首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The reaction of vanadium-bromoperoxidase from the brown alga Ascophyllum nodosum with hydrogen peroxide, bromide, and 2-chlorodimedone has been subjected to an extensive steady-state kinetic analysis. Systematic variation of pH and the concentrations of these three components demonstrate that the reaction model includes four enzyme species: native bromoperoxidase, a bromoperoxidase-bromide inhibitory complex, a bromoperoxidase-hydrogen peroxide intermediate, and a bromoperoxidase-HOBr species. This latter intermediate did not display any direct interaction with the nucleophilic reagent as oxidized bromine species (Br-3, Br2, and/or HOBr) were the primary reaction products. The generation of oxidized bromine species was as fast as the bromination of 2-chlorodimedone. The enzyme did not show any specificity with regard to bromination of various organic compounds. Formation of the bromoperoxidase-bromide inhibitory complex was competitive with the reaction between hydrogen peroxide and enzyme. From the steady-state kinetic data lower limits for the second-order rate constants at various pH values were calculated for individual steps in the catalytic cycle. This pH study showed that native enzyme must be unprotonated prior to binding of hydrogen peroxide (second-order association rate constant of 2.5.10(6) M-1.s-1 at pH greater than 6). The pKa for the functional group controlling the binding of hydrogen peroxide was 5.7 and is ascribed to a histidine residue. The reaction rate between bromide and enzyme-hydrogen peroxide intermediate also depended on pH (second-order association rate constant of 1.7.10(5) M-1.s-1 at pH 4.0).  相似文献   

3.
5-Aminolevulinate synthase (ALAS), a pyridoxal 5'-phosphate-dependent enzyme, catalyzes the first, and regulatory, step of the heme biosynthetic pathway in nonplant eukaryotes and some bacteria. 5-Aminolevulinate synthase is a dimeric protein having an ordered kinetic mechanism with glycine binding before succinyl-CoA and with aminolevulinate release after CoA and carbon dioxide. Rapid scanning stopped-flow absorption spectrophotometry in conjunction with multiple turnover chemical quenched-flow kinetic analyses and a newly developed CoA detection method were used to examine the ALAS catalytic reaction and identify the rate-determining step. The reaction of glycine with ALAS follows a three-step kinetic process, ascribed to the formation of the Michaelis complex and the pyridoxal 5'-phosphate-glycine aldimine, followed by the abstraction of the glycine pro-R proton from the external aldimine. Significantly, the rate associated with this third step (k(3) = 0.002 s(-1)) is consistent with the rate determined for the ALAS-catalyzed removal of tritium from [2-(3)H(2)]glycine. Succinyl-CoA and acetoacetyl-CoA increased the rate of glycine proton removal approximately 250,000- and 10-fold, respectively, supporting our previous proposal that the physiological substrate, succinyl-CoA, promotes a protein conformational change, which accelerates the conversion of the external aldimine into the initial quinonoid intermediate (Hunter, G. A., and Ferreira, G. C. (1999) J. Biol. Chem. 274, 12222-12228). Rapid scanning stopped-flow and quenched-flow kinetic analyses of the ALAS reaction under single turnover conditions lend evidence for two quinonoid reaction intermediates and a model of the ALAS kinetic mechanism in which product release is at least the partially rate-limiting step. Finally, the carbonyl and carboxylate groups of 5-aminolevulinate play a major protein-interacting role by inducing a conformational change in ALAS and, thus, possibly modulating product release.  相似文献   

4.
5.
Previous studies of Escherichia coli 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS, EC 2.5.1.19) have suggested that the kinetic reaction mechanism for this enzyme in the forward direction is equilibrium ordered with shikimate 3-phosphate (S3P) binding first followed by phosphoenolpyruvate (PEP). Recent results from this laboratory, however, measuring direct binding of PEP and PEP analogues to free EPSPS suggest more random character to the enzyme. Steady-state kinetic and spectroscopic studies presented here indicate that E. coli EPSPS does indeed follow a random kinetic mechanism. Initial velocity studies with S3P and PEP show competitive substrate inhibition by PEP added to a normal intersecting pattern. Substrate inhibition is proposed to occur by competitive binding of PEP at the S3P site [Ki(PEP) = 6-8 mM]. To test for a productive EPSPS.PEP binary complex, the reaction order of EPSPS was evaluated with shikimic acid and PEP as substrates. The mechanism for this reaction is equilibrium ordered with PEP binding first giving a Kia value for PEP in agreement with the independently measured Kd of 0.39 mM (shikimate Km = 25 mM). Results from this study also show that the 3-phosphate moiety of S3P offers 8.7 kcal/mol in binding energy versus a hydroxyl in this position. Over 60% of this binding energy is expressed in binding of substrate to enzyme rather than toward increasing kcat. Glyphosate inhibition of shikimate turnover was poor with approximately 8 x 10(4) loss in binding capacity compared to the normal reaction, consistent with the independently measured Kd of 12 mM for the EPSPS.glyphosate binary complex. The EPSPS.glyphosate complex induces shikimate binding, however, by a factor of 7 greater than EPSPS.PEP. Carboxyallenyl phosphate and (Z)-3-fluoro-PEP were found to be strong inhibitors of the enzyme that have surprising affinity for the S3P binding domain in addition to the PEP site as measured both kinetically and by direct observation with 31P NMR. The collective data indicate that the true kinetic mechanism for EPSPS in the forward direction is random with synergistic binding occurring between substrates and inhibitors. The synergism explains how the mechanism can be random with S3P and PEP, but yet equilibrium ordered with PEP binding first for shikimate turnover. Synergism also accounts for how glyphosate can be a strong inhibitor of the normal reaction, but poor versus shikimate turnover.  相似文献   

6.
P A Tipton  W W Cleland 《Biochemistry》1988,27(12):4317-4325
Biotin carboxylase was purified from Escherichia coli by a new procedure, and its steady-state kinetic parameters were examined. MgATP and bicarbonate add to the enzyme randomly, followed by addition of biotin. Both bicarbonate and MgATP add in rapid equilibrium. A catalytic base with a pK of 6.6 is observed in V/K profiles. Inactivation studies also revealed a sulfhydryl group in the active site that is essential for catalysis. It is proposed that the acid-base catalysts are necessary for the tautomerization of biotin, which presumably enhances its nucleophilicity toward the carboxyl group donor. A second enzymic group with a pK of 6.6, whose role is unknown, is seen in Vmax profiles. The pH profiles for the biotin carboxylase catalyzed phosphorylation of ADP by carbamoyl phosphate have the same shape as the profiles for the forward reaction, which demonstrates that the enzymic bases assume the same protonation states for catalysis of transphosphorylation in either direction. The lack of reactivity of thionucleotide analogues of ATP when Mg is used as the divalent metal ion suggests that both metal ions required for reaction coordinate to the nucleotide. The second metal ion appears to be absolutely required for reaction and not merely an activator of the reaction. Characterization of a bicabonate-dependent biotin-independent ATPase activity strongly suggests that carboxylation proceeds via a carboxyphosphate intermediate.  相似文献   

7.
The catalytic mechanism of soybean ribulose bisphosphate carboxylase was examined, through a study of the steady-state kinetic behavior of the fully activated enzyme using short time assays. The effects of substrates, products, alternative products, and two dead-end inhibitors were investigated. High concentrations of both substrates were observed to lead to nonhyperbolic relationships: concentrations of bicarbonate greater than 15 mm inhibited and concentrations of ribulose bisphosphate greater than 0.2–0.5 mm stimulated enzyme activity over that expected from a hyperbolic fit to the data. The kinetic patterns obtained and the nonhyperbolic behavior of substrates are interpreted to suggest that the binding of substrates and the release of products follow a steady-state random mechanism. The substrate activation by ribulose bisphosphate is likely to be physiologically significant.  相似文献   

8.
  • 1.1. Uricase was immobilized onto glutaraldehyde-activated nylon tube.
  • 2.2. The activity of the immobilized uricase tube was assayed by a plug-flow method adopting the integrated form of Michaelis-Menten equation.
  • 3.3. Up to about 60% activity of the soluble enzyme is retained when the enzyme is derivatized.
  • 4.4. Effects of changing certain parameters in the assay system were also shown.
  • 5.5. The immobilized uricase has an optium pH of about 9.0, and is quite stable at 37°C when stored in borate buffer pH 9.0 in the presence of NaCl and Triton × 100.
  相似文献   

9.
1. Secondary-amine mono-oxygenase (proposed EC group 1.14.99.-) was partially purified from trimethylamine-grown Pseudomonas aminovorans by (NH4)2SO4 fractionation, gel filtration, hydrophobic chromatography on 5-aminopentylamino-Sepharose, and affinity chromatography on Sepharose-bound NADH. 2. Some problems in the affinity-chromatography step are discussed. 3. A steady-state kinetic analysis varying substrate, oxygen and electron-donor concentrations was performed, which, over the concentration range studied, gave a series of families of approximately parallel double-reciprocal plots. From secondary and tertiary plots, Michaelis constants of 0.160 mM, 0.086 mM and 0.121 mM were obtained for dimethylamine, NADPH and oxygen respectively. 4. Product-inhibition studies supported the postulated Hexa Uni Ping Pong (triple-transfer) reaction mechanism.  相似文献   

10.
11.
1. The mechanisms of the reduction of oxaloacetate and of 3-fluoro-oxaloacetate by NADH catalysed by cytoplasmic pig heart malate dehydrogenase (MDH) were investigated. 2. One mol of dimeric enzyme produces 1.7+/-0.4 mol of enzyme-bound NADH when mixed with saturating NAD+ and L-malate at a rate much higher than the subsequent turnover at pH 7.5. 3. Transient measurements of protein and nucleotide fluorescence show that the steady-state complex in the forward direction is MDH-NADH and in the reverse direction MDH-NADH-oxaloacetate. 4. The rate of dissociation of MDH-NADH was measured and is the same as Vmax. in the forward direction at pH 7.5. Both NADH-binding sites are kinetically equivalent. The rate of dissociation varies with pH, as does the equilibrium binding constant for NADH. 5. 3-Fluoro-oxaloacetate is composed of three forms (F1, F2 and S) of which F1 and F2 are immediately substrates for the enzyme. The third form, S, is not a substrate, but when the F forms are used up form S slowly and non-enzymically equilibrates to yield the active substrate forms. S is 2,2-dihydroxy-3-fluorosuccinate. 6. The steady-state compound during the reduction of form F1 is an enzyme form that does not contain NADH, probably MDH-NAD+-fluoromalate. The steady-state compound for form F2 is an enzyme form containing NADH, probably MDH-NADH-fluoro-oxaloacetate. 7. The rate-limiting reaction in the reduction of form F2 shows a deuterium isotope rate ratio of 4 when NADH is replaced by its deuterium analogue, and the rate-limiting reaction is concluded to be hydride transfer. 8. A novel titration was used to show that dimeric cytoplasmic malate dehydrogenase contains two sites that can rapidly reduce the F1 form of 3-fluoro-oxaloacetate. The enzyme shows 'all-of-the-sites' behaviour. 9. Partial mechanisms are proposed to explain the enzyme-catalysed transformations of the natural and the fluoro substrates. These mechanisms are similar to the mechanism of pig heart lactate dehydrogenase and this, and the structural results of others, can be explained if the two enzymes are a product of divergent evolution.  相似文献   

12.
The mechanism of the action of uricase   总被引:2,自引:0,他引:2  
  相似文献   

13.
Two decades of research in microgravity have shown that certain biochemical processes can be altered by weightlessness. Approximately 10 years ago, our team, supported by the European Space Agency (ESA) and the Agenzia Spaziale Italiana, started the Effect of Microgravity on Enzyme Catalysis project to test the possibility that the microgravity effect observed at cellular level could be mediated by enzyme reactions. An experiment to study the cleavage reaction catalyzed by isocitrate lyase was flown on the sounding rocket MASER 7, and we found that the kinetic parameters were not altered by microgravity. During the 28th ESA parabolic flight campaign, we had the opportunity to replicate the MASER 7 experiment and to perform a complete steady-state analysis of the isocitrate lyase reaction. This study showed that both in microgravity and in standard g controls the enzyme reaction obeyed the same kinetic mechanism and none of the kinetic parameters, nor the equilibrium constant of the overall reaction were altered. Our results contrast with those of a similar experiment, which was performed during the same parabolic flight campaign, and showed that microgravity increased the affinity of lipoxygenase-1 for linoleic acid. The hypotheses suggested to explain this change effect of the latter were here tested by computer simulation, and appeared to be inconsistent with the experimental outcome.  相似文献   

14.
C T Kong  P F Cook 《Biochemistry》1988,27(13):4795-4799
Isotope partitioning beginning with the binary E.MgATP and E.N-acetyl-Leu-Arg-Arg-Ala-Ser-Leu-Gly (Ser-peptide) complexes indicates that the kinetic mechanism for the adenosine 3',5'-monophosphate dependent protein kinase is steady-state random. A total of 100% of the initial radioactive E.MgATP complex is trapped as phospho-Ser-peptide at infinite Ser-peptide concentration at both low and high concentration of uncomplexed Mg2+, suggesting that the off-rate of MgATP from the E.MgATP.Ser-peptide complex is slow relative to the catalytic steps. Km for Ser-peptide in the trapping reaction decreases from 17 microM at low Mg2+ to 2 microM at high Mg2+, indicating that Mg2+ decreases the off-rate for MgATP from the E.MgATP complex. A total of 100% of the radioactive E.Ser-peptide complex is trapped as phospho-Ser-peptide at low Mg2+, but only 40% is trapped at high Mg2+ in the presence of an infinite concentration of MgATP, suggesting that the off-rate for Ser-peptide from the central complex is much less than catalysis at low but not at high Mg2+. In support of this finding, the Ki for Leu-Arg-Arg-Ala-Ala-Leu-Gly (Ala-peptide) increases from 0.27 mM at low Mg2+ to 2.4 mM at high Mg2+. No trapping was observed at either high or low Mg2+ for the E.MgADP complex up to a phospho-Ser-peptide concentration of 5 mM. Thus, it is likely that in the slow-reaction direction the kinetic mechanism is rapid equilibrium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The steady-state kinetic mechanism of vitamin K-dependent carboxylase from calf liver has been investigated by initial-velocity measurements with varying concentrations of two carboxylase substrates and constant, nonsaturating concentrations of the other two substrates. With all combinations of the varied substrates tested linear kinetics were obtained with lines intersecting on the left side of the 1/v axis in double-reciprocal plots. Thus the carboxylase has a sequential reaction mechanism which includes the quinternary complex of the enzyme with its four substrates. A mechanism with the ordered steady-state addition of all substrates to the enzyme accords well with the results. A totally random mechanism was excluded but the alternative possibility remained that part of the substrates are added in a rapid-equilibrium random reaction. Experiments with saturating constant concentrations of sodium bicarbonate and varying concentrations of the other substrates suggest that bicarbonate (CO2) is either the first or, more probably, the last substrate bound to the enzyme.  相似文献   

16.
The flavin-dependent pyranose 2-oxidase catalyzes the oxidation of d-glucose and other pyranoses at the C2 atom to yield 2-keto-sugars and hydrogen peroxide. Here, the steady-state kinetic mechanism of the enzyme from Trametes ochracea was investigated as a function of pH. Our findings show that the enzyme follows a bi-bi ping-pong kinetic mechanism at pH values <7.0, and a bi-bi ordered mechanism at pH values >7.0. Thus, at low pH the reactivity of the reduced enzyme with oxygen is controlled a by a conformational change of the enzyme that is associated with the release of the 2-keto-sugar from the active site of the enzyme. In contrast, at high pH the reduced enzyme-product complex permits the reaction of oxygen with the flavin. The study also illustrates that caution should be exerted in extrapolating the conclusions drawn on steady-state kinetic mechanisms established at a single pH value to other pH’s in flavoprotein oxidases.  相似文献   

17.
The steady-state kinetics of the butyrylcholinesterase-catalysed hydrolysis of butyrylthiocholine and thiophenyl acetate were shown to deviate from Michaelis–Menten kinetics. The `best' empirical rate law was selected by fitting different rate equations to the experimental data by non-linear regression methods. The results were analysed in view of two alternative interpretations: (1) the reaction is catalysed by a mixture of enzymes, or (2) the activity is due to a single enzyme displaying deviations from Michaelis–Menten kinetics. It was concluded that the second alternative applies, and this conclusion was further supported by experiments involving simultaneous hydrolysis of alternative thiol ester substrates (butyrylthiocholine/thiophenyl acetate) as well as alternative thiol ester and oxygen ester substrates (butyrylthiocholine/phenyl acetate; thiophenyl acetate/butyrylcholine; acetylthiocholine/phenyl acetate). On the basis of the conclusion that a single enzyme is responsible for the activity, a molecular model is proposed. This model involves an acylated enzyme, and implies binding to the enzyme of one acyl group and one ester molecule, but not two ester molecules at the same time. Thus butyrylcholinesterase, which is structurally a tetramer, behaves functionally as a co-operative dimer, an interpretation in accordance with available data from active-site titrations.  相似文献   

18.
A kinetic study of the ninhydrin reaction   总被引:1,自引:0,他引:1  
  相似文献   

19.
The kinetics of the conformational changes of human alpha 2-macroglobulin (alpha 2M) induced by reaction with pure alpha-chymotrypsin, have been analyzed using three fluorescent probes, namely protein tryptophan groups and the dye 6-(4-toluidino)-2-naphthalenesulfonate, to monitor alterations of the alpha 2M structure, and a covalent conjugate of chymotrypsin and fluorescein isothiocyanate (Chy-FITC). The main reaction sequence exhibits a triphasic time course with any of the labels used. Each phase is first-order. The fixation of a single molecule of chymotrypsin to one protease-binding site of alpha 2M (site A) initiates the whole process and determines the access to the second site (site B). Of the three exponential phases of the reaction (20 degrees C), phase I (k1 approximately 19.6 min-1) and phase II (k2 approximately 5.3 min-1) belong to site A. Phase III is related to site B transformation. It contains two steps with different responses from tryptophan (k3 approximately 0.77 min-1) and Chy-FITC (k3 approximately 0.19 min-1) fluorescence measurements. The point to be stressed is that site A and site B, while presumably identical in the native form, are not equivalent with regard to their fluorescence and kinetic properties. However, the activation energy (E = 30.1 +/- 2.7 kJ mol-1) is the same for the three phases of the reaction. When present in sufficient excess, free chymotrypsin or native alpha 2M is able to form reversible complexes with the above-related chymotrypsin-alpha 2M adducts. Only the alpha 2M site A core seems to be involved in this parallel process. In addition the conformational state of the chymotrypsin-alpha 2M complexes is shown to depend on the pH, with a pKa of 6.4.  相似文献   

20.
Trimmer EE  Ballou DP  Matthews RG 《Biochemistry》2001,40(21):6205-6215
The flavoprotein methylenetetrahydrofolate reductase (MTHFR) from Escherichia coli catalyzes the reduction of 5,10-methylenetetrahydrofolate (CH(2)-H(4)folate) to 5-methyltetrahydrofolate (CH(3)-H(4)folate) using NADH as the source of reducing equivalents. The enzyme also catalyzes the transfer of reducing equivalents from NADH or CH(3)-H(4)folate to menadione, an artificial electron acceptor. Here, we have determined the midpoint potential of the enzyme-bound flavin to be -237 mV. We have examined the individual reductive and oxidative half-reactions constituting the enzyme's activities. In an anaerobic stopped-flow spectrophotometer, we have measured the rate constants of flavin reduction and oxidation occurring in each half-reaction and have compared these with the observed catalytic turnover numbers measured under steady-state conditions. We have shown that, in all cases, the half-reactions proceed at rates sufficiently fast to account for overall turnover, establishing that the enzyme is kinetically competent to catalyze these oxidoreductions by a ping-pong Bi-Bi mechanism. Reoxidation of the reduced flavin by CH(2)-H(4)folate is substantially rate limiting in the physiological NADH-CH(2)-H(4)folate oxidoreductase reaction. In the NADH-menadione oxidoreductase reaction, the reduction of the flavin by NADH is rate limiting as is the reduction of flavin by CH(3)-H(4)folate in the CH(3)-H(4)folate-menadione oxidoreductase reaction. We conclude that studies of individual half-reactions catalyzed by E. coli MTHFR may be used to probe mechanistic questions relevant to the overall oxidoreductase reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号