首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
S(N)1-type alkylating agents that produce cytotoxic O(6)-methyl-G (O(6)-meG) DNA adducts induce cell cycle arrest and apoptosis in a manner requiring the DNA mismatch repair (MMR) proteins MutSalpha and MutLalpha. Here, we show that checkpoint signaling in response to DNA methylation occurs during S phase and requires DNA replication that gives rise to O(6)-meG/T mispairs. DNA binding studies reveal that MutSalpha specifically recognizes O(6)-meG/T mispairs, but not O(6)-meG/C. In an in vitro assay, ATR-ATRIP, but not RPA, is preferentially recruited to O(6)-meG/T mismatches in a MutSalpha- and MutLalpha-dependent manner. Furthermore, ATR kinase is activated to phosphorylate Chk1 in the presence of O(6)-meG/T mispairs and MMR proteins. These results suggest that MMR proteins can act as direct sensors of methylation damage and help recruit ATR-ATRIP to sites of cytotoxic O(6)-meG adducts to initiate ATR checkpoint signaling.  相似文献   

2.
Alkylation lesions in DNA and RNA result from endogenous compounds, environmental agents and alkylating drugs. Simple methylating agents, e.g. methylnitrosourea, tobacco-specific nitrosamines and drugs like temozolomide or streptozotocin, form adducts at N- and O-atoms in DNA bases. These lesions are mainly repaired by direct base repair, base excision repair, and to some extent by nucleotide excision repair (NER). The identified carcinogenicity of O(6)-methylguanine (O(6)-meG) is largely caused by its miscoding properties. Mutations from this lesion are prevented by O(6)-alkylG-DNA alkyltransferase (MGMT or AGT) that repairs the base in one step. However, the genotoxicity and cytotoxicity of O(6)-meG is mainly due to recognition of O(6)-meG/T (or C) mispairs by the mismatch repair system (MMR) and induction of futile repair cycles, eventually resulting in cytotoxic double-strand breaks. Therefore, inactivation of the MMR system in an AGT-defective background causes resistance to the killing effects of O(6)-alkylating agents, but not to the mutagenic effect. Bifunctional alkylating agents, such as chlorambucil or carmustine (BCNU), are commonly used anti-cancer drugs. DNA lesions caused by these agents are complex and require complex repair mechanisms. Thus, primary chloroethyl adducts at O(6)-G are repaired by AGT, while the secondary highly cytotoxic interstrand cross-links (ICLs) require nucleotide excision repair factors (e.g. XPF-ERCC1) for incision and homologous recombination to complete repair. Recently, Escherichia coli protein AlkB and human homologues were shown to be oxidative demethylases that repair cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues. Numerous AlkB homologues are found in viruses, bacteria and eukaryotes, including eight human homologues (hABH1-8). These have distinct locations in subcellular compartments and their functions are only starting to become understood. Surprisingly, AlkB and hABH3 also repair RNA. An evaluation of the biological effects of environmental mutagens, as well as understanding the mechanism of action and resistance to alkylating drugs require a detailed understanding of DNA repair processes.  相似文献   

3.
The in vivo formation and repair of specific DNA lesions produced by alkylating agents of contrasting carcinogenic potencies were investigated. Male Sprague-Dawley rats were treated with direct-acting alkylating agents methylmethane sulfonate (MMS) or methylnitrosourea (MNU). The amounts of N-3-methyladenine (3-meA), N-7-methylguanine (7-meG), and methylphosphotriesters (mePTE) in the DNA of liver and brain were determined following selective removal of the methylated bases by enzyme 3-meA N-glycosylase from Micrococcus luteus and thermal depurination at neutral pH. Both enzyme- and heat-induced alkali-labile apurinic sites were converted to single-strand breaks on incubation with 0.1 M NaOH. The number of such sites was quantitated following centrifugation of the DNA in alkaline sucrose gradients, fluorescent detection of unlabeled DNA, and estimation of number-average molecular weight. The results show a carcinogen dose-dependent initial linear increase in the number of enzyme- and heat-induced DNA strand breakage in both liver and brain DNA. With a half-life of approximately 3 h, 3-meA was removed from the tissues, whereas 45 to 55% of 7-meG remained unrepaired at 48 h. The study of the alkylation damage induced by MNU treatment of rats showed that the kinetics of repair for 3-meA and 7-meG was similar to the MMS-treated tissues and that mePTE persisted over a 7-day period. The technique developed does not require the use of radiolabeled reagents of DNA and allows for the selective quantitation of DNA alkylation lesions like 3-meA and 7-meG in the presence of nitrosourea-induced phosphotriesters.  相似文献   

4.
Previously, we reported that when Salmonella typhimurium and Escherichia coli were treated with N-nitrosodimethylamine (NDMA) under irradiation with ultraviolet-A (UVA), mutagenesis of the bacteria took place without externally added activation enzymes. We also observed the formation of O(6)-methylguanine (O(6)-meG), N(7)-methylguanine (N(7)-meG) and 7,8-dihydro-8-oxodeoxyguanosine (8-oxodG) in calf thymus DNA treated with NDMA plus UVA. In this study, we observed the mutagenicity of NDMA under irradiation of natural sunlight in S. typhimurium. Furthermore, we detected the formation of O(6)-meG, N(7)-meG and 8-oxodG in calf thymus DNA treated with NDMA plus simulated sunlight. Regarding the mutagenesis of S. typhimurium by NDMA plus UVA, we have now identified and quantified O(6)-meG formed in the genomic DNA of the bacteria under conditions of the mutagenesis.  相似文献   

5.
The Escherichia coli AlkB protein repairs 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) lesions in DNA and RNA by oxidative demethylation, a reaction requiring ferrous iron and 2-oxoglutarate as cofactor and co-substrate, respectively. Here, we have studied the activity of AlkB proteins on 3-methylthymine (3-meT) and 1-methylguanine (1-meG), two minor lesions which are structurally analogous to 1-meA and 3-meC. AlkB as well as the human AlkB homologues, hABH2 and hABH3, were all able to demethylate 3-meT in a DNA oligonucleotide containing a single 3-meT residue. Also, 1-meG lesions introduced by chemical methylation of tRNA were efficiently removed by AlkB. Unlike 1-meA and 3-meC, nucleosides or bases corresponding to 1-meG or 3-meT did not stimulate the uncoupled, AlkB-mediated decarboxylation of 2-oxoglutarate. Our data show that 3-meT and 1-meG are repaired by AlkB, but indicate that the recognition of these substrates is different from that in the case of 1-meA and 3-meC.  相似文献   

6.
To study the effect of the potentially cytotoxic base O6-methylguanine (O6-meG) on the initiation of DNA replication, double-stranded oligonucleotides corresponding to the SV40 origin of replication were constructed in which O6-meG replaced guanine in one strand. Out of 14 methylated residues, 10 were present in the Binding sites for T antigen (3 in Binding Site 1 and 7 in Binding Site 2). Binding of purified T antigen to the substituted oligonucleotide was considerably reduced in comparison to the unsubstituted one, as measured by nitrocellulose filter binding. Both the ATP-dependent and ATP-independent binding of T antigen were affected by the presence of the methylated base. Band shift analysis revealed an altered pattern of delayed-migrating complexes of T antigen with the O6-meG-containing oligonucleotide. Competition experiments, in which unmodified oligonucleotides containing Binding Site 1 or 2 were included in the binding assays, indicated that the affinity of T antigen for the O6-meG modified sites was reduced. When partially duplex oligonucleotides containing either Binding Site 1 or Site 2 of the origin of replication were used as substrates for the helicase activity of T antigen, the presence of O6-meG increased the extent of T antigen catalysed displacement of single-stranded DNA fragments.  相似文献   

7.
The toxicity and mutagenicity (including the mutation spectrum induced) of dacarbazine, a methylating cytostatic drug, was examined in CHO cells expressing different levels of the repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). Expression of low or high levels of a transfected human MGMT gene under the control of the metallothionein promoter protected the cells against dacarbazine-induced toxicity and mutagenesis. In the absence of MGMT expression, the mutation spectrum in the HPRT locus was dominated by GC-->AT transitions (mostly found at 5'Pu-G sequences), while there were also a few AT-->GC transitions. Expression MGMT was associated with a substantial decrease of GC-->AT mutations, suggesting that these mutations arose primarily via O(6)-methylguanine. These data illustrate the important role of the latter lesion in the drug's mutagenic and cytotoxic activity.  相似文献   

8.
Suspension cultures of Chinese hamster ovary (CHO) cells were exposed to methyl methanesulfonate (MMS) or methylnitrosourea (MNU) and assayed for mutation induction (6-thioguanine resistance) and for specific DNA adducts. DNA methylation at the 1-, 3- and 7-positions of adenine, the 3-, O6- and 7-positions of guanine, and phosphate was detected in cultures exposed to MMS, while MNU produced 3- and 7-methyladenine, 3-methylcytosine, 3-, O6- and 7-methylguanine, O4-methylthymidine and methylated phosphodiesters. When mutations induced by MMS and MNU were compared by linear correlation analysis with levels of each of these adducts, only O6-methylguanine displayed a strong correlation with mutations (r = 0.879, p less than 0.001). The relationship between O6-methylguanine and induced mutations in CHO cells is similar to that previously reported in CHO cells for O6-ethylguanine and mutations (Heflich et al., 1982) and indicates that alkylation-induced mutations at the HGPRT locus in CHO cells are primarily associated with O6-alkylguanine formation.  相似文献   

9.
Escherichia coli dam mutants are sensitized to the cytotoxic action of base analogs, cisplatin and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), while their mismatch repair (MMR)-deficient derivatives are tolerant to these agents. We showed previously, using pulse field gel electrophoresis (PFGE), that MMR-mediated double-strand breaks (DSBs) are produced by cisplatin in dam recB(Ts) cells at the non-permissive temperature. We demonstrate here that the majority of these DSBs require DNA replication for their formation, consistent with a model in which replication forks collapse at nicks or gaps formed during MMR. DSBs were also detected in dam recB(Ts) ada ogt cells exposed to MNNG in a dose- and MMR-dependent manner. In contrast to cisplatin, the formation of these DSBs was not affected by DNA replication and it is proposed that two separate mechanisms result in DSB formation. Replication-independent DSBs arise from overlapping base excision and MMR repair tracts on complementary strands and constitute the majority of detectable DSBs in dam recB(Ts) ada ogt cells exposed to MNNG. Replication-dependent DSBs result from replication fork collapse at O(6)-methylguanine (O(6)-meG) base pairs undergoing MMR futile cycling and are more likely to contribute to cytotoxicity. This model is consistent with the observation that fast-growing dam recB(Ts) ada ogt cells, which have more chromosome replication origins, are more sensitive to the cytotoxic effect of MNNG than the same cells growing slowly.  相似文献   

10.
11.
12.
In order to investigate whether several DNA lesions (O6-methylguanine, 8-hydroxyguanine, xanthine, an abasic site analogue and hypoxanthine) activate a c-Ha-ras gene and to determine the type of mutations induced by the DNA lesions, they were introduced into a synthetic c-Ha-ras gene by DNA cassette mutagenesis techniques. The modified genes were transfected into mouse NIH3T3 cells and the c-Ha-ras genes present in transformed cells were analysed. O6-methylguanine and xanthine induced a mutation to A, hypoxanthine induced a mutation to G. 8-hydroxyguanine and the abasic site analogue caused random mutations in the modified and adjacent positions. These results indicated that the synthetic c-Ha-ras gene is very useful for the detection of mutations caused by a DNA lesion.  相似文献   

13.
The Escherichia coli AlkB protein encoded by alkB gene was recently found to repair cytotoxic DNA lesions 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) by using a novel iron-catalysed oxidative demethylation mechanism that protects the cell from the toxic effects of methylating agents. Mutation in alkB results in increased sensitivity to MMS and elevated level of MMS-induced mutations. The aim of this study was to analyse the mutational specificity of alkB117 in a system developed by J.H. Miller involving two sets of E. coli lacZ mutants, CC101-106 allowing the identification of base pair substitutions, and CC107-CC111 indicating frameshift mutations. Of the six possible base substitutions, the presence of alkB117 allele led to an increased level of GC-->AT transitions and GC-->TA and AT-->TA transversions. After MMS treatment the level of GC-->AT transitions increased the most, 22-fold. Among frameshift mutations, the most numerous were -2CG, -1G, and -1A deletions and +1G insertion. MMS treatment appreciably increased all of the above types of frameshifts, with additional appearance of the +1A insertion.  相似文献   

14.
Hybrids were made between a ouabain-resistant, thioguanine-resistant human lymphoma line able to remove O6-methylguanine from its DNA (Mex+) and human lymphoblastoid lines deficient in this capability (Mex-). The formation of hybrids was confirmed by chromosomal analysis. Hybrid cells had an O6-methylguanine removal capacity per mole of guanine about one third to one half that of the Mex+ parents, i.e., about the same per cell. Cell hybrids removed the same amount of the alkylation adduct 3-methyladenine as did their parents per mole of guanine, i.e., about twice as much per cell. Although the cell hybrids had intermediate resistance to the cytotoxic action of N-methyl-N'-nitro-N-nitrosoguanidine used to induce O6-methylguanine and 3-methyladenine, there is evidence that the ability to remove O6-methylguanine and resistance to the cytotoxic effect of N-methyl-N'-nitro-N-nitrosoguanidine are dissociable characteristics.  相似文献   

15.
The major damage to DNA caused by alkylating agents involves the formation of O(6)-methylguanine (O(6)-meG). Almost all species possess O(6)-methylguanine-DNA-methyltransferase (Ogt) to repair such damage. Ogt repairs O(6)-meG lesions in DNA by stoichiometric transfer of the methyl group to a cysteine residue in its active site (PCHR). Thermus thermophilus HB8 has an Ogt homologue, TTHA1564, but in this case an alanine residue replaces cysteine in the putative active site. To reveal the possible function of TTHA1564 in processing O(6)-meG-containing DNA, we characterized the biochemical properties of TTHA1564. No methyltransferase activity for synthetic O(6)-meG-containing DNA could be detected, indicating TTHA1564 is an alkyltransferase-like protein. Nevertheless, gel shift assays showed that TTHA1564 can bind to DNA containing O(6)-meG with higher affinity (9-fold) than normal (unmethylated) DNA. Experiments using a fluorescent oligonucleotide suggested that TTHA1564 recognizes O(6)-meG in DNA using the same mechanism as other Ogts. We then investigated whether TTHA1564 functions as a damage sensor. Pull-down assays identified 20 proteins, including a nucleotide excision repair protein UvrA, which interacts with TTHA1564. Interaction of TTHA1564 with UvrA was confirmed using a surface plasmon resonance assay. These results suggest the possible involvement of TTHA1564 in DNA repair pathways.  相似文献   

16.
17.
Cejka P  Jiricny J 《Genetics》2008,179(4):1835-1844
Methylating agents of S(N)1 type are widely used in cancer chemotherapy, but their mode of action is poorly understood. In particular, it is unclear how the primary cytotoxic lesion, O(6)-methylguanine ((Me)G), causes cell death. One hypothesis stipulates that binding of mismatch repair (MMR) proteins to (Me)G/T mispairs arising during DNA replication triggers cell-cycle arrest and cell death. An alternative hypothesis posits that (Me)G cytotoxicity is linked to futile processing of (Me)G-containing base pairs by the MMR system. In this study, we provide compelling genetic evidence in support of the latter hypothesis. Treatment of 4644 deletion mutants of Saccharomyces cerevisiae with the prototypic S(N)1-type methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) identified MMR as the only pathway that sensitizes cells to MNNG. In contrast, homologous recombination (HR), postreplicative repair, DNA helicases, and chromatin maintenance factors protect yeast cells against the cytotoxicity of this chemical. Notably, DNA damage signaling proteins played a protective rather than sensitizing role in the MNNG response. Taken together, this evidence demonstrates that (Me)G-containing lesions in yeast must be processed to be cytotoxic.  相似文献   

18.
Escherichia coli plasmids containing the rpsL+ gene (Strs phenotype) as the target for mutation were treated in vitro with N-methyl-N-nitrosourea. Following fixation of mutations in E. coli MM294A cells (recA+ Strs), an unselected population of mutant and wild-type plasmids was isolated and transferred into a second host, E. coli 6451 (recA Strr). Strains carrying plasmid-encoded forward mutations were then selected as Strr isolates, while rpsL+ plasmids conferred the dominant Strs phenotype in the second host. Mutation induction and reduced survival of N-methyl-N-nitrosourea-treated plasmids were shown to be dose dependent. Because this system permitted analysis and manipulation of the levels of certain methylated bases produced in vitro by N-methyl-N-nitrosourea, it afforded the opportunity to assess directly the relative roles of these bases and of SOS functions in mutagenesis. The methylated plasmid DNA gave a mutation frequency of 6 X 10(-5) (a 40-fold increase over background) in physiologically normal cells. When the same methylated plasmid was repaired in vitro by using purified O6-methylguanine DNA methyltransferase (to correct O6-methylguanine and O4-methylthymine), no mutations were detected above background levels. In contrast, when the methylated plasmid DNA was introduced into host cells induced by UV light for the SOS functions, rpsL mutagenesis was enhanced eightfold over the level seen without SOS induction. This enhancement of mutagenesis by SOS was unaffected by prior treatment of the DNA with O6-methylguanine DNA methyltransferase. These results demonstrate a predominant mutagenic role for alkylation lesions other than O6-methylguanine or O4-methylthymine when SOS functions are induced. The mutation spectrum of N-methyl-N-nitrosourea under conditions of induced SOS functions revealed a majority of mutagenic events at A . T base pairs.  相似文献   

19.
The mitochondrial genome is continuously subject to attack by reactive oxygen species generated through aerobic metabolism. This leads to the formation of a variety of highly genotoxic DNA lesions, including abasic sites. Yeast Apn1p is localized to the nucleus, where it functions to cleave abasic sites, and apn1 Delta mutants are hypersensitive to agents such as methyl methanesulfonate (MMS) that induce abasic sites. Here we demonstrate for the first time that yeast Apn1p is also localized to the mitochondria. We found that Pir1p, initially isolated as a cell wall constituent of unknown function, interacts with the C-terminal end of Apn1p, which bears a bipartite nuclear localization signal. Further analysis revealed that Pir1p is required to cause Apn1p mitochondrial localization, presumably by competing with the nuclear transport machinery. pir1 Delta mutants displayed a striking (approximately 3-fold) increase of Apn1p in the nucleus, which coincided with drastically reduced levels in the mitochondria. To explore the functional consequences of the Apn1p-Pir1p interaction, we measured the rate of mitochondrial mutations in the wild type and pir1 Delta and apn1 Delta mutants. pir1 Delta and apn1 Delta mutants exposed to MMS exhibited 3.6- and 5.8-fold increases, respectively, in the rate of mitochondrial mutations, underscoring the importance of Apn1p in repair of the mitochondrial genome. We conclude that Pir1p interacts with Apn1p, at the level of either the cytoplasm or nucleus, and facilitates Apn1p transport into the mitochondria to repair damaged DNA.  相似文献   

20.
One of the most frequent lesions formed in cellular DNA are abasic (apurinic/apyrimidinic, AP) sites that are both cytotoxic and mutagenic, and must be removed efficiently to maintain genetic stability. It is generally believed that the repair of AP sites is initiated by the AP endonucleases; however, an alternative pathway seems to prevail in Schizosaccharomyces pombe. A mutant lacking the DNA glycosylase/AP lyase Nth1 is very sensitive to the alkylating agent methyl methanesulfonate (MMS), suggesting a role for Nth1 in base excision repair (BER) of alkylation damage. Here, we have further evaluated the role of Nth1 and the second putative S.pombe AP endonuclease Apn2, in abasic site repair. The deletion of the apn2 open reading frame dramatically increased the sensitivity of the yeast cells to MMS, also demonstrating that the Apn2 has an important function in the BER pathway. The deletion of nth1 in the apn2 mutant strain partially relieves the MMS sensitivity of the apn2 single mutant, indicating that the Apn2 and Nth1 act in the same pathway for the repair of abasic sites. Analysis of the AP site cleavage in whole cell extracts of wild-type and mutant strains showed that the AP lyase activity of Nth1 represents the major AP site incision activity in vitro. Assays with DNA substrates containing base lesions removed by monofunctional DNA glycosylases Udg and MutY showed that Nth1 will also cleave the abasic sites formed by these enzymes and thus act downstream of these enzymes in the BER pathway. We suggest that the main function of Apn2 in BER is to remove the resulting 3′-blocking termini following AP lyase cleavage by Nth1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号