首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamics of skate horizontal cells   总被引:1,自引:1,他引:0       下载免费PDF全文
The all-rod retina of the skate (Raja erinacea or R. oscellata) is known to have the remarkable capability of responding to incremental flashes superimposed on background intensities that initially block all light-evoked responses and are well above the level at which rods saturate in mixed rod/cone retinas. To examine further the unusual properties of the skate visual system, we have analyzed responses of their horizontal cells to intensity-modulated step, sinusoidal, and white-noise stimuli. We found that during exposures to mean intensities bright enough to block responses to incremental stimuli, decremental stimuli were also initially blocked. Thereafter, the horizontal cells underwent a slow recovery phase during which there was marked nonlinearity in their response properties. The cell first (within 2-3 min) responded to decrements in intensity and later (after greater than 10 min) became responsive to incremental stimuli. After adaptation to a steady state, however, the responses to intensity modulation were nearly linear over a broad range of modulation depths even at the brightest mean levels of illumination. Indeed, examination of the steady-state responses over a 5-log-unit range of mean intensities revealed that the amplitude of the white noise-evoked responses depended solely on contrast, and was independent of the retinal irradiance as the latter was increased from 0.02 to 20 muW/cm2; i.e., contrast sensitivity remained unchanged over this 1,000-fold increase in mean irradiance. A decrement from the mean as brief as 2 s, however, disturbed the steady state. Another unexpected finding in this all-rod retina concerns surround-enhancement, a phenomenon observed previously for cone-mediated responses of horizontal cells in the retinas of turtle and catfish. While exposure to annular illumination induced response compression and a pronounced sensitivity loss in response to incremental light flashes delivered to the dark central region, the cell's sensitivity showed a significant increase when tested with a white noise or sinusoidally modulated central spot. Unlike horizontal cells in other retinas studied thus far, however, response dynamics remained unchanged. Responses evoked either by a small spot (0.25-mm diam) or by a large field light covering the entire retina were almost identical in time course. This is in contrast with past findings from cone-driven horizontal cells whose response waveform (dynamics) was dependent upon the size of the retinal area stimulated.  相似文献   

2.
ON-center and OFF-center receptive fields of cat retinal ganglion cells can be divided into two categories: sensitive (type N) and insensitive (type L) to three statistical temporal visual stimuli with different second order statistics but identical first order statistics (Tsukada et al. 1982). The temporal pattern sensitivity of type N response is closely related to the nonlinear stage of Y cells depending on the interaction between center and surround mechanism. The temporal pattern sensitivity of type N responses has a spatial profile within the receptive field; it is highly sensitive in the center region of the receptive field and less sensitive toward the field periphery. The temporal pattern sensitivity in the center region of the receptive field to statistical properties (irregular or regular) of a surrounding flash annulus shows modulation like a switching element: when the surrounding area is stimulated by a more regular flash stimulus with normal distribution of inter-stimulus intervals the system is sensitive (switching on) to the temporal pattern, while a change to an irregular one with an exponential distribution makes it insensitive (switching off) to the temporal pattern.  相似文献   

3.
Dynamics of turtle cones   总被引:12,自引:7,他引:5       下载免费PDF全文
The response dynamics of turtle photoreceptors (cones) were studied by the cross-correlation method using a white-noise-modulated light stimulus. Incremental responses were characterized by the kernels. White-noise-evoked responses with a peak-to-peak excursion of greater than 5 mV were linear, with mean square errors of approximately 8%, a degree of linearity comparable to the horizontal cell responses. Both a spot (0.17 mm diam) and a large field of light produced almost identical kernels. The amplitudes of receptor kernels obtained at various mean irradiances fitted approximately the Weber-Fechner relationship and the mean levels controlled both the amplitude and the response dynamics; kernels were slow and monophasic at low mean irradiance and were fast and biphasic at high mean irradiance. This is a parametric change and is a piecewise linearization. Horizontal cell kernels evoked by the small spot of light were monophasic and slower than the receptor kernels produced by the same stimulus. Larger spots of light or a steady annular illumination transformed the slow horizontal cell kernel into a fast kernel similar to those of the receptors. The slowing down of the kernel waveform was modeled by a simple low-pass circuit and the presumed feedback from horizontal cells onto cones did not appear to play a major role.  相似文献   

4.
The model of the vertebrate cone retina was adapted to the turtle retina with its red cone- and L-channel-dominances. The model consists of an ordering of four spatial organizations of unit hexagons, weighted inputs for all cones in the receptive fields, and linear polarization factors based on data from literature on turtle retina. Data generated by the model for spatial and chromatic patterns of receptive fields, intensity-response curves, dynamic ranges for cones, horizontal and bipolar cells proved remarkably consistent with literature. The model also generates observed phenomena such as near-field enhancement of cones due to stray light effects and electrical coupling of like-cones and far-field decrease in responses due to negative feedback from L-type horizontal cells to cones. Annular stimuli were shown to be more effective than spot stimuli for horizontal cells. The formal approach of the model demonstrates factors which play roles in various observed phenomena and all aspects of model can be displayed and tested both qualitatively and quantitatively.  相似文献   

5.
Processing of visual stimuli by the retina changes strongly during light/dark adaptation. These changes are due to both local photoreceptor-based processes and to changes in the retinal network. The feedback pathway from horizontal cells to cones is known to be one of the pathways that is modulated strongly during adaptation. Although this phenomenon is well described, the mechanism for this change is poorly characterized. The aim of this paper is to describe the mechanism for the increase in efficiency of the feedback synapse from horizontal cells to cones. We show that a train of flashes can increase the feedback response from the horizontal cells, as measured in the cones, up to threefold. This process has a time constant of approximately 3 s and can be attributed to processes intrinsic to the cones. It does not require dopamine, is not the result of changes in the kinetics of the cone light response and is not due to changes in horizontal cells themselves. During a flash train, cones adapt to the mean light intensity, resulting in a slight (4 mV) depolarization of the cones. The time constant of this depolarization is approximately 3 s. We will show that at this depolarized membrane potential, a light-induced change of the cone membrane potential induces a larger change in the calcium current than in the unadapted condition. Furthermore, we will show that negative feedback from horizontal cells to cones can modulate the calcium current more efficiently at this depolarized cone membrane potential. The change in horizontal cell response properties during the train of flashes can be fully attributed to these changes in the synaptic efficiency. Since feedback has major consequences for the dynamic, spatial, and spectral processing, the described mechanism might be very important to optimize the retina for ambient light conditions.  相似文献   

6.
Dynamic Characteristics of Retinal Ganglion Cell Responses in Goldfish   总被引:6,自引:4,他引:2  
A cross-correlation technique has been applied to quantify the dependence of the dynamic characteristics of retinal ganglion cell responses in goldfish on intensity, wavelength, spatial configuration, and spot size. Both theoretical and experimental evidence justify the use of the cross-correlation procedure which allows the completion of rather extensive measurements in a relatively short time. The findings indicate the following. (a) The shape of the amplitude characteristics depends on the energy per unit of time (power) falling within the center of a receptive field rather than on the intensity of the stimulus spot. For spot diameters of up to 1 mm, identical amplitude characteristics can be obtained by interchanging area and intensity. Therefore the receptor processes do not contribute to the change in the amplitude characteristics as a function of the power of the stimulus light. (b) For high frequencies the amplitude characteristics obtained as a function of power join together in a common envelope if plotted on an absolute sensitivity scale. For spontaneous ganglion cells this envelope holds over a range of three log units and the shape is identical for central and peripheral processes. (c) The amplitude characteristics of the central and peripheral processes converging to a ganglion cell are identical, irrespective of the sign (on or off) and the spectral coding of the response. Therefore we have no evidence for interneurons in the goldfish retina unique to the periphery of the receptive field.  相似文献   

7.
This static bipolar cell (BC) model of the human fovea is based on a number of reasonable assumptions. The human fovea is directly responsible for visual acuity and color vision. The fovea can be considered as having two parts; a central fovea with only red- and green-sensitive cones and a parafovea with blue-sensitive cones added to the other two. A cone mosaic can be precisely organized spatially into unit hexagons that specify inputs to horizontal cells (HC) and BCs. The retina up to and including BCs is piece-wise linear, i.e. at a given steady-state adapting light intensity BC outputs are linear functions of the physical image. BC centers receive inputs directly from weighted cones, while antagonistic surrounds receive inverted inputs from HCs. Appropriate optical and chromatic filtering due to the eye that are taken from human data are incorporated into the model. Chromatic aberrations are simulated by three separate point spread functions that also are taken from human data. Automatic gain control of cones is a function of intensity and wavelength of the steady adapting light.The major part of this work was done while the author was a Senior Research Associate of the National Research Council, USA  相似文献   

8.
In the mammalian retina, cone photoreceptors efficiently adapt to changing background light intensity and, therefore, are able to signal small differences in luminance between objects and backgrounds, even when the absolute intensity of the background changes over five to six orders of magnitude. Mammalian rod photoreceptors, in contrast, adapt very little and only at intensities that nearly saturate the amplitude of their photoresponse. In search of a molecular explanation for this observation we assessed Ca2+-dependent modulation of ligand sensitivity in cyclic GMP-gated (CNG) ion channels of intact mammalian rods and cones. Solitary photoreceptors were isolated by gentle proteolysis of ground squirrel retina. Rods and cones were distinguished by whether or not their outer segments bind PNA lectin. We measured membrane currents under voltage-clamp in photoreceptors loaded with Diazo-2, a caged Ca2+ chelator, and fixed concentrations of 8Br-cGMP. At 600 nM free cytoplasmic Ca2+ the midpoint of the cone CNG channels sensitivity to 8BrcGMP, 8BrcGMPK1/2, is approximately 2.3 microM. The ligand sensitivity is less in rod than in cone channels. Instantly decreasing cytoplasmic Ca2+ to <30 nM activates a large inward membrane current in cones, but not in rods. Current activation arises from a Ca2+ -dependent modulation of cone CNG channels, presumably because of an increase in their affinity to the cyclic nucleotide. The time course of current activation is temperature dependent; it is well described by a single exponential process of approximately 480 ms time constant at 20-21 degrees C and 138 ms at 32 degrees C. The absence of detectable Ca2+-dependent CNG current modulation in intact rods, in view of the known channel modulation by calmodulin in-vitro, affirms the modulation in intact rods may only occur at low Ca2+ concentrations, those expected at intensities that nearly saturate the rod photoresponse. The correspondence between Ca2+ dependence of CNG modulation and the ability to light adapt suggest these events are correlated in photoreceptors.  相似文献   

9.
Phenotypic modulation is a common feature in haplochromine cichlids. External changes influence the phenotype within the limits set by the genetic program. Retinal development in the cichlid Haplochromis sauvagei has been observed in specimens reared in various chromatic environments and in darkness. Rearing in darkness led to the reduction of photoreceptor densities, the apparent loss of single cones and the enlargement of double cones. To a lesser degree, similar effects were observed in specimens deprived from short-wave light. Ganglion cell densities were not affected by light deprivation. The light-induced alterations could be the result of changes in developmental rates within the retina or of early degeneration. The modulation seems to cause a reduction of blue sensitivity, possibly for the benefit of luminosity or long-wavelength detection. This would agree with the combination of decreased light intensity and a spectral shift towards the longer wavelengths as is the case in the natural environment of the Lake Victorian haplochromines. In that sense, the modulation is probably adaptive.  相似文献   

10.
A dynamic model of the receptive field of L2-cells in the carp retina is developed by using our experimental results on the basis of physiological and morphological evidences. Linear spatial summation is assumed in the model for the interactions among L2-cells. Linear forward and feedback loops are also assumed for the interactions between L2-cells and cones. The model has dynamic properties similar to the ones of the receptive field of L2-cells: L2-cells respond faster as the size of a light spot is enlarged and the L2-cells nearer to the center of the light spot respond faster. It is suggested that the faster responding properties of L2-cells are due to the feedback action.  相似文献   

11.
A mathematical model is examined of interaction between cones and horizontal L-type cells (HC) in the carp retina using data from intracellular recording of HC spectral response. This model, describing the operation of ionic channels at the membrane of cones and HC, is based on a numerical analog solution to Hodgkin-Huxley differential equations [11] and enables predictions of spectral response levels in HC to be made as a function of time.M. L. Lomonosov State University, Moscow. Translated from Neirofiziologiya, Vol. 21, No. 4, pp. 461–466, July–August, 1989.  相似文献   

12.
Spatial organization of the cone mosaic of the generalized vertebrate retina consists of rows of red and green cones alternating with rows of blue and blank cones. Cone inputs to retinal elements are defined spatially by red and green unit hexagons. Topological analysis entails determining for each cone in the mosaic the number of each cone type present in the unit hexagon which the activated cone can influence via electrical coupling between cones and/or stray light. Only weighted inputs in one-half of a sextant of the unit hexagon need be designated, since all other weighted inputs can be determined by rules giving systematic transformations of all cone types from one sextant to another: these rules arise from symmetries of the cone mosaic. Four retinal types are possible depending on replacement of blank cones by specific cone types; three cone-dominant retinas, where all blank cones are replaced by a specific cone type, and two forms of a trichromatic retina, where blank cones are replaced by equal numbers of red and green cones. The weighted input is the sum of individual cone type contributions and depends on the number of each cone type in the unit hexagon which can influence the cone in question. Weighted inputs for cone-dominant retinas are readily found by replacing blank cones with the proper cone type, while weighted inputs for trichromatic retinas require use of a specified cone mosaic to determine extra red and green cones. Receptive field size of post-cone elements as well as overlap of the center and surround fields of annular organized receptive fields of retinal elements increased with increasing values for attenuation factors.  相似文献   

13.
By intracellular recordings, we studied the effects of pH buffering on the size of the receptive field and the extent of dye coupling of horizontal cells (HCs) in the light-adapted carp retina. These parameters were compared between data obtained in fortified Ringer's solution and those obtained in control bicarbonate Ringer's of the same pH (7.60). In Ringer's fortified with 10 mM HEPES or 15 mM Tris, the dye-coupling ratio of HCs increased by 71% and 70%, respectively. These fortified Ringer's solutions also depolarized the dark membrane potential and increased the light-evoked response. The HC receptive field profile could be described by the exponential decline in peak response amplitude to a slit of light moved tangentially from the recording electrode. Thus, the receptive field size was determined as a space constant proportional to (gj/gm)(1/2), where gj and gm denote gap and non-gap-junctional conductances. The HEPES- or Tris-fortified Ringer's significantly increased the space constant by 43% and 41%, respectively. Since dye coupling was increased in the fortified Ringer's, it is likely that gj increased more than gm as a result of alkalinization of the cytosol. Since HEPES has an aminosulfonate moiety, it has been assumed to close the hemi-channels of connexin 26, but the pH-buffering effects were essentially the same as those of Tris that has no aminosulfonate moiety. Therefore, it is unlikely that the closure of connexin 26 hemichannels is responsible for the change in the receptive field size of HCs.  相似文献   

14.
The response of cone photoreceptors to light is stable and reproducible because of the exceptional regulation of the cascade of enzymatic reactions that link visual pigment (VP) excitation to the gating of cyclic GMP (cGMP)-gated ion channels (cyclic nucleotide-gated [CNG]) in the outer segment plasma membrane. Regulation is achieved in part through negative feedback control of some of these reactions by cytoplasmic free Ca(2+). As part of the control process, Ca(2+) regulates the phosphorylation of excited VP, the activity of guanylate cyclase, and the ligand sensitivity of the CNG ion channels. We measured photocurrents elicited by stimuli in the form of flashes, steps, and flashes superimposed on steps in voltage-clamped single bass cones isolated from striped bass retina. We also developed a computational model that comprises all the known molecular events of cone phototransduction, including all Ca-dependent controls. Constrained by available experimental data in bass cones and cone transduction biochemistry, we achieved an excellent match between experimental photocurrents and those simulated by the model. We used the model to explore the physiological role of CNG ion channel modulation. Control of CNG channel activity by both cGMP and Ca(2+) causes the time course of the light-dependent currents to be faster than if only cGMP controlled their activity. Channel modulation also plays a critical role in the regulation of the light sensitivity and light adaptation of the cone photoresponse. In the absence of ion channel modulation, cone photocurrents would be unstable, oscillating during and at the offset of light stimuli.  相似文献   

15.
Dynamics of turtle horizontal cell response   总被引:10,自引:7,他引:3       下载免费PDF全文
The small- and large-field (cone) horizontal cells produce similar dynamic responses to a stimulus whose mean luminance is modulated by a white-noise signal. Nonlinear components increase with an increase in the mean luminance and may produce a mean square error (MSE) of up to 15%. Increases in the mean luminance of the field stimulus bring about three major changes: the incremental sensitivity defined by the amplitude of the kernels decreases in a Weber-Fechner fashion; the waveforms of the kernels are transformed from monophasic (integrating) to biphasic (differentiating); the peak response time of the kernels becomes shorter and the cells respond to much higher-frequency inputs. The dynamics of the horizontal cell response also depend on the area of the retina stimulated. Smaller spots of light produce monophasic kernels of a longer peak response time. The presence of a steady background produces three major changes in the spot kernels: the kernel's amplitude becomes larger (incremental sensitivity increases); the peak response times become shorter; the waveform of the kernels changes in a fashion similar to that observed with an increase in the mean luminance of the field stimulus. A similar enhancement in the incremental sensitivity by a steady background has also been observed in catfish, which shows that this phenomenon is a common feature of the horizontal cells in the lower vertebrate retina.  相似文献   

16.
This review examines the function of calcium-activated chloride currents (ICl(Ca)) in the retina with an emphasis on their physiological role in photoreceptors. Although found in a variety of neurons and glial cells of the retina, ICl(Ca) has been most prominently studied in cones, where it activates in response to depolarization-evoked Ca2+ influx. The slow and complex gating kinetics of the chloride current have been considered to reflect the changing submembrane concentration of intracellular calcium. It is likely that the role of ICl(Ca) is to stabilize the membrane potential of cones during synaptic activity and presynaptic Ca channel modulation. Several candidates in the molecular identification of the channel have been put forward but the issue remains unresolved.  相似文献   

17.
This review examines the function of calcium-activated chloride currents (I(Cl(Ca))) in the retina with an emphasis on their physiological role in photoreceptors. Although found in a variety of neurons and glial cells of the retina, I(Cl(Ca)) has been most prominently studied in cones, where it activates in response to depolarization-evoked Ca(2+) influx. The slow and complex gating kinetics of the chloride current have been considered to reflect the changing submembrane concentration of intracellular calcium. It is likely that the role of I(Cl(Ca)) is to stabilize the membrane potential of cones during synaptic activity and presynaptic Ca channel modulation. Several candidates in the molecular identification of the channel have been put forward but the issue remains unresolved.  相似文献   

18.
The presence of cones in potto's retina has been proved beyond doubt although they are very restricted in number (1 cone for 300 rods). Morphologically, speaking there is no point in calling these cones "rudimentary" except for their slender outer segment. There are red sensitive elements in that retina at wavelengths beyond the spectral sensitivity of visual purple and it is tempting to assume that these elements are cones. The ERG evoked from these elements by red light differs from that in response to white and blue light. They dark-adapt faster than the receptors sensitive to blue and white flashes. However in some of their properties, for example fusion frequency, these cones behave like rods in other species. As these few cones seem to activate the bipolar cells nearly as effectively as the numerous rods, it is suggested that these cones may be responsible for day vision in the potto.  相似文献   

19.
Adaptation in the retina is thought to optimize the encoding of natural light signals into sequences of spikes sent to the brain. While adaptive changes in retinal processing to the variations of the mean luminance level and second-order stimulus statistics have been documented before, no such measurements have been performed when higher-order moments of the light distribution change. We therefore measured the ganglion cell responses in the tiger salamander retina to controlled changes in the second (contrast), third (skew) and fourth (kurtosis) moments of the light intensity distribution of spatially uniform temporally independent stimuli. The skew and kurtosis of the stimuli were chosen to cover the range observed in natural scenes. We quantified adaptation in ganglion cells by studying linear-nonlinear models that capture well the retinal encoding properties across all stimuli. We found that the encoding properties of retinal ganglion cells change only marginally when higher-order statistics change, compared to the changes observed in response to the variation in contrast. By analyzing optimal coding in LN-type models, we showed that neurons can maintain a high information rate without large dynamic adaptation to changes in skew or kurtosis. This is because, for uncorrelated stimuli, spatio-temporal summation within the receptive field averages away non-gaussian aspects of the light intensity distribution.  相似文献   

20.
Effects of dopamine (DA) were examined on the intracellularly recorded potential from horizontal cells in the fish (Eugerres plumieri) retina. DA (100 M in the perfusate) augmented the center S potential in a response to a spot illumination and attenuated the surrounding S potential to an annular light by approximately 40%. These reciprocal changes in the S potentials were associated with a slight depolarization (2.5 mV) of the horizontal cell, and were reversible in 10–15 min. The results indicate that DA at this concentration does not affect directly the synaptic transmission from photoreceptors to horizontal cells, while it appears to interfere selectively with the lateral propagation of an S potential. The effects of DA observed may represent an aspect of function of DA-containing interplexiform cells in the retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号