相似文献   

15.
孵化温度所驱动的爬行动物的表型变异是生理生态学研究的热点。本研究以王锦蛇(Elaphe carinata)为实验动物,检验了24℃和28℃孵化温度对王锦蛇胚胎代谢速率、孵化过程中的卵重量、孵出幼体代谢和行为的影响。研究结果显示:卵重和胚胎的呼吸代谢均与孵化时间呈正相关;28℃下胚胎代谢速率大于24℃;幼蛇孵出15 d内体重随着生长时间的延长而减小,24℃孵出幼体的代谢速率大于28℃孵出幼体,两温度下孵出幼体的呼吸代谢速率和生长时间无显著关系;28℃孵出幼体的疾游速和吐信频次均大于24℃;两孵化温度孵出幼体的选择体温无显著差异,但在消耗完体内的剩余卵黄后28℃孵出幼体有60%的个体摄食,而24℃孵出幼体无摄食个体。总体而言,王锦蛇28℃孵出幼体适合度优于24℃孵出幼体。  相似文献   

16.
The effect of incubation temperature on embryonic development and offspring traits has been widely reported for many species. However, knowledge remains limited about how such effects vary across populations. Here, we investigated whether incubation temperature (26, 28, and 30 °C) differentially affects the embryonic development of Asian yellow pond turtle (Mauremys mutica) eggs originating from low‐latitude (Guangzhou, 23°06′N) and high‐latitude (Haining, 30°19′N) populations in China. At 26 °C, the duration of incubation was shorter in the high‐latitude population than in the low‐latitude population. However, this pattern was reversed at 30 °C. As the incubation temperature increased, hatching success increased in the low‐latitude population but slightly decreased in the high‐latitude population. Hatchlings incubated at 30 °C were larger and righted themselves more rapidly than those incubated at 26 °C in the low‐latitude population. In contrast, hatchling traits were not influenced by incubation temperature in the high‐latitude population. Overall, 30 °C was a suitable developmental temperature for embryos from the low‐latitude population, whereas 26 and 28 °C were suitable for those from the high‐latitude population. This interpopulation difference in suitable developmental temperatures is consistent with the difference in the thermal environment of the two localities. Therefore, similarly to posthatching individuals, reptile embryos from different populations might have evolved diverse physiological strategies to benefit from the thermal environment in which they develop. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114 , 35–43.  相似文献   

17.
Can short‐term stochastic variation in local weather conditions modify the thermal conditions inside lizard nests, and thus (potentially) the developmental rates, hatching success, and phenotypic traits of hatchlings from these nests? This hypothesis requires that (i) natural nests are poorly buffered thermally, such that ambient regimes affect temperatures inside the nest, and (ii) short‐term thermal variations modify attributes of the offspring. Field data on natural nests of the sub‐alpine skink Bassiana duperreyi confirm the existence of this first effect, and laboratory experiments substantiate the latter. Exposure to warmer‐than‐usual temperatures for 2 wéeks during the 9‐ to 16‐wéek incubation period doubled hatching success, and significantly modified hatchling phenotypes (hatching dates, offspring size and locomotor performance). The proportion of development completed prior to this exposure influenced the degrée of response. Exposure to a brief ‘window’ of higher‐than‐usual temperatures soon after oviposition had more effect on hatching time, egg survival and hatchling phenotypes than if the exposure occurred later in development. Thus, minor variations in weather conditions during incubation may have substantial effects on reptile populations.  相似文献   

18.
The parental influences on three progeny traits (survival to eyed‐embryo stage, post‐hatching body length and yolk‐sac volume) of Arctic charr Salvelinus alpinus were studied under two thermal conditions (2 and 7° C) using a factorial mating design. The higher temperature resulted in elevated mortality rates and less advanced development at hatching. Survival was mostly attributable to maternal effects at both temperatures, but the variation among families was dependent on egg size only at the low temperature. No additive genetic variation (or pure sire effect) could be observed, whereas the non‐additive genetic effects (parental combination) contributed to offspring viability at 2° C. In contrast, any observable genetic variance in survival was lost at 7° C, most likely due to the increased environmental variance. Irrespective of temperature, dam and sire–dam interaction contributed significantly to the phenotypic variation in both larval length and yolk size. A significant proportion of the variation in larval length was also due to the sire effect at 2° C. Maternal effects were mediated partly through egg size, but as a whole, they decreased in importance at the high temperature, enabling a concomitant increase in non‐additive genetic effects. For larval length, however, the additive component, like maternal effects, decreased at 7° C. The present results suggest that an exposure to thermal stress during incubation can modify the genetic architecture of early developmental traits in S. alpinus and presumably constrain their short‐term adaptive potential and evolvability by increasing the amount of environmentally induced variation.  相似文献   

19.
Abstract Why is the sex of many reptiles determined by the temperatures that these animals experience during embryogenesis, rather than by their genes? The Charnov‐Bull model suggests that temperature‐dependent sex determination (TSD) can enhance maternal fitness relative to genotypic sex determination (GSD) if offspring traits affect fitness differently for sons versus daughters and nest temperatures either determine or predict those offspring traits. Although potential pathways for such effects have attracted much speculation, empirical tests largely have been precluded by logistical constraints (i.e., long life spans and late maturation of most TSD reptiles). We experimentally tested four differential fitness models within the Charnov‐Bull framework, using a short‐lived, early‐maturing Australian lizard (Amphibolurus muricatus) with TSD. Eggs from wild‐caught females were incubated at a range of thermal regimes, and the resultant hatchlings raised in large outdoor enclosures. We applied an aromatase inhibitor to half the eggs to override thermal effects on sex determination, thus decoupling sex and incubation temperature. Based on relationships between incubation temperatures, hatching dates, morphology, growth, and survival of hatchlings in their first season, we were able to reject three of the four differential fitness models. First, matching offspring sex to egg size was not plausible because the relationship between egg (offspring) size and fitness was similar in the two sexes. Second, sex differences in optimal incubation temperatures were not evident, because (1) although incubation temperature influenced offspring phenotypes and growth, it did so in similar ways in sons versus daughters, and (2) the relationship between phenotypic traits and fitness was similar in the two sexes, at least during preadult life. We were unable to reject a fourth model, in which TSD enhances offspring fitness by generating seasonal shifts in offspring sex ratio: that is, TSD allows overproduction of daughters (the sex likely to benefit most from early hatching) early in the nesting season. In keeping with this model, hatching early in the season massively enhanced body size at the beginning of the first winter, albeit with a significant decline in probability of survival. Thus, the timing of hatching is likely to influence reproductive success in this short‐lived, early maturing species; and this effect may well differ between the sexes.  相似文献   

20.
Evolutionary origins of viviparity among the squamate reptiles are strongly associated with cold climates, and cold environmental temperatures are thought to be an important selective force behind the transition from egg-laying to live-bearing. In particular, the low nest temperatures associated with cold climate habitats are thought to be detrimental to the developing embryos or hatchlings of oviparous squamates, providing a selective advantage for the retention of developing eggs in utero, where the mother can provide warmer incubation temperatures for her eggs (by actively thermoregulating) than they would experience in a nest. However, it is not entirely clear what detrimental effects cold incubation temperatures may have on eggs and hatchlings, and what role these effects may play in favouring the evolution of viviparity. Previous workers have suggested that viviparity may be favoured in cold climates because cold incubation temperatures slow cmbryogenesis and delay hatching of the eggs, or because cold nest temperatures are lethal to developing eggs and reduce hatching success. However, incubation temperature has also been shown to have other, potentially long-term, effects on hatchling phcnotypcs, suggesting that cold climates may favour viviparity because cold incubation temperatures produce offspring of poor quality or low fitness. We experimentally incubated eggs of the oviparous phrynosomatid lizard, Sceloporus virgatus, at temperatures simulating nests in a warm (low elevation) habitat, as is typical for this species, and nests in a colder (high elevation) habitat, to determine the effects of cold incubation temperatures on embryonic development and hatchling phenotypes. Incubation at cold nest temperatures slowed embryonic development and reduced hatching success, but also affected many aspects of the hatchlings' phenotypes. Overall, the directions of these plastic responses indicated that cold-incubated hatchlings did indeed exhibit poorer quality phenotypes; they were smaller at hatching (in body length) and at 20 days of age (in length and mass), grew more slowly (in length and mass), had lower survival rates, and showed greater fluctuating asymmetry than their conspecifics that were incubated at warmer temperatures. Our findings suggest that cold nest temperatures are detrimental to S. virgatus, by delaying hatching of their eggs, reducing their hatching success, and by producing poorer quality offspring. These negative effects would likely provide a selective advantage for any mechanism through which these lizards could maintain warmer incubation temperatures in cold climates, including the evolution of prolonged egg retention and viviparity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号